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M. Kovács, F. Lindner, R. L. Schilling

Preprint 172



Edited by

AG Numerik/Optimierung
Fachbereich 12 - Mathematik und Informatik
Philipps-Universität Marburg
Hans-Meerwein-Str.
35032 Marburg



DFG-Schwerpunktprogramm 1324

”
Extraktion quantifizierbarer Information aus komplexen Systemen”

Weak convergence of finite element approximations
of linear stochastic evolution equations with

additive Lévy noise
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Weak convergence of finite element approximations of
linear stochastic evolution equations with additive

Lévy noise ∗

Mihály Kovács, Felix Lindner and René L. Schilling

Abstract

We present an abstract framework to study weak convergence of numerical ap-
proximations of linear stochastic partial differential equations driven by additive Lévy
noise. We first derive a representation formula for the error which we then apply to
study space-time discretizations of the stochastic heat and wave equations. We use
the standard continuous finite element method as spatial discretization and the back-
ward Euler method and I-stable rational approximations to the exponential function,
respectively, as time-stepping for the heat and wave equations. For twice continu-
ously differentiable bounded test functions with bounded first and second derivatives,
with some additional condition on the second derivative for the wave equation, the
weak rate of convergence is found to be twice the strong rate. The results extend
earlier work by two of the authors as we consider general square-integrable infinite-
dimensional Lévy processes with no additional assumptions on the jump intensity
measure. Furthermore, the present framework is applicable to hyperbolic equations
as well.

Keywords: Stochastic partial differential equation, infinite-dimensional Lévy process,
cylindrical Lévy process, Poisson random measure, finite elements, error estimate, weak
convergence, backward Kolmogorov equation
MSC 2010: 60H15, 65M60; secondary: 60H35, 60G51, 65C30, 35R60

1 Introduction
Let H be a real separable Hilbert space and (Ω,F , (Ft)t�0,P) be a stochastic basis satis-
fiying the usual conditions, L = (L(t))t�0 be a square-integrable cylindrical Lévy process
in a real separable Hilbert space U with respect to the stochastic basis (Ω,F , (Ft)t�0,P),

∗Financial support from the Deutsche Forschungsgemeinschaft within the Priority Program 1324
through a fellowship for the first author and grant SCHI 419/5-2 is gratefully acknowledged.
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taking values in a possibly larger Hilbert space U1 ⊃ U , and B : U → H is a bounded
linear operator. Consider an H-valued stochastic convolution process

X(t) = E(t)X0 +
� t

0
E(t− s)B dL(s) (1.1)

where (E(t))t∈[0,T ] is a family of bounded linear operators on H and X0 is an F0-measurable
H-valued random variable. Without loss of generality, all Hilbert spaces are assumed to be
infinite-dimensional. Important examples of such processes are weak solutions (X(t))t�0 of
certain stochastic partial differential equations (SPDEs, for short) driven by additive Lévy
noise; these can be written as abstract Itô stochastic differential equations

dX(t) + AX(t) dt = B dL(t), t � 0; X(0) = X0, (1.2)

where−A is the generator of a strongly continuous semigroup (E(t))t�0 onH. In particular,
we consider the stochastic heat equation

dX(t) + ΛX(t)dt = dL(t), t � 0; X(0) = X0, (1.3)

and the stochastic wave equation, written as a first order system,

dX1(t)−X2(t)dt = 0, t � 0; X1(0) = X0,1,

dX2(t) + ΛX1(t)dt = dL(t), t � 0; X2(0) = X0,2.
(1.4)

In both cases Λ := −Δ = −�d
j=1 ∂

2/∂ξ2
j is the Laplace operator on L2(O) with domain

D(Λ) := H2(O) ∩ H1
0 (O) where O ⊂ Rd is a sufficiently nice bounded domain. For the

precise abstract setup of these equations we refer to Sections 4 and 5. In general, how-
ever, we do not require that (E(t))t�0 enjoys the semigroup property so that the abstract
framework can accommodate Volterra type evolution equations as well.

Consider an approximation X̃ = (X̃(t))t∈[0,T ] of the process (X(t))t∈[0,T ] given by

X̃(t) = Ẽ(t)X0 +
� t

0
Ẽ(t− s)B dL(s), (1.5)

where (Ẽ(t))t∈[0,T ] is a family of bounded linear operators on H, which is again not nec-
essarily (extendable to) an operator semigroup. For example, the family (Ẽ(t))t∈[0,T ] may
be a time-interpolated solution operator family of a space-time discretized stochastic evo-
lution problem, when H is an L2-space of some spatial domain O. We study the so-called
weak error

e(T ) := E
�
G(X̃(T ))−G(X(T ))

�
(1.6)

for suitable test functionsG : H → R. At the heart of the paper are the error representation
formulae for e(T ), Theorem 3.3 and Corollary 3.5. The proof of Theorem 3.3 is based on
Kolmogorov’s backward equation for the martingale Y (t) = E(T )X0 +

� t
0 E(T −s)B dL(s),

t ∈ [0, T ], which has the important property that Y (T ) = X(T ). The introduction of
such an auxiliary process Y is well-known for equations with Gaussian noise and has
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been used by many authors in a weak error analysis, see, for example [12, 18, 19, 21] to
mention just a few (compare also [9, 10]). However, the extension of those arguments is
not straightforward and the resulting error representation formula differs from the one in
the Gaussian case in [19]. One of the difficulties in the general Lévy case (in contrast
to the Gaussian case) is that there are no readily available, sufficiently general results on
Kolmogorov’s backward equation to suit our analysis. We remedy this, at least for Y as
above, in Proposition 3.6. Another complication arises from the fact that we use tools
from the theory of stochastic integration based on two different settings. One, where we
integrate operator valued processes w.r.t. a Hilbert space valued Lévy process, promoted
in the monographs [32, Chapter 8], [28, 29], and another one where we integrate Hilbert
space-valued integrands w.r.t. a Poisson random measure [26, 34]. The problem occurs
because our setting for stochastic differential equations is based on the first approach while
the proof of the error representation formula is based on an Itô formula which appears in
[26, Theorem 3.6]; the latter form is well suited for our purposes, but it is formulated using
the second approach for stochastic integration. Therefore, in the appendix we link the two
stochastic integrals so that we can use the results from both theories.

Using the abstract error representation we study the weak error of a space-time dis-
cretization for the stochastic heat and wave equations. As space discretization we employ a
standard continuous finite element method. For the stochastic heat equation we use a back-
ward Euler method and for the stochastic wave equation an I-stable rational approximation
of the exponential function, such as the Crank-Nicolson scheme, as time integrators. For
both equations, the Hilbert-Schmidt norm condition �Λ(β−1)/2Q1/2�L2(L2(O)) < ∞, β > 0,
determines the rate of convergence. Here U = L2(O) and Q ∈ L (L2(O)) is the covariance
operator of L as introduced in Section 2.1.

For the stochastic heat equation, we show in Theorem 4.5 that for twice continuously
differentiable bounded test functions with bounded first and second derivatives the rate of
weak convergence is twice that of strong convergence and it is at least O(h2β +(Δt)β), β ∈
(0, 1], modulo a logarithmic term, where h and Δt are the space- and time-discretization pa-
rameters, respectively. This extends the corresponding result from [25], where, in contrast
to the present paper, the analysis is restricted to so-called impulsive cylindrical processes
on L2(O) as driving noise. Moreover, there is a serious restriction on the jump size in-
tensity measure in [25, Section 6] admitting only processes of bounded variation (on finite
time intervals). Here, the only restriction we have on L is that it is square-integrable,
non-Gaussian and has mean zero.

For the stochastic wave equation the additional technical condition (5.8) has to be
imposed in order to prove that the weak order is twice that of the strong order and at least
O(hmin(2β r

r+1 ,r) +(Δt)min(2β p
p+1 ,1)), see Theorem 5.3. Here p and r are the classical orders of

the time-discretization and of the finite element method. We would like to point out that,
while the extra condition (5.8) on the second derivative on the test function is restrictive,
it trivially holds for the important function g(x) = �x�2

L2(O). Although the results in
the present paper, notably the error representation formulae, do not allow for such a test
function, as it is unbounded with unbounded first derivative, we expect that they could
be extended to cover this case as well with some more technical effort. This is non-trivial
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in the Lévy setting and will be done in a follow-up paper since it does not lie within the
scope of the present article. Furthermore, as far as the authors know, there are no results
available in the literature concerning weak approximation of hyperbolic stochastic partial
differential equations driven by Lévy noise.

Let us remark that weak error estimates for approximations of Lévy-driven stochastic
ordinary differential equations have been considered by various authors, see, e.g. [17, 27, 33,
36] and the references therein. There also exists a series of papers on strong error estimates
for approximations of SPDEs driven by Lévy processes or Poisson random measures, see,
for example [4, 5, 6, 13, 15, 16, 23] and compare also Remarks 4.2 and 5.1 below. However,
to the best of our knowledge, the first steps in a weak error analysis for Lévy-driven SPDEs
have been done only recently in the already mentioned article [25].

The present paper is organized as follows. In Section 2 we describe the abstract frame-
work of the paper, introduce infinite-dimensional Lévy processes with several examples
and a framework for linear stochastic partial differential equations driven by additive Lévy
noise. Assumption 2.6 summarizes the main assumptions for the general setting of the
paper. In Section 3 we state and prove two representation formulae, Theorem 3.3 and
Corollary 3.5, for e(T ) given by (1.6). The main ingredient in their proofs is Proposition
3.6 on Kolmogorov’s backward equation. In Section 4 and Section 5 we use the repre-
sentation formula from Corollary 3.5 to establish weak convergence rates for a space-time
discretization scheme for the stochastic heat and wave equations. Section 6 contains some
concluding remarks outlining how to remove some of the technical conditions imposed in the
paper for keeping the presentation simple. In the appendix we link stochastic integration
with respect to Poisson random measures to integration with respect to infinite-dimensional
Lévy processes.

2 Setting and preliminaries
Here we describe in detail our abstract setting and collect some background material from
infinite-dimensional stochastic analysis.

General notation. Let (H, � · , · �H) and (G, � · , · �G) be real, separable Hilbert spaces and
denote by L (H,G), L1(H,G) and L2(H,G) the spaces of linear and bounded operators,
nuclear operators and Hilbert-Schmidt operators fromH to G, respectively. The corresond-
ing norms are denoted by � · �L (H,G), � · �L1(H,G) and � · �L2(H,G). If H = G, we write
L (H), L1(H) and L2(H) instead of L (H,H), L1(H,H) and L2(H,H). Given a measure
space (M,M, µ) and 1 � p <∞, we denote by Lp(M ;H) = Lp(M,M, µ;H) the space of
allM/B(H)-measurable mappings f : M → H with finite norm �f�Lp(M ;H) = (E�f�pH)1/p,
where B(H) denotes the Borel σ-algebra on the Hilbert space H. By Cn

b (H,R) we denote
the space of all n-times continuously Fréchet differentiable functions f : H → R, x �→ f(x)
which are bounded together with their derivatives. Identifying H and L (H,R) via the
Riesz isomorphism, we consider for fixed x ∈ H the first derivative f �(x) as an element
of H. Similarly, the second derivative f ��(x) is considered as an element of L (H). In
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particular, the norm in C2
b(H;R) reads �f�C2

b(H,R) = supx∈H |f(x)| + supx∈H �f �(x)�H +
supx∈H �f ��(x)�L (H). We also write fx and fxx instead of f � and f ��.

2.1 The driving Lévy process L
The process L = (L(t))t�0 in Eq. (1.2) is a Lévy process with values in a real and separable
Hilbert space U1, defined on a filtered probability space (Ω,F , (Ft)t�0,P) satisfying the
usual conditions (cf. [32]). L is (Ft)-adapted and for t, h � 0 the increment L(t+h)−L(t)
is independent of Ft. We always consider a càdlàg (right continuous with left limits)
modification of L, i.e., a modification such that L(t) = lims�t L(s) for all t � 0 and
L(t−) := lims�t L(s) exists for all t > 0, where the limits are pathwise limits in U1. Our
standard reference for Hilbert space-valued Lévy processes is [32].

In order to keep the exposition simple, we assume that L is square-integrable, i.e.,
E�L(t)�2

U1 < ∞, and that the Gaussian part of L vanishes. Moreover, we assume that L
has mean zero, i.e., EL(t) = 0 in U1. Let ν be the jump intensity measure (Lévy measure)
of L. Note that the jump intensity measure ν of a general Lévy process in U1 satisfies
ν({0}) = 0 and

�
U1 min(1, �y�2

U1)ν(dy) < ∞, cf. [32, Section 4]. Due to our assumptions
we have �

U1
�y�2

U1ν(dy) <∞, (2.1)

and the characteristic function of L is given by

Eei�x,L(t)�U1 = exp
�
− t

�

U1

�
1− ei�x,y�U1 + i�x, y�U1

�
ν(dy)

�
, t � 0, x ∈ U1. (2.2)

Conversely, any U1-valued Lévy process L satisfying (2.1) and (2.2) is square-integrable,
with mean zero and vanishing Gaussian part.

Let Q1 ∈ L1(U1) be the covariance operator of L. It is determined by the jump intensity
measure ν via

�Q1x, y�U1 =
�

U1
�x, z�U1�y, z�U1ν(dz), x, y ∈ U1, (2.3)

see [32, Theorem 4.47]. Further, let

(U0, � · , · �U0) :=
�
Q

1/2
1 (U1), �Q−1/2

1 · , Q−1/2
1 · �U1

�

be the reproducing kernel Hilbert space of L, where Q−1/2
1 denotes the pseudo-inverse of

Q
1/2
1 , see [32, Section 7]. Recall that the operator B in Eq. (1.2) is defined on the Hilbert

space U . We assume that
U0 ⊂ U ⊂ U1, (2.4)

and that the inclusions (2.4) define continuous embeddings. We denote the embedding of
U0 into U by J0 ∈ L (U0, U) and set

Q := J0J
∗
0 ∈ L (U). (2.5)
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The nonnegative and symmetric operator Q is the covariance operator of L considered as
a cylindrical process in U , cf. Remark 2.1 below. As a consequence of Douglas’ theorem
as stated in [32, Appendix A.4], compare also [35, Corollary C.0.6], the reproducing kernel
Hilbert space of L has the alternative representation

(U0, � · , · �U0) =
�
Q1/2(U), �Q−1/2 · , Q−1/2 · �U

�
.

Remark 2.1. Suppose w.l.o.g. that U is dense in U1, identify U and U∗ via the Riesz
isomorphism, and consider the Gelfand triple U∗

1 ⊂ U∗ ≡ U ⊂ U1. Then it is not difficult
to see that

E�L(t), x��L(t), y� = t�Qx, y�U , t � 0, x, y ∈ U∗
1 ,

where � · , · � : U1 × U∗
1 → R is the canonical dual pairing; compare [32, Proposition 7.7].

The unique continuous extensions of the linear mappings U∗
1 � x �→ �L(t), x� ∈ L2(P),

t � 0, to the larger space U∗ determine a 2-cylindrical U -process in the sense of [29],
compare also [1], [37], [38].

Remark 2.2. Unlike in the case of a mean-zero (cylindrical) Q-Wiener process in U , the
covariance operators Q ∈ L (U) and Q1 ∈ L1(U1) do not determine the distribution of
the Lévy process L, but the jump intensity measure ν does so according to (2.2). Note
that the law of a general Lévy process is determined by its characteristics (Lévy triplet),
cf. [32, Definition 4.28], and that the characteristics of L are (− �

{�y�U1�1} y ν(dy), 0, ν).
Nevertheless, the operator Q in (2.5) will play an important role in our error analysis. Let
us shortly make the connection of our setting to the construction of a cylindrical Q-Wiener
process in U as described in [11], [35]. To this end, let (fk)k∈N be an orthonormal basis of
U1 consisting of eigenvectors of Q1 with eigenvalues (λk)k∈N and consider the orthonormal
basis (ek)k∈N of U0 given by ek := λ

1/2
k fk. To simplify notation we suppose for the moment

that all eigenvalues λk of Q1 are strictly positive. Then, compare [32, Section 4.8], the
real-valued Lévy processes Lk = (Lk(t))t�0, k ∈ N, given by

Lk(t) := λ
−1/2
k �L(t), fk�U1

are uncorrelated, i.e., ELk(t)Lj(s) = 0 if k �= j, they satisfy E(L2
k(t)) = t, and we have

L(t) =
�

k∈N
Lk(t)ek. (2.6)

The infinite sum in (2.6) converges for all finite T > 0 in the space M2
T (U1) of càdlàg

square-integrable U1-valued (Ft)-martingales M = (M(t))t∈[0,T ] with norm �M�M2
T (U1) =

(E�M(T )�2
U1)1/2. In contrast to the Gaussian case, where uncorrelated coordinates are

always independent, the coordinate processes Lk, k ∈ N, are in general only uncorrelated
but not independent.

Conversely, suppose that we are given an arbitrary symmetric and nonnegative operator
Q ∈ L (U), an orthonormal basis (ek)k∈N of U0 = Q1/2(U), and a familiy Lk, k ∈ N, of
real-valued Lévy processes on (Ω,F , (Ft)t�0,P) that satisfy the following conditions:
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• Each Lk is (Ft)-adapted and for t, h � 0 the increment Lk(t+h)−Lk(t) is independent
of Ft;

• each Lk is square-integrable with ELk(t) = 0 and E(L2
k(t)) = t;

• the processes Lk, k ∈ N, are uncorrelated;

• for all n ∈ N the Rn-valued process ((L1(t), . . . , Ln(t))�)t�0 is a Lévy process;

• the Gaussian part of each Lk is zero.

Then, if U1 is a Hilbert space containing U such that the natural embedding of U0 =
Q1/2(U) into U1 is Hilbert-Schmidt, the infinite sum in (2.6) converges in M2

T (U1) and
defines a Lévy process L with reproducing kernel Hilbert space U0 that fits into our setting.

We end this subsection with some examples of Lévy processes L. We suppose that
all processes are defined relative to the stochastic basis (Ω,F , (Ft)t�0,P) and that their
increments on time intervals [t, t+ h] are independent of Ft.

Example 2.3. (Subordinate cylindrical �Q-Wiener process) Let W = (W (t))t�0 be a cylin-
drical �Q-Wiener process in U in the sense of [35, Section 2.5.1], where �Q ∈ L (U) is a
given nonnegative and symmetric operator. Assume that W takes values in a possibly
larger Hilbert space U1 ⊃ U such that the natural embedding of U into U1 is dense and
continuous. Let �Q1 ∈ L1(U1) be the covariance operator of W considered as a Wiener
process in U1, i.e., E�W (t), x�U1�W (s), y�U1 = min(s, t)� �Q1x, y�U1 for x, y ∈ U1, s, t � 0.
Let Z = (Z(t))t�0 be a subordinator, i.e., a real-valued increasing Lévy process in the sense
of [40, Definition 21.4], [41]. Assume that W and Z are independent, that the drift of Z is
zero, and that the jump intensity measure ρ of Z satisfies

� ∞

0
s ρ(ds) <∞. (2.7)

The latter is equivalent to assuming that Z has first moments, E|Z(t)| < ∞. According
to [40, Remark 21.6], the Laplace tranform of Z(t) is given by

E(e−rZ(t)) = exp
�
− t

� ∞

0
(1− e−rs)ρ(ds)

�
, r � 0. (2.8)

In this situation, subordinate cylindrical Brownian motion

L(t) := W (Z(t)), t � 0,

defines a U1-valued Lévy process L = (L(t))t�0 that fits into the general framework de-
scribed above. Indeed, L has stationary and independent increments. Moreover, the
independence of W and Z, the identity Eei�x,W (s)�U1 = e−s 1

2 � �Q1x,x�U1 , Eq. (2.8) and the
symmetry of the distribution PW (1) = N(0, Q1) imply that characteristic function of L(t)
is given by

Eei�x,L(t)�U1 =
� ∞

0
e−s 1

2 � �Q1x,x�U1 PZ(t)(ds)
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= exp
�
− t

� ∞

0
(1− e− 1

2 � �Q1x,x�U1s)ρ(ds)
�

= exp
�
− t

� ∞

0

�

U1
(1− ei�x,

√
sy�U1 + i�x,√sy�U1)PW (1)(dy)ρ(ds)

�
.

As a consequence, (2.2) holds with

ν = (PW (1) ⊗ ρ) ◦ κ−1, (2.9)

where κ : U1 × (0,∞) → U1 is defined by κ(y, s) =
√
sy; compare [38, Lemma 4.8].

(Note that, by the scaling property of W , (2.9) is equivalent to the standard formula
ν =

� ∞
0 PW (s) ρ(ds), where the measure-valued integral is defined in a weak sense, cf. [40,

Section 30]). Moreover, (2.1) holds due to (2.7) as we have the equality
�
U1 �y�2

U1ν(dy) =� ∞
0 s ρ(ds)E(�W (1)�2

U1) according to (2.9). It follows that L is a U1-valued, square-
integrable, mean-zero Lévy process with vanishing Gaussian part. It is also not difficult
to show that the covariance operators Q1 ∈ L1(U1) and Q ∈ L (U) of L in (2.3) and (2.5)
are given by Q1 =

� ∞
0 s ρ(ds) �Q1 and Q =

� ∞
0 s ρ(ds) �Q. Subordinate cylindrical Wiener

processes have been considered, e.g., in [8].

Example 2.4. (Independent one-dimensional Lévy processes) Let Q ∈ L (U) be symmet-
ric, nonnegative and let (ek)k∈N be an orthonormal basis of U0 := Q1/2(U) ⊂ U . Let
Lk = (L(t))k∈N, k ∈ N, be independent real-valued square-integrable Lévy processes with
vanishing Gaussian part and ELk(t) = 0, E(L2

k(t)) = t. Let U1 ⊃ U be another Hilbert
space such that the natural embedding of U0 into U1 is a Hilbert-Schmidt operator. Then,
the series (2.6) converges for all T ∈ (0,∞) in the spaceM2

T (U1) and defines a Lévy process
L = (L(t))t�0 satisfiying (2.1) and (2.2) with jump intensity measure

ν =
�

k∈N
νk ◦ π−1

k ,

where νk is the Lévy measure of Lk and πk : R → U1 is defined by πk(ξ) := ξek; compare
[32, Section 4.8.1].

Example 2.5. (Impulsive cylindrical process) Let µ be a Lévy measure on R such that�
R σ

2µ(dσ) < ∞. Let O ⊂ Rd be a bounded domain and Z = (Z(t))t�0 an impulsive
cylindrical process on U := L2(O) = L2(O,B(O), λd) with jump size intensity µ in the sense
of [32, Definition 7.23]. Here, λd denotes d-dimensional Lebesgue measure. The process Z
is a measure-valued process defined, informally, by Z(t, dξ) =

� t
0

�
R σπ̂(ds, dξ, dσ), where

π̂ is a compensated Poisson random measure on [0,∞) × O × R with reference measure
λ1⊗λd⊗µ; see [32, Section 7.2] for details. Let �Q ∈ L (U) be symmetric and nonnegative,
(bk)k∈N an orthonormal basis of U , and U1 ⊃ U a Hilbert space such that the natural
embedding of U0 = Q̃1/2(U) ⊂ U into U1 is Hilbert-Schmidt. Then the series

L(t) := �Q
1
2Z(t) :=

�

k∈N

� t

0

�

O

�

R
σbk(ξ)π̂(ds, dξ, dσ) �Q

1
2 bk, t � 0, (2.10)

8



converges for all T ∈ (0,∞) inM2
T (U1) and defines a Lévy process that fits into our general

framework with Q =
�
R σ

2µ(dσ) �Q and

ν = (λd ⊗ µ) ◦ φ−1,

where φ ∈ L2(O×R, λd ⊗ µ;U1) is defined by φ(ξ, σ) = �
n∈N σbk(ξ) �Q 1

2 bk (convergence in
L2(O × R, λd ⊗ µ;U1)). In [25] we considered the weak approximation of the stochastic
heat equation driven by an impulsive process of the form (2.10). The results in Section 4
of the present article improve the results of [25] in several aspects.

2.2 Linear stochastic evolution equations with additive noise
We are mainly interested in equations of the type (1.2), where A : D(A) ⊂ H → H
is an unbounded linear operator such that −A is the generator of a strongly continuous
semigroup (E(t))t�0 ⊂ L (H), B ∈ L (U,H), L = (L(t))t�0 is a square-integrable Lévy
process with reproducing kernel Hilbert space U0 ⊂ U as described in Subsection 2.1, and
X0 ∈ L2(Ω,F0,P;H). It is well known that if

� T

0
�E(t)B�2

L2(U0,H)dt <∞ (2.11)

for some (and hence for all) T > 0, then there exists a unique weak solution X = (X(t))t�0
to (1.2) which is given by the variation-of-constants formula (1.1), see, e.g., [32, Chapter 9].
Similarly, if (Ẽ(t))t∈[0,T ] ⊂ L (H) is given by some approximation scheme such that t �→
Ẽ(t)B is a measurable mapping from [0, T ] to L2(U0, H), then the condition

� T

0
�Ẽ(t)B�2

L2(U0,H)dt <∞ (2.12)

ensures that the approximation X̃ = (X̃(t))t∈[0,T ] of (X(t))t∈[0,T ] in (1.5) exists as a square-
integrable H-valued process. We refer to [32, Chapter 8] for details on the construction
and properties of the stochastic integral w.r.t. Hilbert space-valued Lévy processes.

It turns out that our general error representation formula for the weak error e(T ) in
(1.6) does not require the semigroup property of the strongly continuous family of operators
(E(t))t�0. This paves the way for analysing a more general class of Lévy-driven linear
stochastic evolution equations, including for example stochastic Volterra type equations as
considered in [20], [21] for the Gaussian case. For such equations, the weak solution still
has the form (1.1) but the solution operator family (E(t))t�0 ⊂ L (H) is not a semigroup
anymore. Therefore, we weaken our abstract assumptions and summarize them as follows.

Assumption 2.6. We will use the following assumptions:
(i) H, U and U1 are real and separable Hilbert spaces;
(ii) L = (L(t))t�0 is a U1-valued Lévy process on (Ω,F , (Ft)t�0,P) admitting second

moments and with reproducing kernel Hilbert space U0 such that U0 ⊂ U ⊂ U1 as
described in Subsection 2.1;
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(iii) X0 ∈ L2(Ω,F0,P;H);
(iv) B ∈ L (U,H) and (E(t))t∈[0,T ] ⊂ L (H) is a strongly continuous family of linear

operators such that (2.11) holds;
(v) for all ε > 0 there exists Φε ∈ L2(U0, H) such that

�E(t)Bx�H � �Φεx�H , (t, x) ∈ [ε, T ]× U0;

(vi) (Ẽ(t))t∈[0,T ] ⊂ L (H) is a family of linear operators such that t �→ Ẽ(t)B is a mea-
surable mapping from [0, T ] to L2(U0, H) and (2.12) holds;

(vii) X = (X(t))t∈[0,T ] and X̃ = (X̃(t))t∈[0,T ] are H-valued stochastic processes given by
(1.1) and (1.5).

Remark 2.7. If (E(t))t�0 is an operator semigroup, then 2.6(v) is a consequence of 2.6(iv).

To fix notation, let us briefly recall the Itô isometry for stochastic integrals w.r.t. L. It
has the same form as the Itô isometry for stochastic integrals w.r.t. Hilbert space-valued
Wiener processes. We set ΩT := Ω× [0, T ] and PT := P⊗ λ, where λ is Lebesgue measure
on [0, T ]. The predictable σ-algebra on ΩT w.r.t. (Ft)t∈[0,T ] is denoted by PT . For operator-
valued processes Φ = (Φ(t))t∈[0,T ] in

L2(ΩT ,PT ; L2(U0, H)) := L2(ΩT ,PT ,PT ; L2(U0, H)),

we have
E

����
� t

0
Φ(s)dL(s)

���
2

H

�
= E

� t

0
�Φ(s)�2

L2(U0,H)ds, t ∈ [0, T ], (2.13)

and the integral process (
� t

0 Φ(s)dL(s))t∈[0,T ] belongs to the spaceM2
T (H) of càdlàg square-

integrable H-valued (Ft)-martingales. The norm in M2
T (H) is defined by �M�M2

T (H) =
(E�M(T )�2

H)1/2, M = (M(t))t∈[0,T ] ∈ M2
T (H). Note, however, that the integral processes

given by the stochastic integrals in (1.1) and (1.5) are in general not martingales since the
(deterministic) operator-valued integrands also depend on t.

We also recall the definition and some properties of Hilbert-Schmidt operators, cf. [44,
Chapter 6]. Let H and G be real and separable Hilbert spaces. A linear and bounded
operator C ∈ L (H,G) belongs to the space L2(H,G) of Hilbert-Schmidt operators if

�C�L2(H,G) :=
� �

k∈N
�Chk�2

G

�1/2
<∞

for some (and hence for every) orthonormal basis (hk)k∈N of H. If C ∈ L (H,G) and
C∗ ∈ L (G,H) is the adjoint operator, then C ∈ L2(H,G) if and only if C∗ ∈ L2(G,H)
and one has

�C�L2(H,G) = �C∗�L2(G,H). (2.14)
Also, if C ∈ L2(H,G), D ∈ L (H) and F ∈ L (G), then obviously CD ∈ L2(H,G),
FC ∈ L2(H,G) and

�CD�L2(H,G) � �C�L2(H,G)�D�L (H), �FC�L2(H,G) � �F�L (G)�C�L2(H,G). (2.15)
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In particular, in our setting we have L (U1, H) ⊂ L2(U0, H) since

�C�L2(U0,H) = �CQ1/2
1 �L2(U1,H) � �C�L (U1,H)�Q1/2

1 �L2(U1)

for all C ∈ L (U1, H) and �Q1/2
1 �L2(U1) = TrQ1 = �Q1�L1(U1) <∞.

3 An error representation formula
In this section, we state and prove a general representation formula for the weak approxi-
mation error e(T ) in (1.6) within the abstract setting described above.

3.1 Formulation of the result
For the formulation and the proof of the error representation formula, we introduce auxil-
iary drift-free Itô processes Y = (Y (t))t∈[0,T ] and Ỹ = (Ỹ (t))t∈[0,T ] such that

X(T ) = Y (T ), X̃(T ) = Ỹ (T ).

The processes Y and Ỹ are constructed by applying to X and X̃ the deterministic operator-
valued processes (E(T − t))t∈[0,T ] and (Ẽ(T − t))t∈[0,T ]. That is, we set

Y (t) := E(T )X0 +
� t

0
E(T − s)B dL(s), t ∈ [0, T ], (3.1)

and
Ỹ (t) := Ẽ(T )X0 +

� t

0
Ẽ(T − s)B dL(s), t ∈ [0, T ]. (3.2)

Moreover, we consider the auxiliary problem

dZ(t) = E(T − t)B dL(t), t ∈ [τ, T ]; Z(τ) = ξ,

where τ ∈ [0, T ) and ξ is an H-valued Fτ -measurable random variable. Its solution is given
by

Z(t, τ, ξ) := ξ +
� t

τ
E(T − s)B dL(s), t ∈ [τ, T ], (3.3)

and we use it to define for G ∈ C2
b(H,R) a function u : [0, T ]×H → R by

u(t, x) := EG(Z(T, t, x)), (t, x) ∈ [0, T ]×H. (3.4)

Then, u and its Fréchet partial derivatives ux, uxx are continuous and bounded on [0, T ]×H,
cf. Proposition 3.6 below. We have

ux(t, x) = EG�(Z(T, t, x)), uxx(t, x) = EG��(Z(T, t, x)). (3.5)
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Before stating the representation formula, we show in the following lemma how opera-
tors in L2(U0, H) can be identified with functions in

L2(U1, ν;H) := L2(U1,B(U1), ν;H)

and how processes in L2(ΩT ,PT ; L2(U0, H)) can be identified with elements in

L2(ΩT × U1,PT ⊗ ν;H) := L2(ΩT × U1,PT ⊗ B(U1),PT ⊗ ν;H).

These identifications will be used impicitly throughout this article, see Remark 3.2 below.
They also lead to a generic identification of integrals w.r.t. (cylindrical) Hilbert space-
valued Lévy processes of jump type and integrals w.r.t. the associated Poisson random
measures, cf. Appendix A.

Lemma 3.1. Let (fk)k∈N ⊂ U0 be an orthonormal basis of U1 consisting of eigenvectors of
the covariance operator Q1 ∈ L1(U1) of L and let (λk)k∈N ⊂ [0,∞) be the corresponding
sequence of eigenvalues

(i) Given Φ ∈ L2(U0, H), the series

ι(Φ) :=
�

k∈N,λk �=0
� · , fk�U1Φfk

converges in L2(U1, ν;H). The linear mapping

ι : L2(U0, H)→ L2(U1, ν;H), Φ �→ ι(Φ)

is an isometric embedding.
(ii) Given Φ ∈ L2(ΩT ,PT ; L2(U0, H)), the series

κ(Φ) :=
�

k∈N,λk �=0
� · , fk�U1Φ( · )fk

converges in L2(ΩT × U1,PT ⊗ ν;H). The linear mapping

κ : L2(ΩT ,PT ; L2(U0, H))→ L2(ΩT × U1,PT ⊗ ν;H), Φ �→ κ(Φ)

is an isometric embedding. For PT -almost all (ω, t) ∈ ΩT we have κ(Φ)(ω, t, · ) = ι(Φ(ω, t))
in L2(U1, ν;H), where ι is the embedding from (i).

Proof. (i) W.l.o.g. all eigenvalues λk are strictly positive. Let (ek)k∈N be the orthonormal
basis of U0 given by ek := λ

1/2
k fk. For m,n ∈ N with m � n we have

����
n�

k=m

� · , fk�U1Φfk
����

2

L2(U1,ν;H)
=

�

U1

����
n�

k=m

�x, fk�U1Φfk
����

2

H
ν(dx)

=
n�

j,k=m

λ
−1/2
j λ

−1/2
k

�

U1
�x, fj�U1�x, fk�U1ν(dx) �Φej,Φek�H
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=
n�

k=m

�Φek�2
H ;

in the last step we used (2.3). Since �
k∈N �Φek�2

H = �Φ�2
L2(U0,H) <∞, this shows that the

partial sums �n
k=1� · , fk�U1Φfk, n ∈ N, are a Cauchy sequence in L2(U1, ν;H) and

����
∞�

k=1
� · , fk�U1Φfk

����
L2(U1,ν;H)

= �Φ�L2(U0,H).

(ii) The first two assertions can be shown as in the proof of (i). The last assertion is
due the fact that the iterated integral

�

Ω

� T

0

�

U1
�ι(Φ(ω, t))(x)− κ(Φ)(ω, t, x)�2

H ν(dx) dtP(dω)

equals zero, which follows from an approximation argument.

Remark 3.2. From now on we will identify operators Φ ∈ L2(U0, H) with the correspond-
ing mappings ι(Φ) ∈ L2(U1, ν;H) and write

Φx = ι(Φ)(x), x ∈ U1.

Analogously, we identify processes Φ ∈ L2(ΩT ,PT ; L2(U0, H)) with the corresponding
mappings κ(Φ) ∈ L2(ΩT × U1,PT ⊗ ν;H) and write

Φ(ω, t)x = κ(Φ)(ω, t, x), (ω, t, x) ∈ ΩT × U1.

For processes Φ ∈ L2(ΩT ,PT ; L2(U0, H)) both identifications are compatible P⊗λ-almost
everywhere on ΩT in the sense that we have κ(Φ)(ω, t, · ) = ι(Φ(ω, t)) in L2(U1, ν;H) for
P⊗ λ-almost all (ω, t) ∈ ΩT .

Here is the main result of this section.

Theorem 3.3. Under the Assumptions 2.6 and for G ∈ C2
b(H,R), the process (Ỹ (t))t∈[0,T ]

from (3.2) and the function u : [0, T ]×H → R from (3.4) it holds that

E

� T

0

�

U1

����u
�
t, Ỹ (t) + Ẽ(T − t)By

�
− u

�
t, Ỹ (t) + E(T − t)By

�

−
�
ux(t, Ỹ (t)),

�
Ẽ(T − t)B − E(T − t)B

�
y

�
H

���� ν(dy) dt < ∞.

(3.6)

The weak error e(T ) in (1.6) has the representation

e(T ) = E
�
u(0, Ẽ(T )X0)− u(0, E(T )X0)

�

+ E
� T

0

�

U1

�
u

�
t, Ỹ (t) + Ẽ(T − t)By

�
− u

�
t, Ỹ (t) + E(T − t)By

�

−
�
ux(t, Ỹ (t)),

�
Ẽ(T − t)B − E(T − t)B

�
y

�
H

�
ν(dy) dt.

(3.7)
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Remark 3.4. The terms E(T − t)By and Ẽ(T − t)By appearing in (3.6) and (3.7) are
defined for λ⊗ν-almost all (t, y) ∈ [0, T ]×U1. This follows from (2.11), (2.12), Lemma 3.1
and Remark 3.2,

We will prove Theorem 3.3 in the next subsection. Let us briefly record an alternative
representation of e(T ) which follows from Taylor’s formula. It will be the starting point
for our error estimates in Sections 4 and 5. For t ∈ [0, T ], θ ∈ [0, 1] and y ∈ U1 set

F (t) := Ẽ(t)B − E(t)B,

Ψ1(t, θ, y) := (1− θ)
�
uxx

�
t, Ỹ (t) + E(T − t)By + θF (T − t)y

�
F (T − t)y , F (T − t)y

�

H
,

Ψ2(t, θ, y) :=
�
uxx

�
t, Ỹ (t) + θE(T − t)By

�
E(T − t)By , F (T − t)y

�

H
.

Corollary 3.5. In the setting of Theorem 3.3 we have

E

� T

0

�

U1

� 1

0

�
|Ψ1(t, θ, y)|+ |Ψ2(t, θ, y)|

�
dθ ν(dy) dt <∞, (3.8)

and the following alternative error representation holds:

e(T ) = E
�
u(0, Ẽ(T )X0)− u(0, E(T )X0)

�

+ E
� T

0

�

U1

� 1

0

�
Ψ1(t, θ, y) + Ψ2(t, θ, y)

�
dθ ν(dy) dt.

(3.9)

Proof. The integrand of the iterated integral in (3.7) can be rewritten as

u
�
t, Ỹ (t)+Ẽ(T − t)By

�
− u

�
t, Ỹ (t) + E(T − t)By

�
−

�
ux(t, Ỹ (t)), F (T − t)y

�
H

=
�
u

�
t, Ỹ (t) + Ẽ(T − t)By

�
− u

�
t, Ỹ (t) + E(T − t)By

�

−
�
ux

�
t, Ỹ (t) + E(T − t)By

�
, F (T − t)y

�
H

�

+
�
ux

�
t, Ỹ (t) + E(T − t)By

�
− ux(t, Ỹ (t)), F (T − t)y

�
H

=
� 1

0

�
Ψ1(t, θ, y) + Ψ2(t, θ, y)

�
dθ,

where the last step is due to Taylor’s formula. By (3.6) we have

E

� T

0

�

U1

����
� 1

0

�
Ψ1(t, θ, y) + Ψ2(t, θ, y)

�
dθ

���� ν(dy) dt <∞.

The stronger assertion (3.8) follows from the boundedness of G�� : H → L (H), Lemma 3.1
and (2.11), compare the estimates in the proof of Proposition 3.6 below.
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3.2 Proof of the error representation formula
In this subsection, we give the proof of Theorem 3.3.

For ξ ∈ L0(Ω,Ft,P;H) we have

E
�
G(Z(T, t, ξ))

�
=

�

H

�

H
G(x+ y)P� T

t
E(T−s)B dL(s)(dy)Pξ(dx) = E

�
u(t, ξ)

�

by (3.3), (3.4), the independence of
� T
t E(T − s)B dL(s) and Ft, and Fubini’s theorem.

Since X(T ) = Y (T ) and X̃(T ) = Ỹ (T ) it follows that

e(T ) = E
�
G(Ỹ (T ))−G(Y (T ))

�

= E
�
G(Z(T, T, Ỹ (T )))−G(Z(T, 0, Y (0)))

�

= E
�
u(T, Ỹ (T ))− u(0, Y (0))

�

= E
�
u(0, Ỹ (0))− u(0, Y (0))

�
+ E

�
u(T, Ỹ (T ))− u(0, Ỹ (0))

�
.

(3.10)

By (3.1) and (3.2), the first term in the last line equals E(u(0, Ẽ(T )X0)− u(0, E(T )X0)).
To handle the second term in the last line of (3.10), we apply Itô’s formula to the

function (t, x) �→ u(t, x) and the martingale Ỹ = (Ỹ (t))t∈[0,T ]. For this we need the
following properties of u.

Proposition 3.6. Let Assumption 2.6 hold and G ∈ C2
b(H,R). The function u : [0, T ] ×

H → R, (t, x) �→ u(t, x) defined in (3.4) and its Fréchet partial derivatives ux, uxx are
continuous and bounded on [0, T ] × H. The time derivative ut of u exists on [0, T ) × H
and is continuous. Moreover, for every ε > 0 there exists some Cε <∞ such that

�

U1

���u
�
t, x+ E(T − t)By

�
− u(t, x)−

�
ux(t, x), E(T − t)By

�
H

��� ν(dy) < Cε (3.11)

for all t ∈ [0, T − ε], and u satisfies the backward Kolmogorov equation

ut(t, x) = −
�

U1

�
u

�
t, x+ E(T − t)By

�
− u(t, x)−

�
ux(t, x), E(T − t)By

�
H

�
ν(dy),

(t, x) ∈ [0, T )×H,

u(T, x) = G(x), x ∈ H.





(3.12)

Proof. We begin with the continuity and boundedness of u, ux and uxx. The boundedness
is obvious by the definition (3.4) of u and by (3.5). Pick 0 � s � t � T , x, y ∈ H. Using
(3.4), Jensen’s inequality, the mean value theorem, (3.3) and Itô’s isometry, we have

|u(t, x)− u(s, y)|2 � E
�
|G(Z(T, t, x))−G(Z(T, s, y))|2

�

� sup
x∈H

�G�(x)�2
H E

����x− y −
� t

s
E(T − r)B dL(r)

���
2

H

�

� 2 sup
x∈H

�G�(x)�2
H

�
�x− y�2

H +
� t

s
�E(T − r)B�2

L2(U0,H) dr
�
.

15



Thus, the continuity of u follows from (2.11) and the boundedness of G�. Since ux(t, x) =
EG�(Z(T, t, x)), the continuity of ux : [0, T ] × H → H follows analogously from the
boundedness of G��. To show the continuity of uxx : [0, T ] × H → L (H), define F ∈
Cb(H ×H;R) by

F (x, y) := �G��(x)−G��(y)�L (H), x, y ∈ H,
and fix (t, x) ∈ [0, T ] × H, ((tk, xk))k∈N ⊂ [0, T ] × H with (tk, xk) → (t, x) as k → ∞.
Note that Z(T, tk, xk) → Z(T, t, x) in L2(Ω;H) by Itô’s isometry. As a consequence,
(Z(T, t, x), Z(T, tk, xk))→ (Z(T, t, x), Z(T, t, x)) in distribution (on H×H) and we obtain

�uxx(t, x)− uxx(tk, xk)�L (H) � EF
�
Z(T, t, x), Z(T, tk, xk)

�

k→∞−−−→ EF
�
Z(T, t, x), Z(T, t, x)

�
= 0,

yielding the continuity of uxx.
By Taylor’s formula and Lemma 3.1,

�

U1

���u
�
t, x+ E(T − t)By

�
− u(t, x)−

�
ux(t, x), E(T − t)By

�
H

��� ν(dy)

� 1
2 sup

x∈H
�G��(x)�L (H)

�

U1
�E(T − t)By�2

Hν(dy)

= 1
2 sup

x∈H
�G��(x)�L (H)�E(T − t)B�2

L2(U0,H).

Using Assumption 2.6(v), this yields (3.11) with Cε = 1/2 supx∈H �G��(x)�L (H)�Φε�2
L2(U0,H).

In order to verify the Kolmogorov equation (3.12), we first note that for fixed t ∈ [0, T ]
the H-valued random variables

� t
0 E(s)B dL(s) and

� T
T−tE(T − s)B dL(s) have the same

distribution, so that

v(t, x) := EG
�
x+

� t

0
E(s)B dL(s)

�
= u(T − t, x), (t, x) ∈ [0, T ]×H. (3.13)

Next, we fix x ∈ H and apply Itô’s formula [26, Theorem 3.6] to the function y �→ G(x+y)
and the martingale M = (M(t))t∈[0,T ] := (

� t
0 E(s)B dL(s))t∈[0,T ] ∈ M2

T (H). Note that M
fits into the setting of [26] since it has the representation

M(t) =
� t

0

�

U1
E(s)By q(ds, dy), t ∈ [0, T ],

where q is the compensated Poisson random measure on [0,∞) × U1 associated to L; see
the appendix for details. We obtain

G(x+M(t)) = G(x) +
� t

0

�

U1

�
G

�
x+M(s−) + E(s)By

�
−G

�
x+M(s−)

��
q(ds, dy)

+
� t

0

�

U1

�
G

�
x+M(s) + E(s)By

�
−G

�
x+M(s)

�

−
�
G�

�
x+M(s)

�
, E(s)By

�
H

�
ν(dy) ds,

(3.14)
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where the integrand appearing in the integral w.r.t. q belongs to L2(ΩT×U1,PT⊗ν;R) as a
consequence of Taylor’s formula, the boundedness of G�, Lemma 3.1 and (2.11). Similarly,
the second integral in (3.14) exists for all ω ∈ Ω and belongs to L1(Ω;R) since

� t

0

�

U1

���G
�
x+M(s) + E(s)By

�
−G

�
x+M(s)

�
−

�
G�

�
x+M(s)

�
, E(s)By

�
H

��� ν(dy) ds

� 1
2 sup

x∈H
�G��(x)�L (H)

� t

0
�E(s)B�2

L2(U0,H)ds.

Taking expectations in (3.14) and using the martingale property of the integral w.r.t. q
yields

v(t, x) = G(x)+
� t

0

�

U1

�
v(s, x+E(s)By)−v(s, x)−�vx(s, x), E(s)By�H

�
ν(dy) ds. (3.15)

By the fundamental theorem of calculus, (3.12) follows from (3.13), (3.15) if the mapping

(0, T ] � s→
�

U1

�
v(s, x+ E(s)By)− v(s, x)− �vx(s, x), E(s)By�H

�
ν(dy) ∈ R. (3.16)

is continuous.
Note that we cannot apply directly the continuity theorem for parameter-dependent

integrals to show the continuity of the mapping (3.16). The reason is that the term
E(s)By in the integral in (3.16) is defined only in an L2([0, T ] × U1, λ ⊗ ν;H)-sense,
cf. Lemma 3.1 and Remark 3.2, so that we have no information about the continuity of
(0, T ] ∈ s �→ E(s)By ∈ H for fixed y ∈ U1. Therefore, we use an approximation argument:
For s ∈ (0, T ], x ∈ H, y ∈ U1 and k ∈ N set

f(s, x, y) := v(s, x+ E(s)By)− v(s, x)− �vx(s, x), E(s)By�H ,
fk(s, x, y) := f(s, x,Πky),

where Πk is the orthogonal projection of U1 onto span{f1, . . . , fk}, (fk)k∈N ⊂ U0 being
an orthonormal basis of U1 as in Lemma 3.1. For fixed x ∈ H, f(s, x, y) is defined in
an L2([0, T ] × U1, λ ⊗ ν;R)-sense whereas fk(s, x, y) is defined pointwise. The continuity
theorem for parameter-dependent integrals and the strong continuity of (E(t))t�0 yield the
continuity of in

�
U1 fk(s, x, y)ν(dy) in (s, x) ∈ [0, T ]×H. Moreover, we have fk(s, x, ·) k→∞−→

f(s, x, ·) in L1(U1, ν;R), uniformly in (s, x) ∈ [ε, T ] × H for all ε > 0. Indeed, setting
Πky := y−Πky and using Taylor’s theorem, Lemma 3.1 and Assumption 2.6(v), we obtain

�

U1
|f(s, x, y)− fk(s, x, y)| ν(dy)

�
�

U1

� 1

0

���
�
vxx

�
s, x+ E(s)B(Πky + θΠky)

�
E(s)BΠky, E(s)BΠky

�
H

���(1− θ) dθ ν(dy)

+
�

U1

� 1

0

���
�
vxx

�
s, x+ θE(s)BΠky

�
E(s)BΠky, E(s)BΠky

�
H

��� dθ ν(dy)
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� sup
x∈H

�G��(x)�L (H)
�
�E(s)BΠk�2

L2(U0,H) + �E(s)BΠk�L2(U0,H)�E(s)BΠk�L2(U0,H)
�

� sup
x∈H

�G��(x)�L (H)
�
�ΦεΠk�2

L2(U0,H) + �ΦεΠk�L2(U0,H)�ΦεΠk�L2(U0,H)
�

for all s ∈ [ε, T ] and some Φε ∈ L2(U0, H). The expression in the last line tends to zero
as k → ∞. As a consequence,

�
U1 fk(s, x, y)ν(dy)

k→∞−−−→ �
U1 f(s, x, y)ν(dy) uniformly in

(s, x) ∈ [ε, T ]×H. Thus, the continuity of
�
U1 fk(s, x, y)ν(dy) in (s, x) ∈ [0, T ]×H implies

the continuity of
�
U1 f(s, x, y)ν(dy) in (s, x) ∈ (0, T ] × H. In particular, we obtain the

continuity of the mapping (3.16) as well as the continuity of ut on [0, T )×H.

The regularity assertions in Propostition 3.6 allow us to apply Itô’s formula [26, The-
orem 3.6] to the function (t, x) �→ u(t, x) and the martingale Ỹ = (Ỹ (t))t∈[0,T ] defined in
(3.2). Note that Ỹ fits into the setting of [26] since it has the representation

Ỹ (t) = Ẽ(T )X0 +
� t

0

�

U1
Ẽ(T − s)By q(ds, dy), t ∈ [0, T ], (3.17)

where again q is the compensated Poisson random measure on [0,∞)×U1 associated with
L as described in the appendix. Equality (3.17) is a consequence of (2.12), Lemma 3.1,
Remark 3.2 and Lemma A.2. For T � ∈ (0, T ) we obtain

u(T �, Ỹ (T �)) = u(0, Ỹ (0)) +
� T �

0
ut(t, Ỹ (t)) dt

+
� T �

0

�

U1

�
u

�
t, Ỹ (t−) + Ẽ(T − t)By

�
− u(t, Ỹ (t−))

�
q(ds, dy)

+
� T �

0

�

U1

�
u

�
t, Ỹ (t) + Ẽ(T − t)By

�
− u(t, Ỹ (t))−

�
ux(t, Ỹ (t)), Ẽ(T − t)By

�
H

�
ν(dy) ds.

(3.18)
Using the boundedness of u, ux and uxx, (3.12), (2.11) and applying similar arguments
as in the proof of Propostition 3.6, one sees that all terms in (3.18) are well-defined and
integrable w.r.t. P. Thus, we can take expectations and use the martingale property of the
integral w.r.t. q and the backward Kolmogorov equation (3.12) to obtain

E
�
u(T �, Ỹ (T �))− u(0, Ỹ (0))

�
=

E

� T �

0

�

U1

�
u

�
t, Ỹ (t) + Ẽ(T − t)By

�
− u

�
t, Ỹ (t) + E(T − t)By

�

−
�
ux(t, Ỹ (t)),

�
Ẽ(T − t)B − E(T − t)B

�
y

�
H

�
ν(dy) dt

(3.19)
for all T � ∈ (0, T ). Taking the limit T � → T on both sides of (3.19), we can replace T � by
T . Here we used the stochastic continuity of Ỹ and the continuity of u for the limit on
the left hand side. The combination of (3.10) and (3.19) yields the error representation
formula (3.7).
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4 Application to the heat equation
In this section, we give a detailed error analysis of a space-time discretization of the linear
stochastic heat equation with additive Lévy noise.

Let O ⊂ Rd be a convex bounded domain with a C∞-boundary; if d = 2 we also allow
for convex bounded domains with a polygonal boundary. Let Λ := −Δ = −�d

j=1 ∂
2/∂ξ2

j be
the Laplace operator on L2(O) with zero-Dirichlet boundary condition, i.e., with domain
D(Λ) := H2(O)∩H1

0 (O). As usual, Hn(O) denotes the L2-Sobolev space of order n ∈ N0
on O and H1

0 (O) is the H1(O)-closure of the space C∞
c (O) of compactly supported test

functions. Then, setting

H := U := L2(O), (A,D(A)) := (Λ, D(Λ)), B := idL2(O),

the abstract equation (1.2) becomes the stochastic heat equation (1.3). It is not difficult
to see that the condition �Λ−1/2Q1/2�L2(H) <∞ implies (2.11), where

(E(t))t�0 := (e−tΛ)t�0 ⊂ L (H) (4.1)

is the semigroup generated by −A = −Λ. Hence, there exists a unique weak solution
X = (X(t))t�0 to Eq. (1.3), given by the variation-of-constants formula (1.1). In the
sequel, we use the smoothness spaces Ḣα, α ∈ R, defined by

Ḣα := D(Λα/2)

:=
�
v =

∞�

k=1
vkϕk : (vk)k∈N ⊂ R, |v|α := �Λα/2v�L2(O) =

� ∞�

k=1
λα
kv

2
k

�1/2
<∞

�
,

where (ϕk)k∈N ⊂ D(Λ) is an orthonormal basis of L2(O) consisting of eigenfunctions of Λ
and (λk)k∈N ⊂ (0,∞) is the corresponding sequence of eigenvalues; compare [42, Chapters 3
and 19]. They are Hilbert spaces and one has the identities Ḣ0 = H = L2(O), Ḣ1 = H1

0 (O)
and Ḣ2 = D(Λ) = H2(O) ∩H1

0 (O), where the natural norms of the respective spaces are
equivalent. For negative α, the elements of Ḣα are formal sums and we identify them with
elements of L2(O) if �∞

k=1 v
2
k <∞, so that Ḣα is the closure of L2(O) w.r.t. the | · |α-norm.

Remark 4.1. The spaces Ḣα, α ∈ R, can be obtained by both real and complex inter-
polation: For α = (1 − θ)α0 + θα2, θ ∈ (0, 1), one has Ḣα = (Ḣα0 , Ḣα1)θ,2 = [Ḣα0 , Ḣα1 ]θ
with equivalent norms, where (·, ·)θ,2 and [·, ·]θ denotes real interpolation with summabil-
ity parameter q = 2 and complex interpolation, respectively. This follows, e.g., from [43,
Theorem 1.18.5] and the fact that the spaces Ḣα, α ∈ R, are isometrically isomorphic to
weighted �2-spaces. We will frequently use the corresponding interpolation inequalities in
this and the next section.

For the spatial discretization of Eq. (1.3), we take a family of finite element spaces
(Sh)h>0 ⊂ H1

0 (O), consisting of piecewise linear functions with respect to a family of trian-
gulations ofO. The parameter h corresponds to the maximal mesh size of the triangulation.
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Unless otherwise stated, we endow the finite-dimensional spaces Sh with the inner product
�·, ·�H and the norm � · �H . By Ph : H → Sh and Πh : Ḣ1 → Sh we denote the orthogonal
projections with respect to the inner products in H and Ḣ1, respectively. The discrete
Laplacian Λh : Sh → Sh is defined by

�Λhv, w�L2(O) = �∇v,∇w�L2(O;R2), v, w ∈ Sh. (4.2)

Under our assumptions on O the Ritz projection Πh satisfies the standard elliptic error
estimate

�Πhv − v�L2(O) � Chβ|v|β, v ∈ Ḣβ, 1 � β � 2, (4.3)
see, e.g., [42, Lemma 1.1] or [24, Section 5.4].

The time discretization of Eq. (1.3) on a finite interval [0, T ] is done via the implicit
Euler scheme with time step Δt = T/N , N ∈ N, and grid points tn = nΔt, n = 0, . . . N .
For h > 0 and N ∈ N, the discretization (Xn

h,Δt)n=1,...,N of (X(t))t∈[0,T ] in space and time
is given as the solution to

Xn
h,Δt−Xn−1

h,Δt +ΔtΛhX
n
h,Δt = Ph(L(tn)−L(tn−1)), n = 1, . . . , N ; X0

h,Δt = PhX0. (4.4)

Remark 4.2 (strong error). If the covariance operator Q ∈ L (H) of L is such that

�Λβ−1
2 Q

1
2�L2(H) <∞ (4.5)

for some β � 0, then the solution X(t) takes values in Ḣβ for all t > 0. For the Gaussian
case, i.e., the case where L in (1.3) is a Q-Wiener process, it has been shown in [45,
Theorem 1.2] that, if (4.5) holds and X0 ∈ L2(Ω,F0,P; Ḣβ) for some β ∈ (0, 1], then the
scheme (4.4) has strong convergence of order β in space and β/2 in time:

�Xn
h,Δt −X(tn)�L2(Ω;H) � C(hβ + (Δt)

β
2 ), n = 0, . . . , N.

Unlike weak error estimates, strong L2-error estimates are the same in the Gaussian case
and in our setting, since the only stochastic tool that is needed is Itô’s isometry (2.13)
which looks the same if the driving noise is a Lévy process which is an L2-martingale.
Thus the strong error result in [45, Theorem 1.2] carries over one-to-one to our setting.

Remark 4.3. The Sh-valued random variables Ph(L(tn)−L(tn−1)) in (4.4) can be defined
in two ways. On the one hand, we may set

Ph(L(tn)− L(tn−1)) := L2(Ω;Sh)- lim
K→∞

K�

k=1
(Lk(tn)− Lk(tn−1))Phek,

with an orthonormal basis (ek)k∈N of U0 and real-valued uncorrelated Lévy processes Lk =
(Lk(t))t�0, k ∈ N, as in Remark 2.2. The limit exists since, by the finite-dimensionality of
Sh, one has Ph ∈ L2(H,Sh) = L2(U, Sh) ⊂ L2(U0, Sh). On the other hand, we can extend
the orthogonal projection Ph : H → Sh to a generalized L2-projection Ph : Ḣ−1 → Sh

defined by
�Phv, w�H = �v, w�Ḣ−1×Ḣ1 , v ∈ Ḣ−1, w ∈ Sh.
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Then, the assumption �Λ−1/2Q1/2�L2(H) < ∞ implies that we can take U1 := D(Λ−1/2) =
Ḣ−1 as the state space of L, so that the expression Ph(L(tn)−L(tn−1)) makes sense ω-wise.
Obviously, both definitions are compatible. In practice, one has to find a suitable way to
sample (an approximation of) the discretized noise increment Ph(L(tn)− L(tn−1)). We do
not treat this problem in the present paper but refer to [5, 13] and [25, Remark 4] for
related considerations.

With R(λ) := 1/(1 + λ) and Eh,Δt := R(ΔtΛh) := (I + ΔtΛh)−1 as well as En
h,Δt :=

Rn(ΔtΛh) := ((I + ΔtΛh)−1)n, the scheme (4.4) can be rewritten as

Xn
h,Δt = En

h,ΔtPhX0 +
n�

j=1
En−j+1

h,Δt Ph(L(tj)− L(tj−1)), n = 0, . . . , N.

For t ∈ [0, T ], let Ẽ(t) = Ẽh,Δt(t) ∈ L (H) be defined by

Ẽ(t) = Ẽh,Δt(t) := 1{0}(t)Ph +
N�

n=1
1(tn−1,tn](t)En

h,ΔtPh (4.6)

and set
X̃(t) = X̃h,Δt(t) := Ẽh,Δt(t)X0 +

� t

0
Ẽh,Δt(t− s) dL(s). (4.7)

Then Xn
h,Δt = X̃h,Δt(tn) P-almost surely. This follows from the construction of the stochas-

tic integral, using an approximation argument and Itô’s isometry (2.13).
The following deterministic estimates will be used in the proof of our weak error result

stated in Theorem 4.5 below.

Lemma 4.4. The operators E(t) and Ẽ(t) = Ẽh,Δt(t) defined in (4.1) and (4.6) satisfy
the error estimates

�Ẽ(s)− E(s)�L (H) � C(h2 + Δt)s−1, (4.8)
�ΛαE(s)�L (H) + �ΛαẼ(s)�L (H) � Cs−α, 0 � α � 1/2, (4.9)

s ∈ (0, T ], where C > 0 does not depend on h, Δt and s.

Proof. Estimate (4.8) follows from

�En
h,ΔtPh − E(tn)�L (H) � C(h2 + Δt)t−1

n ,

see, for example, [42, Theorem 7.7]. We note here that while the latter result is proved
under the assumption that O has smooth boundary, the proof relies on the availability
of (4.3) and the analyticity of the heat semigroup and hence it holds for planar convex
polygonal domains as well, with the proof carrying over verbatim. For s ∈ (tn−1, tn] we
have

�(E(tn)− E(s))v�H = �ΛE(s)(E(tn − s)− idH)Λ−1v�H
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� �ΛE(s)�L (H)�(E(tn − s)− idH)Λ−1v�H
� Cs−1Δt�v�H ,

where we used Theorem 6.13(c),(d) on analytic semigroups in [31, Chapter 2]. Esti-
mate (4.9) is due to Theorem 6.13(c) in [31, Chapter 2], Lemma 7.3 in [42], interpolation,
and the fact that �Aαvh� � �Aα

hvh� for vh ∈ Sh, 0 � α � 1/2. The latter follows from the
basic identity �A1/2vh� = �A1/2

h vh� and interpolation.

Here is our result for the weak error of the discretization of the stochastic heat equation.

Theorem 4.5. Assume that X0 ∈ L2(Ω,F0,P;H) and �Λ(β−1)/2Q1/2�L2(H) <∞ for some
β ∈ (0, 1]. Let (X(t))t�0 be the weak solution (1.1) to Eq. (1.2) and let (Xn

h,Δt)n=0,...,N be
defined by the scheme (4.4). Given g ∈ C2

b(H,R), there exists a constant C = C(g, T ) > 0
that does not depend on h and Δt, such that

���E
�
g(XN

h,Δt)− g(X(T ))
���� � C(h2β + (Δt)β)| log(h2 + Δt)|

for h2 + Δt � 1/e.

Proof. We are in the setting of Section 2 with H = U = L2(O), B = idH , and (E(t))t�0,
(Ẽ(t))t∈[0,T ] = (Ẽh,Δt(t))t∈[0,T ], (X̃(t))t∈[0,T ] = (X̃h,Δt(t))t∈[0,T ] being given by (4.1), (4.6),
(4.7) respectively. In particular, Assumption 2.6 is fulfilled. Since XN

h,Δt = X̃(T ), we can
use Corollary 3.5 with G := g to estimate the weak error. Let F (t) := Ẽ(t)− E(t) be the
deterministic error operator.

We begin with the first term on the right hand side of the formula (3.9) in Corollary 3.5.
The mean value theorem and the deterministic estimate (4.8) yield, for max(h2,Δt) � 1,

���E
�
u(0, Ẽ(T )X0)− u(0, E(T )X0)

���� � sup
x∈H

�ux(0, x)�HE
�
�F (T )X0�H

�

� sup
x∈H

�g�(x)�HE
�
�F (T )X0�H

�

� C sup
x∈H

�g�(x)�H(h2 + Δt)T−1E
�
�X0�H

�

� C sup
x∈H

�g�(x)�HT−1E
�
�X0�H

�
(h2β + (Δt)β).

(4.10)
Next, consider the second term on the right hand side of (3.9). We estimate the integrals

of the functions Ψ1 and Ψ2 separately. Using Lemma 3.1 and Remark 3.2, we obtain
���E

� T

0

�

U1

� 1

0
Ψ1(t, θ, y) dθ ν(dy) dt

���

� sup
x∈H

�g��(x)�L (H)

� T

0

�

U1
�F (T − t)y�2

H ν(dy) dt

= sup
x∈H

�g��(x)�L (H)

� T

0
�F (T − t)�2

L2(U0,H) dt

� C sup
x∈H

�g��(x)�L (H)(h2β + (Δt)β).

(4.11)
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The last step is due to the fact that, by Itô’s isometry (2.13), the integral in the penultimate
line is the square of the strong error �XN

h,Δt−X(T )�L2(Ω;H) for zero initial condition X0 = 0,
which can be estimated as in the Gaussian case [45, Theorem 1.2], compare Remark 4.2.
Further, by the Cauchy-Schwarz inequality, Lemma 3.1, and the fact that U0 = Q1/2(U),

���E
� T

0

�

U1

� 1

0
Ψ2(t, θ, y) dθ ν(dy) dt

���

� sup
x∈H

�g��(x)�L (H)

� T

0

�

U1
�E(T − t)y�H�F (T − t)y�H ν(dy) dt

� sup
x∈H

�g��(x)�L (H)

� T

0
�E(T − t)�L2(U0,H)�F (T − t)�L2(U0,H) dt

� sup
x∈H

�g��(x)�L (H)�Λ
β−1

2 Q1/2�2
L2(H)

� T

0
�E(t)Λ

1−β
2 �L (H)�F (t)Λ

1−β
2 �L (H) dt

(4.12)

By (4.9) we have
�E(t)Λ

1−β
2 �L (H) = �Λ 1−β

2 E(t)�L (H) � Ct−
1−β

2 (4.13)
and

�ΛαF (t)�L (H) � Ct−α, 0 � α � 1/2. (4.14)
Interpolation between (4.8) and (4.14) with α = 1/2 gives

�Λ 1−β
2 F (t)�L (H) � C�F (t)�βL (H)�Λ

1
2F (t)�1−β

L (H) � C(h2 + Δt)βt−
1+β

2 . (4.15)

Note that �F (t)Λα�L (H) = �ΛαF (t)�L (H) due to the self adjointness of Ẽ(t), E(t) and Λα.
Altogether, using (4.13), (4.14) and (4.15), the integral in the last line of (4.12) can be
estimated by

� T

0
�E(t)Λ

1−β
2 �L (H)�F (t)Λ

1−β
2 �L (H) dt

=
� � h2+Δt

0
+

� T

h2+Δt

�
�Λ 1−β

2 E(t)�L (H)�Λ
1−β

2 F (t)�L (H) dt

� C
� h2+Δt

0
t−

1−β
2 t−

1−β
2 dt+ C

� T

h2+Δt
t−

1−β
2 (h2 + Δt)βt−

1+β
2 dt

= C(h2 + Δt)β(1 + | log(h2 + Δt)|)
� C(h2β + (Δt)β)| log(h2 + Δt)|.

(4.16)

for h2 + Δt � 1/e, where C > 0 depends on T . The combination of (4.10), (4.11), (4.12)
and (4.16) finishes the proof.

5 Application to the wave equation
Here, we apply the general error representation from Section 3 to a discretization of the
stochastic wave equation (1.4) via finite elements in space and a rational single step scheme
in time.
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Let O ⊂ Rd be a convex bounded domain with a C∞-boundary and let the spaces Ḣα,
α ∈ R, be as in Section 4. We use the product spaces

Hα := Ḣα × Ḣα−1, α ∈ R,

with inner product �v, w�Hα := �v1, w1�α + �v2, w2�α−1, v = (v1, v2)�, w = (w1, w2)� and
norm �v�Hα = (|v1|2α + |v2|2α−1)1/2, where �·, ·�α and �·, ·�α−1 are the inner products in Ḣα

and Ḣα−1 corresponding to the norms | · |α and | · |α−1 introduced in Section 4. We set

H := H0 = Ḣ0 × Ḣ−1 = L2(O)×H−1(O), U := Ḣ0 = L2(O)

and define operators A : D(A) ⊂ H → H and B ∈ L (U,H) by setting D(A) := H1 and

A :=
�

0 −I
Λ 0

�
, B :=

�
0
I

�
,

where the Laplace operator Λ from Section 4 is now considered as an operator from Ḣ1

to Ḣ−1. It is well-known that −A generates a strongly continuous semigroup (E(t))t�0 ⊂
L (H) given by

E(t) =
�

C(t) Λ−1/2S(t)
−Λ1/2S(t) C(t)

�
, (5.1)

where C(t) := cos(tΛ1/2) and S(t) := sin(tΛ1/2) are the cosine and sine operators; compare
[32, Example B.1], [11, Section A.5.4] and [2, Section 3.14].

With these definitions the abstract equation (1.2) becomes the stochastic wave equa-
tion (1.4) with H-valued solution (X(t))t�0 = ((X1(t), X2(t))�)t�0. As in the Gaussian
case, cf. [19, Lemma 4.1], one sees that the condition �Λ−1/2Q1/2�L2(Ḣ0) < ∞ implies
(2.11) and hence the existence of a unique weak solution X = (X(t))t�0, given that the
initial condition X0 = (X0,1, X0,2)� is H-valued and F0-measurable.

The discretization of Eq. (1.4) is done via finite elements of order r = 2, 3 in space
and an I-stable rational single step scheme of order p = 1, 2, . . . in time. (By ‘I-stable’ we
mean what is called ‘I-acceptable’ in [30].) We use the finite element setting introduced
in Section 4, the only difference being that now we also consider higher order elements.
That is, the finite element spaces Sh ⊂ H1

0 (O) consist of continuous piecewise polynomials
of degree r− 1 w.r.t. the underlying triangulations of O. Under our assumptions on O the
elliptic finite element error estimate

�Πhv − v�L2(O) � Chβ|v|β, v ∈ Ḣβ, 1 � β � r, (5.2)

holds instead of (4.3), see, for example, [42, Lemma 1.1]. Although (5.2) does not appear
explicitly in the present paper, it is the key ingredient in the proof of the deterministic error
estimate for the finite element approximation of the wave equation and hence we state it
for the sake of completeness. We also note that for planar convex polygonal domains, (5.2)
only holds with r = 2 without further restriction on the interior angles. Therefore, here
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we only consider domains O with smooth boundary for simplicity. Let the discretization
Ah : Sh × Sh → Sh × Sh of the operator A : D(A) ⊂ H → H be defined by

Ah :=
�

0 −I
Λh 0

�
,

where Λh : Sh → Sh is the discrete Laplacian introduced in (4.2). Then −Ah generates a
strongly continuous semigroup (Eh(t))t�0 ⊂ L (Sh × Sh). As in Section 4, we consider for
N ∈ N a uniform grid tn = nΔt = n(T/N), n = 0, . . . , N , on a finite time interval [0, T ].
We approximate the operators Eh(tn) ∈ L (Sh × Sh) by

En
h,Δt := (R(ΔtAh))n,

where R is a rational function that satisfies the approximation and stability properties

|R(iy)− e−iy| � C|y|p+1, |y| � b,

|R(iy)| � 1, y ∈ R,
for some positive integer p and some b > 0; see [3, 7] for details. For instance, choosing
R(λ) = 1/(1− λ) and R(λ) = (2− λ)/(2 + λ) yields the backward Euler method (p = 1)
and the Crank-Nicolson method (p = 2), respectively.

The numerical scheme for the stochastic wave equation (1.2) can now be formulated as
follows: For h > 0 and N ∈ N, the discretization (Xn

h,Δt)n=0,...,N of (X(t))t∈[0,T ] in space
and time is given as the solution to

Xn
h,Δt = Eh,Δt

�
Xn−1

h,Δt + PhB(L(tn)− L(tn−1))
�
, n = 1, . . . , N ; X0

h,Δt = PhX0. (5.3)

By slight abuse of notation, we denote here and in the sequel by Ph both the generalized
L2-projection from Ḣ−1 onto Sh defined by �Phv, w�L2(O) = �v, w�Ḣ−1×Ḣ1 , v ∈ Ḣ−1, w ∈ Sh,
and the corresponding projection from H = Ḣ0×Ḣ−1 onto Sh×Sh defined by the action of
the former projection on the coordinates of elements in Ḣ0×Ḣ−1. Moreover, P 1 : H → Ḣ0

is the projection of elements in H = Ḣ0 × Ḣ−1 on the first coordinate.

Remark 5.1 (strong error). As observed for the discretization of the heat equation in
Remark 4.2, strong L2-error estimates for the scheme (5.3) carry over from the Gaussian
case in the Lévy L2-martingale case since they only use Itô’s isometry (2.13). Arguing as
in the proof of [19, Theorem 4.13], we obtain that, if

�Λβ−1
2 Q

1
2�L2(Ḣ0) <∞ and X0 ∈ L2(Ω,F0,P;Hβ) (5.4)

for some β > 0, then the scheme (5.3) approximates the first component X1 = P 1X of the
solution X to (1.2) with strong order min(βr/(r + 1), r) in space and min(βp/(p + 1), 1)
in time:

�Xn
h,Δt,1 −X1(tn)�L2(Ω;·H0) � C

�
hmin(β r

r+1 ,r) + (Δt)min(β p
p+1 ,1)

�
, n = 0, . . . , N.

Here we have set Xn
h,Δt,1 := P 1Xn

h,Δt. The condition (5.4) implies that the solution X =
(X(t))t�0 takes values in Hβ, cf. [22, Theorem 3.1].
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The solution to the scheme (5.3) is given by

Xn
h,Δt = En

h,ΔtPhX0 +
n�

j=1
En−j+1

h,Δt PhB(L(tn)− L(tn−1)), n = 0, . . . , N.

For t ∈ [0, T ], define operators Ẽ(t) = Ẽh,Δt(t) ∈ L (H) by

Ẽ(t) = Ẽh,Δt(t) := 1{0}(t)Ph +
N�

j=1
1(tn−1,tn](t)En

h,ΔtPh, (5.5)

where the projection Ph is understood as a mapping from H = Ḣ0×Ḣ−1 to Sh×Sh. Then,
analogously to the corresponding argument in Section 4, one sees that the Sh × Sh-valued
process (X̃(t))t∈[0,T ] = (X̃h,Δt(t))t∈[0,T ] defined by

X̃(t) = X̃h,Δt(t) := Ẽh,Δt(t)X0 +
� t

0
Ẽh,Δt(t− s)B dL(s) (5.6)

satisfies Xn
h,Δt = X̃(tn) P-almost surely.

The proof of the deterministic error estimate in the next lemma is postponed to the
end of this section.

Lemma 5.2. Let α � 0. The operators E(t) and Ẽ(t) = Ẽh,Δt(t) defined in (5.1) and
(5.5) satisfy the error estimate

sup
t∈[0,T ]

�
�P 1(Ẽ(t)− E(t))�L (Hα,Ḣ0) + �P 1(Ẽ(t)− E(t))B�L (Ḣ(α/2)−1,Ḣ−α/2)

�

� C
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,1)

�
,

(5.7)

for Δt � 1, where C = C(T ) > 0 does not depend on h and Δt.

We are now in the position to prove the following result concerning the weak error
of the approximation XN

h,Δt,1 := P 1XN
h,Δt of the first component X1(T ) = P 1X(T ) of the

solution to the stochastic wave eqation (1.2) at time T .

Theorem 5.3. Assume that X0 ∈ L2(Ω,F0,P;H2β) and �Λ(β−1)/2Q1/2�L2(Ḣ0) < ∞ for
some β > 0. Let (X(t))t�0 be the weak solution (1.1) to Eq. (1.2) and let (Xn

h,Δt)n=0,...,N be
given by the scheme (5.3). Let g ∈ C2

b(Ḣ0,R) be such that

sup
x∈Ḣ0

�Λβ
2 g��(x)Λ− β

2 �L (Ḣ0) <∞. (5.8)

Then, there exists a constant C = C(g, T ) > 0 that does not depend on h and Δt, such
that ���E

�
g(XN

h,Δt,1)− g(X1(T ))
���� � C

�
hmin(2β r

r+1 ,r) + (Δt)min(2β p
p+1 ,1)

�

for Δt � 1.
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Proof. We apply Theorem 3.3 and Corollary 3.5 with G = g ◦ P 1. Note that G�(x) =
(P 1)∗g�(P 1x) ∈ H and G��(x) = (P 1)∗g��(P 1x)P 1 ∈ L (H) for all x ∈ H, where (P 1)∗ ∈
L (Ḣ0, H) is the Hilbert space adjoint of P 1 ∈ L (H, Ḣ0). Using (3.5) one obtains

ux(t, ξ) = E
�
(P 1)∗g�(P 1Z(T, t, x))

����
x=ξ

, uxx(t, ξ) = E
�
(P 1)∗g��(P 1Z(T, t, x))P 1

����
x=ξ

(5.9)
for all H-valued random variables ξ and t ∈ [0, T ].

We combine (5.9) and the deterministic error estimate (5.7) with α = 2β in order to
estimate the first term on the right hand side of the error representation formula (3.9) in
Corollary 3.5:

���E
�
u(0, Ẽ(T )X0)− u(0, E(T )X0)

����

=
���E

�
u(0, Ỹ (0))− u(0, Y (0))

����

=
����E

� 1

0

�
ux

�
0, Y (0) + θ(Ỹ (0)− Y (0))

�
, Ỹ (0)− Y (0)

�
H

dθ
����

=
����E

� 1

0

�
E

�
g�(P 1Z(T, 0, x))

����
x=Y (0)+θ(Ỹ (0)−Y (0))

, P 1(Ỹ (0)− Y (0))
�
Ḣ0dθ

����

� sup
x∈Ḣ0

�g�(x)�Ḣ0E
�
�P 1(Ẽ(T )− E(T ))X0�Ḣ0

�

� sup
x∈Ḣ0

�g�(x)�Ḣ0�P 1(Ẽ(T )− E(T ))�L (H2β ,Ḣ0)�X0�L1(Ω;H2β)

� sup
x∈Ḣ0

�g�(x)�Ḣ0�X0�L1(Ω;H2β)C
�
hmin(2β r

r+1 ,r) + (Δt)min(2β p
p+1 ,1)

�
.

(5.10)

Using (5.9), Lemma 3.1 and Remark 3.2, the integral of the function Ψ1 in the second
term on the right hand side of the formula (3.9) can be treated as follows:

����E
� T

0

�

U1

� 1

0
Ψ1(t, θ, y) dθ ν(dy) dt

����

=
����E

� T

0

�

U1

� 1

0
(1− θ)

�
E

�
g��

�
P 1Z(T, t, x+ E(T − t)By + θF (T − t)y)

�����
x=Ỹ (t)

× P 1F (T − t)y, P 1F (T − t)y
�

Ḣ0
dθ ν(dy) dt

����

� sup
x∈Ḣ0

�g��(x)�L (Ḣ0)

� T

0
�P 1F (T − t)�2

L2(U0,Ḣ0)dt

� sup
x∈Ḣ0

�g��(x)�L (Ḣ0)C
�
hmin(β r

r+1 ,r) + (Δt)min(β p
p+1 ,1)

�2

.

(5.11)
The last step in (5.11) is due to the fact that, by Itô’s isometry (2.13), the integral in the
penultimate line is the square of the strong error �XN

h,k,1 −X1(T )�L2(Ω;Ḣ0) for zero initial
condition X0 = 0; it can be estimated as in the Gaussian case [19, Theorem 4.13], compare
Remark 5.1.
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Concerning the integral of the function Ψ2 in the second term on the right hand side
of Eq. (3.9), we have by (5.9), Lemma 3.1, (2.15) and since U0 = Q1/2(U) = Q1/2(Ḣ0),

����E
� T

0

�

U1

� 1

0
Ψ2(t, θ, y) dθ ν(dy) dt

����

=
����E

� T

0

�

U1

� 1

0

�
E

�
g��

�
P 1Z(T, t, x+ θE(T − t)By)

�����
x=Ỹ (t)

× P 1E(T − t)By, P 1F (T − t)y
�

Ḣ0
dθ ν(dy) dt

����

=
����E

� T

0

�

U1

� 1

0

�
E

�
Λ

β
2 g��

�
P 1Z(T, t, x+ θE(T − t)By)

�
Λ− β

2
����

x=Ỹ (t)

× Λ
β
2P 1E(T − t)BΛ

1−β
2 Λ

β−1
2 y, Λ− β

2P 1F (T − t)Λ
1−β

2 Λ
β−1

2 y
�

Ḣ0
dθ ν(dy) dt

����

� sup
x∈Ḣ0

�Λβ
2 g��(x)Λ− β

2 �L (Ḣ0)�Λ
β−1

2 Q
1
2�2

L2(Ḣ0)

×
� T

0
�Λβ

2P 1E(T − t)BΛ
1−β

2 �L (Ḣ0)�Λ− β
2P 1F (T − t)Λ

1−β
2 �L (Ḣ0) dt.

(5.12)

Note that, by the definition of B = (0, I)� and E(t) from (5.1) we have

�Λβ
2P 1E(T − t)BΛ

1−β
2 �L (Ḣ0) = �Λβ−1

2 S(T − t)Λ
1−β

2 �L (Ḣ0) = �S(T − t)�L (Ḣ0) � 1;

it remains to estimate the integral
� T

0
�Λ− β

2P 1F (T − t)Λ
1−β

2 �L (Ḣ0)dt =
� T

0
�P 1F (t)�L (Ḣβ−1,Ḣ−β)dt

=
� T

0
�P 1(Ẽ(t)− E(t))B�L (Ḣβ−1,Ḣ−β)dt.

To this end, it suffices to apply the deterministic error estimate (5.7) with α = 2β. The
combination of (5.10), (5.11) and (5.12) finishes the proof.
Remark 5.4. In contrast to our result for the stochastic heat equation (Theorem 4.5)
we have to assume the additional condition (5.8) on g to obtain that the weak order of
convergence for the approximation of the stochastic wave equation in Theorem 5.3 is twice
the strong order of convergence. As an example for a test function g satisfying (5.8)
consider

g(x) := f(�ϕ1, x�Ḣ0 , . . . , �ϕn, x�Ḣ0), x ∈ Ḣ0,

where f ∈ C2
b(Rn,R) and (ϕk)k∈N ⊂ D(Λ) is an orthonormal basis of Ḣ0 = L2(O) con-

sisting of eigenfunctions of Λ with corresponding eigenvalues (λk)k∈N ⊂ (0,∞). Then, for
x, y ∈ Ḣ0,

Λβ/2g��(x)Λ−β/2y =
n�

j,k=1
λ

−β/2
j λ

β/2
k (∂j∂kf)

�
�ϕ1, x�Ḣ0 , . . . , �ϕn, x�Ḣ0

�
�ϕj, y�Ḣ0ϕk

and (5.8) holds. More generally, the condition (5.8) is satisfied by all g ∈ C2
b(Ḣ0,R) of the

form g = g̃ ◦ Λ−β/2, g̃ ∈ C2
b(Ḣ0,R). For such g we have g��(x) = Λ−β/2g̃��(Λ−β/2x)Λ−β/2.
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Proof of Lemma 5.2. We use the estimates

sup
n∈{0,...,N}

�P 1(En
h,ΔtPh − E(tn))�L (Hα,Ḣ0) � C(T )

�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
(5.13)

and
�E(t)− E(s)�L (Hδ ,H) � C|t− s|δ, t, s � 0, δ ∈ [0, 1]. (5.14)

from Corollary 4.11 and Lemma 4.4 in [19]. Corollary 4.11 in [19] is based on an error
estimate proved in [3].

Because of the ‘piecewise’ definition of Ẽ(t) in (5.5), the combination of (5.13) and
(5.14) gives

sup
t∈[0,T ]

�P 1(Ẽ(t)− E(t))�L (Hα,Ḣ0)

� sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))�L (Hα,Ḣ0) + sup
n∈{1,...,N}

sup
t∈(tn−1,tn)

�E(tn)− E(t)�L (Hα,H)

� C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p) + (Δt)min(α,1)

�

= C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,1)

�

(5.15)
for Δt � 1. It remains to show that

sup
t∈[0,T ]

�P 1(Ẽ(t)− E(t))B�L (Ḣ(α/2)−1,Ḣ−α/2) � C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,1)

�
. (5.16)

To this end, we will prove the estimate

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ(α/2)−1,Ḣ−α/2) � C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
.

(5.17)
Then, (5.16) follows from (5.17) and (5.14) by estimating analogously to (5.15) and using
the fact that

�P 1(E(tn)− E(t))B�L (Ḣ(α/2)−1,Ḣ−α/2) = �Λ− α
4 P 1(E(tn)− E(t))BΛ 1

2 − α
4 �L (Ḣ0)

= �P 1(E(tn)− E(t))BΛ 1−α
2 �L (Ḣ0)

� �P 1(E(tn)− E(t))�L (Hα,Ḣ0)�BΛ 1−α
2 �L (Ḣ0,Hα),

where �BΛ 1−α
2 �L (Ḣ0,Hα) = �B�L (Ḣα−1,Hα) = 1.

In order to show (5.17), we distinguish the cases α > 2 and 0 � α � 2. For α > 2 we
have by (5.13)

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣα−1,Ḣ0)

� sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))�L (Hα,Ḣ0)�B�L (Ḣα−1,Hα)

� C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
(5.18)
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As the operator P 1(Ẽ(t)− E(t))B ∈ L (Ḣ0) is symmetric in Ḣ0 and since Ḣ−α+1 can be
identified with the dual space of Ḣα−1, we have

�P 1(Ẽ(t)− E(t))B�L (Ḣα−1,Ḣ0) = �P 1(Ẽ(t)− E(t))B�L (Ḣ0,Ḣ−α+1)

and therefore also

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ0,Ḣ−α+1) � C(T )
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
. (5.19)

Next, we use the fact that Ḣ(α/2)−1 and Ḣ−α/2 can be represented as the real interpolation
spaces (Ḣ0, Ḣα−1)θ,2 and (Ḣ−α+1, Ḣ0)θ,2, respectively, where θ = ((α/2) − 1)/(α − 1) ∈
(0, 1), cf. Remark 4.1. Thus, interpolation between (5.18) and (5.19) yields

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ(α/2)−1,Ḣ−α/2)

� sup
n∈{0,...,N}

C(α)�P 1(Ẽ(tn)− E(tn))B�1−θ
L (Ḣ0,Ḣ−α+1)�P

1(Ẽ(tn)− E(tn))B�θL (Ḣα−1,Ḣ0)

� C(T, α)
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
,

see, e.g., Definition 1.2.2/2 and Theorem 1.3.3(a) in [43].
For 0 � α � 2, we note that

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ0,Ḣ−1) = �P 1(Ẽ(tn)− E(tn))B�L (Ḣ1,Ḣ0)

� �P 1(Ẽ(tn)− E(tn))�L (H2,Ḣ0)�B�L (Ḣ1,H2),

where we used again the symmetry of P 1(Ẽ(t)− E(t))B ∈ L (Ḣ0). By (5.13) we obtain

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ0,Ḣ−1) � C(T )
�
hmin(2 r

r+1 ,r) + (Δt)min(2 p
p+1 ,p)

�
, (5.20)

which is (5.17) for α = 0. Moreover, also by (5.13),

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ−1,Ḣ0)

� sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))�L (H,Ḣ0)�B�L (Ḣ−1,H) � C(T ),
(5.21)

i.e., we have (5.17) for α = 2. Finally, if α ∈ (0, 2), interpolation with θ = (α/2)−1 ∈ (0, 1)
between (5.20) and (5.21) gives

sup
n∈{0,...,N}

�P 1(Ẽ(tn)− E(tn))B�L (Ḣ(α/2)−1,Ḣ−α/2)

� sup
n∈{0,...,N}

C(α)�P 1(Ẽ(tn)− E(tn))B�1−θ
L (Ḣ0,Ḣ−1)�P

1(Ẽ(tn)− E(tn))B�θL (Ḣ−1,Ḣ0)

� C(T, α)
�
hmin(2 r

r+1 ,r) + (Δt)min(2 p
p+1 ,p)

� α
2

= C(T, α)
�
h2 r

r+1 + (Δt)2 p
p+1

� α
2

� C(T, α)
�
hmin(α r

r+1 ,r) + (Δt)min(α p
p+1 ,p)

�
.
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6 Concluding remarks
We expect that our results can be generalized to unbounded test functions G ∈ C2(H;R)
with supx∈H �G��(x)�L (H) < ∞, including in particular G(x) = �x�2

H . This is especially
important for the stochastic wave equation as for the specific and important test function
g(x) = �x�2

Ḣ0 the extra assumption (5.8) is automatically fulfilled. Generalization of our
results to Lévy processes that are not square-integrable is also possible using a suitable
stopping argument as in [25, Appendix B]. We will also be looking at extending the results
to cover Lévy processes with non-trivial Gaussian part as well as including stochastic
Volterra-type evolution equations in the analysis to obtain results corresponding to the
ones in the Gaussian case [21].

A Poisson random measures and a comparison of
stochastic integrals

Our proof of Theorem 3.3 is based on Itô’s formula for Banach space-valued jump processes
driven by Poisson random measures as presented in [26]. Alternatively, one could use Itô’s
formula as proved in [14], but the formula in [26] is more convenient in our setting. In this
section, we use Lemma 3.1 to relate our setting to the setting in [26].

It is well-known that the jumps of a Lévy process determine a Poisson random measure
on the product space of the underlying time interval and the state space. We refer to
[32, Section 6] for a definition and properties of Poisson random measures. For (ω, t) ∈
Ω×(0,∞) we denote by ΔL(t)(ω) := L(t)(ω)−lims�t L(s)(ω) ∈ U1 the jump of a trajectory
of L at time t. Setting

N(ω) :=
�

ΔL(t)(ω)�=0
δ(t,ΔL(t)(ω)), ω ∈ Ω,

defines a Poisson random measure N on ([0,∞) × U1,B([0,∞)) ⊗ B(U1)) with intensity
measure (or compensator) λ ⊗ ν, where λ is Lebesgue measure on [0,∞) and ν is the
jump intensity measure of L. This follows, e.g., from Theorem 6.5 in [32] together with
Theorems 4.9, 4.15, 4.23 and Lemma 4.25 therein. We denote the compensated Poisson
random measure by

q := N − λ⊗ ν. (A.1)
Let V be a (real and separable) Hilbert space. The stochastic integral with respect to q

of functions in L2(ΩT ×U1,PT ⊗ν;V ) = L2(ΩT ×U1,PT ⊗B(U1),PT ⊗ν;V ) is constructed
as a linear isometry

L2(ΩT × U1,PT ⊗ ν;V )→M2
T (V ), f �→

� � t

0

�

U1
f(s, x) q(ds, dx)

�

t∈[0,T ]
.

In particular, the V -valued integral processes have càdlàg modifications; we will always
work with such a càdlàg modification. Using a standard stopping procedure, the stochastic
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integral can be extendend to functions f ∈ L0(ΩT × U1,PT ⊗ B(U1),PT ⊗ ν;V ) such that

P

� � T

0

�

U1
�f(s, x)�2

V ν(dx) ds <∞
�

= 1.

We refer to [26], [34] and the references therein for details on stochastic integration w.r.t.
Poisson random measures, compare also [32, Section 8.7].

Remark A.1. Stricty speaking, in [26] the integrands f do not have to be predictable
but only Ft ⊗ B(U1)-adapted and F ⊗ B([0, T ]) ⊗ B(U1)-measurable. However, it is clear
that in the case of predictable, i.e., PT ⊗B(U1)-measurable, and square integrable Hilbert
space-valued integrands f the stochastic integral in [26] coincides with the stochastic in-
tegral considered in [32], [34]. See [39] for a detailed comparison of the different spaces of
integrands.

Since E
� T

0
�
U1 �x�2

U1 ν(dx)dt is finite for all T <∞, the integral process (
� t

0 x q(ds, dx))t�0
is uniquely determined (up to indistinguishability) as a U1-valued square-integrable càdlàg
martingale. Taking into account the assumptions on the Lévy process L, the Lévy-Khinchin
decomposition [32, Theorem 4.23], the definition of q, and the construction of the stochas-
tic integral w.r.t. q, it is not difficult to see that the processes L and (

� t
0 x q(ds, dx))t�0 are

indistinguishable, i.e.,

P

�
L(t) =

� t

0

�

U1
x q(ds, dx) ∀ t � 0

�
= 1. (A.2)

Using Lemma 3.1, we are now able to identify stochastic integrals w.r.t. L and stochastic
integrals w.r.t. the compensated Poisson random measure q. Recall from Remark 3.2 that
we identify processes Φ ∈ L2(ΩT ,PT ; L2(U0, H)) with the corresponding functions κ(Φ) ∈
L2(ΩT ×U1,PT ⊗ ν;H). Thus, for such Φ the integral process (

� t
0

�
U1 Φ(s)x q(ds, dx))t∈[0,T ]

is defined.

Lemma A.2. Given Φ ∈ L2(ΩT ,PT ; L2(U0, H)), the H-valued càdlàg integral processes
(
� t

0 Φ(s) dL(s))t∈[0,T ] and (
� t

0
�
U1 Φ(s)x q(ds, dx))t∈[0,T ] are indistinguishable. That is,

P

� � t

0
Φ(s) dL(s) =

� t

0

�

U1
Φ(s)x q(ds, dx) ∀ t ∈ [0, T ]

�
= 1.

Proof. We first assume that Φ is a simple L (U1, H)-valued process of the form

Φ(s) =
m−1�

k=0
1Fk

1(tk,tk+1](s)Φk, s ∈ [0, T ],

with 0 � t0 < t1 < · · · < tm � T , m ∈ N, Fk ∈ Ftk
and Φk ∈ L (U1, H). Recall from

Section 2.2 that L (U1, H) is a subspace of L2(U0, H). Using (A.2) and applying standard
arguments for the evaluation of stochastic integrals, we obtain for fixed t ∈ [0, T ], P-almost
surely,

� t

0
Φ(s) dL(s) =

m−1�

k=0
1Fk

Φk(L(tk+1 ∧ t)− L(tk ∧ t))
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=
m−1�

k=0
1Fk

Φk

� � T

0

�

U1
1(tk∧t,tk+1,∧t](s)x q(ds, dx)

�

=
m−1�

k=0

� T

0

�

U1
1Fk

1(tk∧t,tk+1,∧t](s)Φkx q(ds, dx)

=
� t

0

�

U1
Φ(s)x q(ds, dx).

Since both processes are right-continuous, we see that the processes (
� t

0 Φ(s) dL(s))t∈[0,T ]
and (

� t
0

�
U1 Φ(s)x q(ds, dx))t∈[0,T ] are indistinguishable.

For general Φ ∈ L2(ΩT ,PT ; L2(U0, H)), we take a sequence (Φn)n∈N of simple L (U1, H)-
valued process such that Φn → Φ in L2(ΩT ,PT ; L2(U0, H)); see, e.g., [35, Proposition 2.3.8]
for a proof of the existence of such a sequence. Then, the processes

� ·
0 Φn(s) dL(s) =

(
� t

0 Φn(s) dL(s))t∈[0,T ] and
� ·

0
�
U1 Φn(s)x q(ds, dx) = (

� t
0

�
U1 Φn(s)x q(ds, dx))t∈[0,T ] are indis-

tinguishable for all n ∈ N, and we have the convergence
� ·

0 Φn(s) dL(s)→ � ·
0 Φ(s) dL(s) in

M2
T (H) by the construction of the stochastic integral w.r.t. L. According to Lemma 3.1, the

convergence Φn → Φ in L2(ΩT ,PT ; L2(U0, H)) entails the convergengence κ(Φn)→ κ(Φ) in
L2(ΩT×U1,PT⊗ν;H), so that we also have

� ·
0

�
U1 Φn(s)x q(ds, dx)→ � ·

0
�
U1 Φ(s)x q(ds, dx)

in M2
T (H). Thus,

� ·
0 Φ(s) dL(s) =

� ·
0

�
U1 Φ(s)x q(ds, dx) as an equality in M2

T (H), which
yields the assertion.
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