title:
Stochastic molecular dynamics 
name:
Szepessy 
first name:
Anders

location/conference:
SPDE09

PRESENTATIONlink:
http://www.dfgspp1324.de/download/spde09/material/szepessy.pdf 
abstract:
Starting from the Schrödinger equation
for nucleielectron systems I will show
two stochastic molecular dynamics effects
derived from a Gibbs distribution:
\begin{itemize}
\item
When the ground state has a large spectral
gap a precise Langevin equation for molecular dynamics
approximates observables from the Schrödinger equation.
\item
If the gap is smaller in some sense, the temperature
also gives a precise correction to the ab initio ground state
potential energy.
\end{itemize}
The two approximation results holds with a rate depending on the
spectral gap and the ration of nuclei and electron mass. \\
I will also give an example of coursegraining this stochastic
Langevin molecular dynamics equation to obtain a continuum
stochastic partial differential equation for phase transitions. 