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Multilevel Monte Carlo for Lévy-driven SDEs: central
limit theorems for adaptive Euler schemes

By Steffen Dereich and Sangmeng Li

March 25, 2014

Summary. In this article we consider multilevel Monte Carlo for the numerical
computation of expectations for stochastic differential equations driven by Lévy
processes. The underlying numerical schemes are based on jump-adapted Euler
schemes. We prove stable convergence of an idealised scheme. Further, we deduce
limit theorems for certain classes of functionals depending on the whole trajectory
of the process. In particular, we allow dependence on marginals, integral averages
and the supremum of the process. The idealised scheme is related to two practically
implementable schemes and corresponding central limit theorems are given. In all
cases, we obtain errors of order N−1/2(logN)1/2 in the computational time N which
is the same order as obtained in the classical set-up analysed by Giles [12]. Finally, we
use the central limit theorems to optimise the parameters of the multilevel scheme.

Keywords. Multilevel Monte Carlo, central limit theorem, Lévy-driven stochastic
differential equation, Euler scheme, jump-adapted scheme, stable convergence.
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1 Introduction

The numerical computation of expectations E[F (X)] for solutions (Xt)t∈[0,T ] of stochastic
differential equations (SDE) is a classical problem in stochastic analysis and numerous
numerical schemes were developed and analysed within the last twenty years, see for in-
stance the textbooks by Kloeden and Platen [21] and Glasserman [13]. Recently, a new
very efficient class of Monte Carlo algorithms was introduced by Giles [12], see also Hein-
rich [14] for an earlier variant of the computational concept. Central to these multilevel
Monte Carlo algorithms is the use of whole hierarchies of approximations in numerical
simulations. For SDEs multilevel algorithms often achieve errors of order N−1/2+o(1) in
the computational time N (see [10], [12]) despite the infinite dimensional nature of the
stochastic differential equation. Further the algorithms are in many cases optimal in a
worst case sense [7]. So far the main focus of research was concerned with asymptotic error
estimates, whereas central limit theorems have only found minor attention yet. Beyond
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the central limit theorem developed by Ben Alaya and Kebaier [4] for the Euler scheme for
diffusions no further results are available yet. In general, central limit theorems illustrate
how the choice of parameters effects the efficiency of the scheme and they are a central
tool for tuning the parameters.

In this article, we focus on central limit theorems for Lévy-driven stochastic differential
equations. We prove stable convergence of the error process of an idealised jump-adapted
Euler schemes. Based on this result we derive central limit theorems for multilevel schemes
for the approximate computation of expectations of functionals depending on marginals,
integral averages and the supremum of the SDE. We then introduce implementable jump-
adapted Euler schemes that inherit the properties of the idealised scheme so that the main
results prevail. Finally, we use our new results to optimise over the parameters of the
scheme and thereby complement the research conducted in [12]. For ease of presentation
we restrict attention to the one dimensional setting although a generalisation to finite
dimensional stochastic differential equations is canonical.

In the following, (Ω,F ,P) denotes a probability space that is sufficiently rich to ensure
existence of all random variables used in the exposition. We let Y = (Yt)t∈[0,T ] be a square
integrable Lévy-process and note that there exist b ∈ R (drift), σ2 ∈ [0,∞) (diffusion
coefficient) and a measure ν on R\{0} with

�
x2 ν(dx) <∞ (Lévy measure) such that

E[eizYt ] = exp
�
t
�
ibz − 1

2
σ2z +

�
(eizx − 1− izx) ν(dx)

��

for t ∈ [0, T ] and z ∈ R. We call the unique triplet (b, σ2, ν) Lévy triplet, although this
notion slightly deviates from its original use. We refer the reader to the textbooks by
Applebaum [2], Bertoin [5] and Sato [30] for a concise treatment of Lévy processes. The
process X = (Xt)t∈[0,T ] denotes the solution to the stochastic integral equation

Xt = x0 +

� t

0

a(Xs−) dYs, t ∈ [0, T ], (1)

where a : R → R is a continuously differentiable Lipschitz function and x0 ∈ R. Both
processes Y and X attain values in the space of càdlàg functions on [0, T ] which we will
denote by D(R) and endow with the Skorokhod topology. We will analyse multilevel
algorithms for the computation of expectations E[F (X)], where F : D(R) → R is a mea-
surable functional such that F (x) depends on the marginals, integrals and/or supremum
of the path x ∈ D(R). Before we state the results we introduce the underlying numerical
schemes.

1.1 Jump-adapted Euler scheme

In the context of Lévy-driven stochastic differential equations there are various Euler-type
schemes analysed in the literature. We consider jump-adapted Euler schemes. For finite
Lévy measures these were introduced by Platen [26] and analysed by various authors, see,
e.g., [24, 6]. For infinite Lévy measures an error analysis is conducted in [10] and [8] for
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two multilevel Monte Carlo schemes. Further, weak approximation is analysed in [22] and
[25]. In general, the simulation of increments of the Lévy-process is delicate. One can
use truncated shot noise representations as in [29]. These perform well for Blumenthal-
Getoor indices smaller than one, but are less efficient when the BG-index gets larger than
one [10], even when combined with a Gaussian compensation in the spirit of [3], see [9]. A
faster simulation technique is to do an inversion of the characteristic function of the Lévy
process and to establish direct simulation routines in a precomputation. Certainly, this
approach is more involved and its realisation imposes severe restrictions on the dimension
of the Lévy process, see [11].

In this article, we analyse one prototype of adaptive approximations that is intimately
related to implementable adaptive schemes and we thus believe that our results have a
universal appeal. The approximations depend on two positive parameters

• h, the threshold for the size of the jumps being considered large and causing imme-
diate updates, and

• ε with T ∈ εN, the length of he regular update intervals.

For the definition of the approximations we use the simple Poisson point process Π on
the Borel sets of (0, T ]× (R\{0}) associated to Y , that is

Π =
�

s∈(0,T ]:ΔYs �=0
δ(s,ΔYs),

where we use the notation Δxt = xt − xt− for x ∈ D(R) and t ∈ (0, T ]. It has inten-
sity �(0,T ] ⊗ ν, where �(0,T ] denotes Lebesgue measure on (0, T ]. Further, let Π̄ be the
compensated variant of Π that is the random signed measure on (0, T ] × (R\{0}) given
by

Π̄ = Π− �(0,T ] ⊗ ν.

The process (Yt)t∈[0,T ] admits the representation

Yt = bt+ σWt + lim
δ↓0

�

(0,t]×B(0,δ)c
x dΠ̄(s, x), (2)

where (Wt)t∈[0,T ] is an appropriate (of Π independent) Brownian motion and the limit is
to be understood uniformly in L2. We enumerate the random set

�
εZ ∩ [0, T ]

�
∪ {t ∈ (0, T ] : |ΔYt| ≥ h} = {T0, T1, . . . }

in increasing order and define the approximation Xh,ε = (Xh,ε
t )t∈[0,T ] by Xh,ε

0 = x0 and,
for n = 1, 2, . . . and t ∈ (Tn−1, Tn]

Xh,ε
t = Xh,ε

Tn−1
+ a(Xh,ε

Tn−1
) (Yt − YTn−1). (3)
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1.2 Multilevel Monte-Carlo

In general multilevel scheme make use of whole hierarchies of approximate solutions and
we choose decreasing sequences (εk)k∈N and (hk)k∈N with

(ML1) εk = M−kT , where M ∈ {2, 3, . . . } is fixed,

(ML2) limk→∞ ν(B(0, hk)
c) εk = θ for a θ ∈ [0,∞) and limk→∞ hk/

√
εk = 0.

We remark that whenever θ in (ML2) is strictly positive, then one automatically has that
hk = o(

√
εk), see Lemma 5.10.

For every k ∈ N, we denote by Xk := Xhk,εk the corresponding adaptive Euler approx-
imation with update rule (3). Once this hierarchy of approximations has been fixed, a

multilevel scheme �S is parametrised by a N-valued vector (n1, . . . , nL) of arbitrary finite
length L: for a measurable function F : D(R) → R we approximate E[F (X)] by

E[F (X1)] + E[F (X2)− F (X1)] + . . .+ E[F (XL)− F (XL−1)]

and denote by �S(F ) the random output that is obtained when estimating the individual
expectations E[F (X1)], E[F (X2) − F (X1)], . . . , E[F (XL) − F (XL−1)] independently by
classical Monte-Carlo with n1, . . . , nL iterations and summing up the individual estimates.
More explicitly, a multilevel scheme �S associates to each measurable F a random variable

�S(F ) =
1

n1

n1�

i=1

F (X1,i) +
L�

k=2

1

nk

nk�

i=1

�
F (Xk,i,f )− F (Xk−1,i,c)

�
, (4)

where the pairs of random variables (Xk,i,f , Xk−1,i,c), resp. the random variables X1,i, ap-
pearing in the sums are all independent with identical distribution as (Xk, Xk−1), resp.X1.
Note that the entries of the pairs are not independent!

1.3 Implementable schemes

We give two implementable schemes. The first one relies on precomputation for direct
simulation of Lévy increments. The second one ignores jumps of size smaller than a thresh-
hold which leads to schemes of optimal order only in the case where -roughly speaking-
the Blumenthal-Getoor index is smaller than one.

Schemes with direct simulation of small jumps

For h > 0 we let Y h = (Y h
t )t∈[0,T ] denote the Lévy process given by

Y h
t = bt+ σWt +

�

(0,t]×B(0,h)c
x dΠ̄(s, x). (5)
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Using the shot noise representation we can simulate Y h on arbitrary (random) time sets.
The remainder Mh = (Mh

t )t∈[0,T ], that is

Mh
t = lim

δ↓0

�

(0,t]×(B(0,h)\B(0,δ))
x dΠ̄(s, x) = Y − Y h,

can be simulated on a fixed time grid ε�Z∩ [0, T ] with ε� ∈ εN denoting an additional pa-

rameter of the scheme.1 A corresponding approximation is given by X̂h,ε,ε� = (X̂h,ε,ε�
t )t∈[0,T ]

via X̂h,ε,ε�
0 = x0 and, for n = 1, 2, . . . and t ∈ (Tn−1, Tn],

X̂h,ε,ε�
t = X̂h,ε,ε�

Tn−1
+ a(X̂h,ε,ε�

Tn−1
) (Y h

t − Y h
Tn−1

) + 1lε�Z(t) a(X̂
h,ε,ε�

t−ε� ) (Mh
t −Mh

t−ε�). (6)

We call X̂h,ε,ε� the continuous approximation with parameters h, ε, ε�. Further, we define
the piecewise constant approximation X̄h,ε,ε� = (X̄h,ε,ε�

t )t∈[0,T ] via demanding that for n =
1, 2, . . . and t ∈ [Tn−1, Tn),

X̄h,ε,ε�
t = X̂h,ε,ε�

Tn−1
(7)

and X̄h,ε,ε�
T = X̂h,ε,ε�

T .

In corresponding multilevel schemes we choose (εk)k∈N and (hk)k∈N as before. Further, we
choose monotonically decreasing parameters (ε�k)k∈N with ε�k ∈ εkN and

(ML3a) ε�k
�
B(0,hk)

x2 ν(dx) log2(1 + 1/ε�k) = o(εk).

(ML3b) h2k log2(1 + 1/ε�k) = o(εk).

Remark 1.1. If
�
x2 log2

�
1 +

1

x

�
ν(dx) <∞, (8)

there exist appropriate parameters (hk, εk, ε
�
k)k∈N satisfying (ML1), (ML2), (ML3a) and

(ML3b). More precisely, in the case where ν is infinite, appropriate parameters are ob-
tained by choosing ε�k = εk and (hk) with limk→∞ εk ν(B(0, hk)

c) = θ > 0, see Lemma 5.10.

In analogy to before we denote by (X̂k : k ∈ N) and (X̄k : k ∈ N) the corresponding
approximate continuous and piecewise constant solutions. We state Proposition 4.4 of [11]
which implies that in most cases the central limit theorems to be provided later are also
valid for the continuous approximations.

Lemma 1.2. If assumptions (ML1), (ML3a) and (ML3b) are satisfied, then

lim
k→∞

ε−1k E
�

sup
t∈[0,T ]

|Xk
t − X̂k

t |2
�
= 0.

1Efficient simulation of (Mh
t )t∈ε�Z∩[0,T ] can be based on approximate Fourier inversion of the charac-

teristic function of Mh
ε� , see [11] for more details.
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Truncated shot noise scheme

The truncated shot noise scheme is parametrised by two positive parameters h, ε as above.
The continuous approximations X̂h,ε = (X̂h,ε

t )t∈[0,T ] are defined via X̂h,ε
0 = x0 and, for

n = 1, 2, . . . and t ∈ (Tn−1, Tn],

X̂h,ε
t = X̂h,ε

Tn−1
+ a(X̂h,ε

Tn−1
) (Y h

t − Y h
Tn−1

). (9)

and the piecewise constant approximations X̄h,ε = (X̄h,ε
t )t∈[0,T ] is defined as before by

demanding that, for n = 1, 2, . . . and t ∈ [Tn−1, Tn),

X̄h,ε
t = X̂h,ε

Tn−1
(10)

and X̄h,ε
T = X̂h,ε

T . In the context of truncated shot noise schemes one has to impose an
additional assumption:

(ML4)
�
B(0,hk)

x2 ν(dx) = o(εk).

Remark 1.3. If
�
|x| ν(dx) <∞, then (ML1), (ML2) and (ML4) are satisfied for appro-

priate parameters.

The following result is a minor modification of [10, Prop. 1].

Lemma 1.4. If assumptions (ML1) and (ML4) are satisfied, then

lim
k→∞

ε−1k E
�

sup
t∈[0,T ]

|Xk
t − X̂k

t |2
�
= 0.

1.4 Main results

In the following we will always assume that Y = (Yt)t∈[0,T ] is a square integrable Lévy
process with Lévy triplet (b, σ2, ν) satisfying σ2 > 0 and that X = (Xt)t∈[0,T ] solves the
SDE

dXt = a(Xt−) dYt

with X0 = x0, where a : R → R is a continuously differentiable Lipschitz function.
Further, (Xk : k ∈ N) denotes the family of approximations to X as introduced in
Section 1.2; in particular, the validity of (ML1) and (ML2) is assumed.

Convergence of the error process

We consider the normalised sequence of error processes associated to the multilevel scheme
that is the sequence (ε

−1/2
k (Xk+1 −Xk) : k ∈ N). Let us introduce the process appearing

as limit. We equip the points of the associated point process Π with independent marks
and denote for a point (s, x) ∈ Π

• by ξs, a standard normal random variable,
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• by Us, an independent uniform random variable on [0, 1], and

• by Eθ
s and E (M−1)θ

s independent Exp(θ) and Exp((M − 1)θ)-distributed random
variables, respectively.

Further, we denote by B = (Bt)t∈[0,T ] an independent standard Brownian motion.

The idealised error process U = (Ut)t∈[0,T ] is defined as the solution of the integral equation

Ut =

� t

0

a�(Xs−)Us− dYs + σ2 Υ

� t

0

(aa�)(Xs−) dBs

+
�

s∈(0,t]:ΔYs �=0
σs ξs (aa

�)(Xs−)ΔYs,
(11)

where Υ2 = e−θ−1+θ
θ2

(1− 1
M

), if θ > 0, and Υ2 = 1
2
(1− 1

M
), if θ = 0, and the positive marks

(σs) are defined by

σ2s = σ2
�

1≤m≤M

1l{m−1
M

≤Us<
m
M

}

�
min(Eθ

s ,Us)−min(Eθ
s , E (M−1)θ

s ,Us − m−1
M

)
�
.

Note that the above infinite sum has to be understood as an appropriate martingale limit.
More explicitly, denoting by L = (Lt)t∈[0,T ] the Lévy process

Lt = σ2 ΥBt + lim
δ↓0

�

s∈(0,t]:|ΔYs|≥δ

σs ξs ΔYs

we can rewrite (11) as

Ut =

� t

0

a�(Xs−)Us− dYs +

� t

0

(aa�)(Xs−) dLs.

Strong uniqueness and existence of the solution follow from Jacod and Memin [16, Thm. 4.5].

Theorem 1.5. Under the above assumptions we have weak convergence

(Y, ε−1/2n (Xn+1 −Xn)) ⇒ (Y, U), in D(R2). (12)

Central limit theorem for linear functionals

We consider functionals F : D(R) → R of the form

F (x) = f(Ax)

with f : Rd → R and A : D(R) → Rd being linear and measurable. We set

Df := {z ∈ Rd : f is differentiable in z}.
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Theorem 1.6. Suppose that f is Lipschitz continuous and that A is Lipschitz continuous
with respect to supremum norm and continuous with respect to the Skorokhod topology in
PU -almost every path. Further suppose that AX ∈ Df , almost surely, and that α ≥ 1

2
is

such that the limit
lim
n→∞

ε−α
n E [F (Xn)− F (X)] =: κ

exists. We denote for δ ∈ (0, 1) by �Sδ the multilevel Monte Carlo scheme with parameters

(n
(δ)
1 , n

(δ)
2 , · · · , n(δ)L(δ)), where

L(δ) =
� log δ−1

α logM

�
and nk(δ) =

�
δ−2 L(δ) εk−1

�
, (13)

for k = 1, 2, . . . , L(δ). Then we have,

δ−1 (�Sδ(F )− E[F (X)]) ⇒ N (κ, ρ2) as δ → 0,

where N (κ, ρ2) is the normal distribution with mean κ and variance

ρ2 = Var
�
∇f(AX) · AU

�
.

Example 1.7. (a) For any finite signed measure µ the integral Ax =
� T

0
xs dµ(s) sat-

isfies the assumptions of the theorem. Indeed, for every path x ∈ D(R) with

µ({s ∈ [0, T ] : Δxs �= 0}) = 0 (14)

one has for xn → x in the Skorokhod space that

Axn =

� T

0

xns dµ(s) →
� T

0

xs dµ(s) = Ax

by dominated convergence and (14) is true for PU -almost all paths since µ has at

most countably many atoms. Hence, the linear maps Ax = xt and Ax =
� T

0
xs ds

are allowed choices in Theorem 1.6 since U is almost surely continuous in t.

(b) All combinations of admissible linear maps A1, . . . , Am satisfy again the assumptions
of the theorem.

In view of implementable schemes we state a further version of the theorem.

Theorem 1.8. Suppose that either (X̂k : k ∈ N) and (X̄k : k ∈ N) denote the continu-
ous and piecewise constant approximations of the scheme with direct simulation and that
(ML1), (ML2) and (ML3) are fulfilled or that they are the approximations of the truncated
shot noise scheme and that (ML1), (ML2) and (ML4) are fulfilled. Then Theorem 1.6
remains true when replacing the family (Xk : k ∈ N) by (X̂k : k ∈ N). Further, if A is
given by

Ax =
�
xT ,

� T

0

xs ds
�
,

the statement of the central limit theorem remains true, when replacing the family (Xk :
k ∈ N) by (X̄k : k ∈ N).
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Central limit theorem for supremum-dependent functionals

In this section we consider functionals F : D(R) → R of the form

F (x) = f
�

sup
t∈[0,T ]

xt

�

with f : R → R measurable.

Theorem 1.9. Suppose that f : R → R is Lipschitz continuous and that the coefficient a
does not attain zero. Further suppose that supt∈[0,T ]Xt ∈ Df , almost surely, and that

α ≥ 1
2
is such that the limit

lim
n→∞

ε−α
n E [F (Xn)− F (X)] =: κ

exists. We denote for δ ∈ (0, 1) by �Sδ the multilevel Monte Carlo scheme with parameters

(n
(δ)
1 , n

(δ)
2 , · · · , n(δ)L(δ)), where

L(δ) =
� log δ−1

α logM

�
and nk(δ) =

�
δ−2 L(δ) εk−1

�
,

for k = 1, 2, . . . , L(δ). Then we have,

δ−1 (�Sδ(F )− E[F (X)]) ⇒ N (κ, ρ2) as δ → 0,

where N (κ, ρ2) is the normal distribution with mean κ and variance

ρ2 = Var
�
f �
�

sup
t∈[0,T ]

Xt

�
US

�
,

and S denotes the random time at which X attains its supremum.

Theorem 1.10. Theorem 1.9 remains true for the continuous approximations for the
scheme with direct simulation of increments or the truncated shot noise scheme under the
same assumptions as imposed in Theorem 1.8.

Optimal parameters

We will use the central limit theorems to adjust the parameters of the multilevel scheme.
Here we use the following result.

Theorem 1.11. Let F be as in Theorem 1.6 or 1.9 and assume that the assumptions of
the respective theorem are fulfilled. Further assume in the first case that A is of integral
type meaning hat there exist finite signed measures µ1, . . . , µd on [0, T ] such that A =
(A1, . . . , Ad) with

Ajx =

� T

0

xs dµj(s), for x ∈ D(R) and j = 1, . . . , d

9



and generally suppose that a�(Xs−)ΔYs �= −1 for all s ∈ [0, T ], almost surely. Then there
exists a constant κ depending on F and the underlying SDE, but not on M and θ such
that the variance ρ2 appearing as variance is of the form

ρ = κΥ,

where as before Υ2 = e−θ−1+θ
θ2

(1− 1
M

), if θ > 0, and Υ2 = 1
2
(1− 1

M
), if θ = 0.

Remark 1.12. The assumption that a�(Xs−)ΔYs �= −1 for all s ∈ [0, T ], almost surely,
is automatically fulfilled if ν has no atoms. For every s ∈ (0, T ] with a�(Xs−)ΔYs = −1
the error process jumps to zero causing technical difficulties in our proofs. In general, the
result remains true without this assumption, but for simplicity we only provide a proof
under this technical assumption.

Remark 1.13. In this remark we elude how Theorem 1.11 can be used to optimise the
parameters. We assume that θ of (ML2) and the bias κ are zero. Multilevel schemes are
based on iterated sampling of F (Xk)− F (Xk−1), where (Xk−1, Xk) are coupled approxi-
mate solutions. Typically one simulation causes cost of order

Ck = (1 + o(1))κcost ε
−1
k−1(M + β),

where κcost is a constant that does not depend onM , and β ∈ R is an appropriate constant
typically with values between zero and one: one coupled path simulation needs

• to simulate ε−1k−1TM increments of the Lévy process,

• to do ε−1k−1TM Euler steps to gain the fine approximation,

• to concatenate ε−1k−1T (M − 1) Lévy increments, and

• to do ε−1k−1T Euler steps to gain the coarse approximation.

If every operation causes the same computational cost, one ends up with β = 0. If the
concatenation procedure is significantly less expensive, the parameter β rises. Using that

δ−1 (�Sδ(F )− E[F (X)]) ⇒ N (0, κ2err(1− 1/M)) as δ ↓ 0,

we conclude that for δ̄ := δ̄(δ) := δ/(κerr
�

1− 1/M)

δ−1 (�Sδ̄(F )− E[F (X)]) ⇒ N (0, 1) as δ ↓ 0.

The cost of the simulation of �Sδ̄(F ) is of order

(1 + o(1))κcostL(δ̄)2(M + β)δ̄−2 = (1 + o(1))
κcostκ

2
err

α2
(M − 1)(M + β)

M(logM)2
δ−2(log δ−1)2.

A plot illustrating the dependence on the choice of M is provided in Figure 1.
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Figure 1: Impact of M on the computational cost for β = 0 (green) and β = 1 (red).

The article is outlined as follows. In Section 2 we analyse the error process and prove
Theorem 1.5. In Section 3, we prepare the proofs of the central limit theorems for integral
averages for the piecewise constant approximations and for supremum dependent func-
tionals. In Section 4, we provide the proofs of all remaining theorems, in particular, of all
central limit theorems. The article ends with an appendix, where we summarise known
and auxiliary results. In particular, we provide a brief introduction to stable convergence
and perturbation estimates mainly developed in articles by Jacod and Protter.

2 The error process (Theorem 1.5)

In this section we prove Theorem 1.5. We will assume assumptions (ML1) and (ML2). At
first we introduce the necessary notation and outline our strategy of proof. All intermedi-
ate results will be stated as propositions and their proofs are deferred to later subsections.
We denote for n ∈ N and t ∈ [0, T ]

ιn(t) = sup [0, t] ∩ In,

where In = {s ∈ (0, T ] : ΔY hn
s �= 0} ∪ (εnZ ∩ [0, T ]) is the random set of update times

and recall that Xn solves
dXn

t = a(Xn
ιn(t−)) dYt (15)

with Xn
0 = x0. We analyse the (normalised) error process of two consecutive Xn-levels

that is the process Un,n+1 = (Un,n+1
t )t∈[0,T ] given by

Un,n+1
t = ε−1/2n (Xn+1 −Xn).

The error process satisfies the SDE

dUn,n+1
t = ε−1/2n

�
a(Xn+1

t− )− a(Xn
t−)

�
dYt + ε−1/2n

�
a(Xn

t−)− a(Xn
ιn(t−))

�
dYt

− ε−1/2n

�
a(Xn+1

t− )− a(Xn+1
ιn+1(t−))

�
dYt.

11



In order to rewrite the SDE we introduce some more notation. We let

∇a(u, v) =

�
a(v)−a(u)

v−u
, if u �= v

a�(u), if u = v

for u, v ∈ R and consider the processes

(Dn
t ) = (∇a(Xn

ιn(t), X
n
t )), (Dn,n+1

t ) = (∇a(Xn
t , X

n+1
t )), (An

t ) = a(Xn
ιn(t)).

In terms of the new notation we have

dUn,n+1
t = Dn,n+1

t− Un,n+1
t− dYt + ε−1/2n Dn

t−A
n
t− (Yt− − Yιn(t−)) dYt

− ε−1/2n Dn+1
t− An+1

t− (Yt− − Yιn+1(t−)) dYt.
(16)

Clearly, the processes (Dn
t ) and (Dn,n+1

t ) converge in ucp to (Dt) := (a�(Xt))t∈[0,T ] and
the processes (An

t ) to (At) := (a(Xt))t∈[0,T ].

For technical reasons, we introduce a further approximation. For every ε > 0 we denote
by Un,n+1,ε = (Un,n+1,ε

t )t∈[0,T ] the solution of the SDE

dUn,n+1,ε
t = Dt−U

n,n+1,ε
t− dYt + ε−1/2n Dt−At− σ(Wιn+1(t−) −Wιn(t−)) dY

ε
t (17)

with Un,n+1,ε
0 = 0, where Y ε is as in (5). Further, let U ε = (U ε

t )t∈[0,T ] denote the solution
of

U ε
t =

� t

0

Ds− U
ε
s− dYs + σ2 Υ

� t

0

Ds−As− dBs

+
�

s∈(0,t]:ΔY ε
s �=0

σs ξsDs−As− ΔY ε
s ,

(18)

We will show that the processes U ε, U1,2,ε, U2,3,ε, . . . are good approximations for the
processes U,U1,2, U2,3, . . . in the sense of Remark 5.7. As a consequence of Lemma 5.6 we
then get

Proposition 2.1. If for every ε > 0

(Y, Un,n+1,ε) ⇒ (Y, U ε), in D(R2),

then one has
(Y, Un,n+1) ⇒ (Y, U), in D(R2).

The proof of the proposition is carried out in Section 2.1. It then remains to prove the
following proposition which is the task of Section 2.2.

Proposition 2.2. For every ε > 0

(Y, Un,n+1,ε) ⇒ (Y, U ε), in D(R2)

12



2.1 The approximations Un,n+1,ε are good

In this subsection we prove Proposition 2.1. By Lemma 5.6 it suffices to show that the
approximations are good in the sense of Remark 5.7. In this section, we will work with an
additional auxiliary process: for n ∈ N and ε > 0 we denote by Ūn,n+1,ε := (Ūn,n+1,ε

t )t∈[0,T ]
the solution of

dŪn,n+1,ε
t =Dn,n+1

t− Ūn,n+1,ε
t− dYt + ε−1/2n Dn

t−A
n
t− σ(Wt− −Wιn(t−)) dY

ε
t

− ε−1/2n Dn+1
t− An+1

t− (Wt− −Wιn+1(t−)) dY
ε
t

(19)

with Ūn,n+1,ε
0 = 0.

Lemma 2.3. For every δ, ε > 0, we have

1. limε↓0 lim supn→∞ E
�
supt∈[0,T ] |Un,n+1

t − Ūn,n+1,ε
t |2

�
= 0,

2. limn→∞ P
�
supt∈[0,T ]

��Ūn,n+1,ε
t − Un,n+1,ε

t

�� > δ
�

= 0,

3. limε↓0 P
�
supt∈[0,T ] |Ut − U ε

t | > δ
�

= 0.

It is straight-forward to verify that Lemma 2.3 implies that the approximations are good.

Proof. 1.) Recalling (16) and (19) and noting that Dn,n+1 is uniformly bounded we
conclude with Lemma 5.14 that the first statement is true if

lim
ε↓0

lim sup
n→∞

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ys− − Yιn(s−)) dYs

− σ

� t

0

Dn
s−A

n
s−(Ws− −Wιn(s−)) dY

ε
s

���
2�

= 0.

(20)

Let M ε denote the martingale Y −Y ε. The above term can be estimated against the sum
of

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ys− − Yιn(s−) − σWs− + σWιn(s−)) dYs

���
2�
. (21)

and

ε−1n σ2E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ws− −Wιn(s−)) dM

ε
s

���
2�
. (22)

We start with estimating the former expression. For t ∈ [0, T ] one has

Yt − Yιn(t) = σ(Wt −Wιn(t)) +Mhn
t −Mhn

ιn(t)
+
�
b−

�

B(0,hn)c
x ν(dx)

�
(t− ιn(t)).

13



By Lemma 5.10 one has

ε−1n E
�
|Yt − Yιn(t) − σWt + σWιn(t)|2

���ιn
�
≤ 2

�

B(0,hn)

x2 ν(dx) + 2
�
b−

�

B(0,hn)c
x ν(dx)

�2
εn

=: δn → 0

as n → ∞. Further, by Lemma 5.11 and the uniform boundedness of Dn, there is a
constant κ1 not depending on n such that

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ys− − Yιn(s−) − σWs− + σWιn(s−)) dYs

���
2�

≤ κ1ε
−1
n

� T

0

E[(An
s−)2(Ys− − Yιn(s−) − σWs− + σWιn(s−))

2] ds

≤ κ1δn

� T

0

E[|An
s−|2] ds,

(23)

where we have used conditional independence of An
s− and Ys−−Yιn(s−)−σWs−+σWιn(s−)

given ιn in the last transformation. By Lemma 5.12 and the Lipschitz continuity of a the
latter integral is uniformly bounded over all n ∈ N so that (21) tends to zero as n→ ∞.
Next, consider (22). Note that M ε is a Lévy martingale with triplet (0, 0, ν|B(0,ε)). By
Lemma 5.11 and the uniform boundedness of Dn there exists a constant κ2 not depending
on ε and n such that

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ws− −Wιn(s−)) dM

ε
s

���
2�

≤ κ2ε
−1
n

�

B(0,ε)

x2 ν(dx)

� T

0

E[|An
s−|2|Ws− −Wιn(s−)|2] ds

≤ κ2

�

B(0,ε)

x2 ν(dx)

� T

0

E[|An
s−|2] ds,

(24)

where we used in the last step that conditionally on ιn the random variables An
s− and

Ws− −Wιn(s−) are independent and E[(Ws− −Wιn(s−))
2|ιn] = s − ιn(s) ≤ εn. As noted

above
� T

0
E[|An

s−|2] ds is uniformly bounded and hence (22) tends uniformly to zero over
all n ∈ N as ε ↓ 0.

2.) We will use Lemma 5.15 to prove that

Ūn,n+1,ε − Un,n+1,ε → 0, in ucp, as n→ ∞. (25)

We rewrite the SDE (17) as

dUn,n+1,ε
t =Dt−U

n,n+1,ε
t− dYt + ε−1/2n Dt−At− σ(Wt− −Wιn(t−)) dY

ε
t

− ε−1/2n Dt−At− σ(Wt− −Wιn+1(t−)) dY
ε
t .

Recalling (19) it suffices by part one of Lemma 5.15 to show that
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1. Dn,n+1 → D, in ucp,

2. ε
−1/2
n

� ·
0
(Dn

s−A
n
s− −Ds−As−)(Ws− −Wιn(s−)) dY

ε
s → 0, in ucp,

3. the families (supt∈[0,T ] |Dn,n+1
t | : n ∈ N) and

�
ε−1/2n sup

t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ws− −Wιn(s−)) dY

ε
s

��� : n ∈ N
�
.

are tight.

The tightness of (supt∈[0,T ] |Dn,n+1
t | : n ∈ N) follows by uniform boundedness. Further,

the tightness of the second family follows by observing that in analogy to the proof of 1.)
one has

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ws− −Wιn(s−)) dY

ε
s

���
2�

≤ κ3ε
−1
n

� T

0

E[|An
s−|2|Ws− −Wιn(s−)|2] ds ≤ κ3

� T

0

E[|An
s−|2] ds

for an appropriate constant κ3 not depending on n. Furthermore, convergence Dn,n+1 →
D follows from ucp convergence of Xn → X and Lipschitz continuity of a. To show the
remaining property we let δ > 0 and Tn,δ denote the stopping time

Tn,δ = inf{s ∈ [0, T ] : |Dn
sA

n
s −DsAs| ≥ δ}.

Then by Lemma 5.11 there exists a constant κ4 not depending on n and δ with

E
�

sup
t∈[0,T∧Tn,δ ]

ε−1n

�� t

0

(Dn
s−A

n
s− −Ds−As−)(Ws− −Wιn(s−)) dY

ε
s

�2�

≤ κ4 δ
2 ε−1n

� T

0

E[(Ws− −Wιn(s−))
2] ds ≤ κ4 δ

2 T.

Since for any δ > 0, P(Tn,δ = ∞) → 1 by ucp convergence DnAn − DA → 0, we
immediately get the remaining property by choosing δ > 0 arbitrarily small and applying
the Markov inequality.

3.) The proof of the third statement can be achieved by a simplified version of the proof
of the first statement. It is therefore omitted.

2.2 Weak convergence of Un,n+1,ε

In this subsection we prove Proposition 2.2 for fixed ε > 0. We first outline the proof. We
will make use of results of [17] summarised in the appendix, see Section 5.1. We consider
processes Zn,ε = (Zn,ε

t )t∈[0,T ] and Zε = (Zε
t )t∈[0,T ] given by

Zn,ε
t = ε−1/2n

� t

0

(Wιn+1(s−) −Wιn(s−)) dY
ε
s (26)
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and

Zε
t = ΥBt +

�

s∈(0,t]:|ΔYs|≥ε

σs
σ
ξs ΔYs, (27)

where (σs) and (ξs) are the marks of the point process Π as introduced in Section 1.1.
In view of Theorem 5.5 the statement of Proposition 2.2 follows, if we show that

�
Y,

� ·

0

Dt− dYt,

� ·

0

Dt−At− dZn,ε
t

�
⇒

�
Y,

� ·

0

Dt− dYt,

� ·

0

Dt−At− dZε
t

�
, in D(R3).

Further, by Theorem 5.4, this statement follows once we showed that (Zn,ε : n ∈ N) is
uniformly tight and

�
Y,D,DA,Zn,ε

�
⇒

�
Y,D,DA,Zε

�
, in D(R4). (28)

We first prove that ((Y,D,DA,Zn,ε) : n ∈ N) is tight which shows that, in particu-
lar, (Zn,ε : n ∈ N) is uniformly tight, see Lemma 2.4. Note that (Y,D,DA) is σ(Y )-
measurable. To identify the limit and finish the proof of (28) it suffices to prove stable
convergence

Zn,ε stably
=⇒ Zε

with respect to the σ-field σ(Y ), see Section 5.1 in the appendix for a brief introduction
of stable convergence. The latter statement is equivalent to

(Y, Zn,ε) ⇒ (Y, Zε), in D(R)× D(R),

by Theorem 5.2. We prove the stronger statement that this is even true in the finer
topology D(R2): the sequence ((Y, Zn,ε) : n ∈ N) is tight by Lemma 2.4 and we will prove
convergence of finite dimensional marginals in Lemma 2.6. The proof of the latter lemma
is based on a perturbation result provided by Lemma 2.5.

Lemma 2.4. For ε > 0 the family ((Y,D,DA,Zn,ε) : n ∈ N) taking values in D(R4) is
tight. In particular, (Zn,ε : n ∈ N) is uniformly tight.

Proof. One has by Lemma 5.11

E
�

sup
t∈[0,T ]

(Zn,ε
t )2

�
≤ κ1ε

−1
n

� t

0

E[(Wιn+1(t−) −Wιn(t−))
2] dt ≤ κ1

for an appropriate constant κ1 so that by the Markov inequality

lim
K→∞

sup
n∈N

P
�

sup
t∈[0,T ]

|Yt| ∨ |Zn,ε
t | ∨ |Dt| ∨ |DtAt| ≥ K

�
= 0.

It remains to verify Aldous’ criterion for tightness [18][Thm. VI.4.5] which can be checked
componentwise. It is certainly fulfilled for Y , A and DA and it remains to show that
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for every K > 0 there exists for every δ > 0 a constant cδ > 0 such that for arbitrary
stopping times S1, S2, . . .

lim sup
n→∞

P
�

sup
t∈[Sn,(Sn+δ)∧T ]

|Zn,ε
t − Zn,ε

Sn
| ≥ K

�
≤ cδ

and limδ↓0 cδ = 0.

First suppose that S1, S2, . . . denote stopping times taking values in the respective sets εnZ.
Then as above

E
�

sup
t∈[Sn,(Sn+δ)∧T ]

|Zn,ε
t − Zn,ε

Sn
|2
�
≤ κ1ε

−1
n

� T

0

E
�
1l[Sn,(Sn+δ)](t)(Wιn+1(t−) −Wιn(t−))

2
�
dt

≤ κ1ε
−1
n

� T

0

E
�
1l[Sn,(Sn+δ)](ιn(t))(Wιn+1(t−) −Wιn(t−))

2
�
dt

≤ κ1 E
�� T

0

1l[Sn,(Sn+δ)](ιn(t)) dt
�
≤ κ1(εn + δ) → κ1δ,

(29)

where we have used that E[(Wιn+1(t−) −Wιn(t−))
2|Fιn(t)] ≤ εn and 1l[Sn,(Sn+δ)](t) is Fιn(t)-

measurable. It remains to estimate for general stopping times S1, S2, . . .

E
�

sup
t∈[Sn,S̄n]

|Zn,ε
t − Zn,ε

Sn
|2
�
,

where S̄n = inf[Sn,∞) ∩ εnZ. As in (29) we conclude with S̄n − Sn ≤ ε that

E
�

sup
t∈[Sn,S̄n]

|Zn,ε
t − Zn,ε

Sn
|2
�
≤ κ1ε

−1
n E

�� T

0

1l[Sn,S̄n](t)(Wιn+1(t−) −Wιn(t−))
2 dt

�

≤ κ1 E
�

sup
k=1,...,ε−1

n

s,t∈[(k−1)ε−1
n ,kε−1

n )

|Ws −Wt|2
�
→ 0.

By the Markov inequality this estimate together with (29) imply Aldous’ criterion.

To control perturbations we will use the following lemma.

Lemma 2.5. For j = 1, 2 let (α
(j)
t )t∈[0,T ] and (β

(j)
t )t∈[0,t] optional processes being square

integrable with respect to P⊗ �[0,T ] and let

Υn,j
t = ε−1/2n

� t

0

(W̄
(j)
ιn+1(s−) − W̄

(j)
ιn(s−)) dȲ

(j)
s

where

W̄
(j)
t = Wt +

� t

0

α(j)s ds, Ȳ
(j)
t = Mt +

� t

0

β(j)s ds and Mt = σWt +

�

(0,t]×B(0,ε)c
x dΠ̄(s, x).
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For t ∈ D =
�

n∈N εnZ ∩ [0, T ] the sequences (Υn,1
t )n∈N and (Υn,2

t )n∈N are equivalent in
probability, i.e., for every δ > 0

lim
n→∞

P
�
|Υn,1

t −Υn,2
t | > δ

�
= 0.

Proof. We prove the statement in three steps.

1st step: First we show a weaker perturbation estimate. Using the bilinearity of the
stochastic integral we get that

Υn,1
t −Υn,2

t = ε−1/2n

� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du dMs

+ ε−1/2n

� t

0

(Wιn+1(s−) −Wιn(s−))(β
(1)
s − β(2)s ) ds

+ ε−1/2n

� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du β(1)s ds

+ ε−1/2n

� t

0

� ιn+1(s−)

ιn(s−)
α(2)u du (β(1)s − β(2)s ) ds

(30)

We analyse the terms individually. By Itô’s isometry, the fact that s − εn ≤ ιn(s−) ≤
ιn+1(s−) ≤ s and Fubini’s theorem one has that for κ = σ2 +

�
B(0,ε)c

x2 ν(dx)

E
��
ε−1/2n

� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du dMs

�2�

= κ ε−1n E
�� t

0

�� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du

�2
ds

�

≤ κE
�� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u )2 du ds

�

≤ κE
�� t

0

� s

(s−εn)∨0
(α(1)u − α(2)u )2 du ds

�

≤ κ εn E
�� t

0

(α(1)s − α(2)s )2 ds
�
.

(31)

By the Cauchy-Schwarz inequality and Fubini it follows that the second term satisfies

E
�
ε−1/2n

���
� t

0

(Wιn+1(s−) −Wιn(s−))(β
(1)
s − β(2)s ) ds

���
�

≤ ε−1/2n E
�� t

0

(Wιn+1(s−) −Wιn(s−))
2 ds

�1/2
E
�� t

0

(β(1)s − β(2)s )2 ds
�1/2

≤ tE
�� t

0

(β(1)s − β(2)s )2 ds
�1/2

,
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where we have used in the last step that ιn+1s− − ιns− is independent of the Brownian motion
and smaller or equal to εn. The third term is estimated similarly as the first term:

E
�
ε−1/2n

���
� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du β(1)s ds

���
�

≤ ε1/2n E
�� t

0

�� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u ) du

�2
ds

�1/2
E
�� T

0

(β(1)s )2 ds
�1/2

≤ E
�� t

0

� ιn+1(s−)

ιn(s−)
(α(1)u − α(2)u )2 du ds

�1/2
E
�� T

0

(β(1)s )2 ds
�1/2

≤ ε1/2n E
�� t

0

(α(1)s − α(2)s )2 ds
�1/2

E
�� T

0

(β(1)s )2 ds
�1/2

In complete analogy, the fourth term satisfies

E
�
ε−1/2n

���
� t

0

� ιn+1(s−)

ιn(s−)
α(2)u du (β(1)s − β(2)s ) ds

���
�

≤ ε1/2n E
�� t

0

(α(2)s )2 ds
�1/2

E
�� T

0

(β(1)s − β(2)s )2 ds
�1/2

.

By the Markov inequality, the first, third and fourth term of (30) tend to zero in proba-
bility as n→ ∞.

2nd step: Next, we analyse the case where β(2) = 0 and β := β(1) is simple in the
following sense. There exist l ∈ N, increasingly ordered times 0 = t0, t1, . . . , tl = t ∈
D =

�
n∈N εnZ∩ [0, T ] such that β is almost surely constant on each of the time intervals

[t0, t1), . . . , [tl−1, tl). For n ∈ N and j = 1, . . . , l we let

Mj,n := ε−1/2n

� tj

tj−1

(Wιn+1(s−) −Wιn(s−)) ds.

We suppose that n ∈ N is sufficiently large to ensure that {t1, . . . , tl} ⊂ εnZ. The
Brownian motion W is independent of Π so that for u, s ∈ [0, t]

E[(Wιn+1(s−) −Wιn(s−))(Wιn+1(u−) −Wιn(u−))|Π]

= �([ιn(s−), ιn+1(s−)] ∩ [ιn(u−), ιn+1(u−)])

≤ εn 1l{|s−u|≤εn}.

Consequently, we obtain with Fubini that

E[M2
j,n] = ε−1n E

�� tj

tj−1

� tj

tj−1

(Wιn+1(s−) −Wιn(s−))(Wιn+1(u−) −Wιn(u−)) ds du
�

≤ 2 εn(tj − tj−1).
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SinceMj,n is independent of Ftj−1
and has mean zero we conclude that (

�k
j=1 βtj−1

Mj,n)k=0,...,l
is a square integrable martingale so that

E
��
ε−1/2n

� t

0

(Wιn+1(s−) −Wιn(s−)) βs ds
�2���

�
=

l�

j=1

E[β2tj−1
M2

j,n]

=
l�

j=1

E[β2tj−1
]E[M2

j,n] ≤ 2εn

l�

j=1

β2tj−1
(tj − tj−1)

= 2εn E
�� t

0

β2s ds
�
.

3rd step: We combine the first and second step. Let α(2) and β(2) be as in the statement
of the theorem and let δ > 0 be arbitrary. The simple functions as defined in step two are
dense in the space of previsible processes with finite L2-norm with respect to P ⊗ �[0,T ].
By part one, we can choose α(1) = 0 and a simple process β(1) such that

P(|Υn,2
t −Υn,1

t | ≥ δ/2) ≤ δ/2

for n sufficiently large. Next, let Υn,0 denote the process that is obtained in analogy
to Υn,1 and Υn,2 when choosing α = β = 0. By the second step, (Υn,1

t : n ∈ N) and
(Υn,0

t : n ∈ N) are asymptotically equivalent in probability implying that

P(|Υn,1
t −Υn,0

t | ≥ δ/2) ≤ δ/2

for sufficiently large n ∈ N. Altogether, we arrive at

P(|Υn,2
t −Υn,0

t | ≥ δ) ≤ δ

for sufficiently large n ∈ N. Since δ > 0 is arbitrary, (Υn,2
t : n ∈ N) and (Υn,0

t : n ∈ N) are
equivalent in probability. The general statement follows by transitivity of equivalence in
probability

Lemma 2.6. For any finite subset T ⊂ D =
�

n∈N εnN0, one has convergence

(Yt, Z
n,ε
t )t∈T ⇒ (Yt, Z

ε
t )t∈T

Proof. 1st step: In the first step we derive a simpler sufficient criterion which implies
the statement. Fix l ∈ N, increasing times 0 = t0 ≤ t1 < . . . < tl ≤ T and consider
T = {t1, . . . , tl}. The statement follows if for A ∈ σ(Yt : t ∈ T) and continuous compactly
supported f : Rl → R

E[1lAf(Z
n,ε
t1 , . . . , Z

n,ε
tl

)] → E[1lAf(Z
ε
t1
, . . . , Zε

tl
)].

By the Stone-Weierstrass theorem the linear hull of functions of the form

Rl → R, x �→ f1(x1) · . . . · fl(xl)
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with continuous compactly supported functions f1, . . . , fl : R → R is dense in the space of
compactly supported continuous functions on Rl equipped with supremum norm. Hence
it suffices to verify that

E[1lAf1(Z
n,ε
t1 ) . . . fl(Z

n,ε
tl

− Zn,ε
tl−1

)] → E[1lAf1(Z
ε
t1
) . . . fl(Z

ε
tl
− Zε

tl−1
)]. (32)

for arbitrary continuous compactly supported functions f1, . . . , fl : R → R.

For fixed set T the family of sets A ∈ σ(Yt : t ∈ T) for which (32) is valid is a Dynkin
system provided that the statement is true for A = Ω. Consequently, it suffices to
prove (32) on the ∩-stable generator

E = {A1 ∩ . . . ∩ Al : A0 ∈ A0, . . . , Al ∈ Al},

where A1 = σ(Yt1), . . . ,Al = σ(Ytl − Ytl−1
). We note that for A = A1 ∩ . . . ∩ Al ∈ E the

random variables
1lA1f1(Z

n,ε
t1 ), . . . , 1lAl

fl(Z
n,ε
tl

− Zn,ε
tl−1

)

are independent if T ⊂ εnN0 which is fulfilled for sufficiently large n since T is finite and
a subset of D. Likewise this holds for (Zn,ε

t ) replaced by (Zε
t ). Consequently, it suffices

to prove that for k = 1, . . . , l

E[1lAk
fk(Z

n,ε
tk

− Zn,ε
tk−1

)] → E[1lAk
fk(Z

ε
tk
− Zε

tk−1
)].

Due to the time homogeneity of the problem we can and will restrict attention to the
case k = 1 and set t = t1. Note that σ(W ) ∩ �

ε�>0 σ(
�

s∈(0,t]:|ΔYs|≥ε� δΔYs) is ∩-stable,

contains Ω and generates a σ-field that contains σ(Yt).

We conclude that the statement of the lemma is true, if for all t ∈ D, ε� > 0, all A ∈ σ(W )
and A� ∈ σ(�s∈(0,t]:|ΔYs|≥ε� δΔYs) and all continuous compactly supported f : R → R, one
has

lim
n→∞

E[1lA∩A�f(Zn,ε
t )] = E[1lA∩A�f(Zε

t )]. (33)

2nd step: In this step we prove that for A ∈ σ(W ) and A� ∈ σ(Π)

lim
n→∞

|E[1lA∩A�f(Zn,ε
t )]− P(A)E[1lA�f(Z̄n,ε

t )]| = 0

where (Ȳ ε
s ) and (Z̄n,ε

s ) are given by

Ȳ ε
s = σWs +

�

(0,s]×B(0,ε)c
x dΠ(u, x)

and

Z̄n,ε
s = ε−1/2n

� s

0

(Wιn+1(u−) −Wιn(u−)) dȲ
ε
u .
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It suffices to consider the case P(A) > 0. We use results of enlargements of filtrations,
see [19, Thm. 2, p. 47] or [1, Example 2]: there exists a previsible process (αs)s∈[0,T ] being
square integrable with respect to P⊗ �[0,T ] such that given A the process (WA

s )s∈[0,T ]

WA
s := Ws −

� s

0

αu du

is a Wiener process. By Lemma 2.5, the processes (Zn,ε
t ) and

Z̄n,ε,A
s = ε−1/2n

� s

0

(WA
ιn+1(u−) −WA

ιn(u−)) dȲ
ε,A
u

with Ȳ ε,A = (σWA
s +

�
(0,s]×B(0,ε)c

x dΠ(u, x))s∈[0,T ] are equivalent in probability. Hence,

|E[1lA∩A�f(Zn,ε
t )]− E[1lA∩A�f(Z̄n,ε,A

t )]| → 0.

The set A is independent of Π. Further, conditionally on A the process WA is a Brownian
motion that is independent of Π which implies that

E[1lA∩A�f(Z̄n,ε,A
t )] = P(A)E[1lA�f(Z̄n,ε

t )].

3rd step: Let Γ denote the finite Poisson point process on B(0, ε�)c with

Γ =
�

s∈(0,t]
|ΔYs|≥ε�

δΔYs =

�

(0,t]×B(0,ε)c
δx dΠ(u, x).

In the third step we prove that for every A� ∈ σ(Γ) and every continuous and bounded
function f : R → R one has

lim
n→∞

E[1lA�f(Z̄n,ε
t )] = E[1lA�f(Zε

t )].

By dominated convergence it suffices to show that, almost surely,

lim
n→∞

E[f(Z̄n,ε
t )|Γ] = E[f(Zε

t )|Γ]. (34)

The regular conditional probability of Π|(0,t]×B(0,ε�)c given Γ can be made precise: the

distribution of Π|(0,t]×B(0,ε�)c given {Γ = γ :=
�m

k=1 δym} with m ∈ N and y1, . . . , ym ∈
B(0, ε�)c is the same as the distribution of

m�

k=1

δSk,yk

with independent on (0, t] uniformly distributed random variables S1, . . . , Sm. Since fur-
thermore, Π|(0,t]×B(0,ε�)c is independent of Π|(0,t]×B(0,ε�)\{0} and the Brownian motion W we
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conclude that the distribution of Z̄n,ε
t conditioned on {Γ = γ} equals the distribution of

the random variable

Z̄n,ε,γ
t = ε−1/2n

� t

0

(Wιγn+1(u−) −Wιγn(u−)) dȲ
n,γ
u

with Ȳ n,γ
s = σWs +

�m
k=1 ym1l{|ym|≥ε}1l{Sk≤s} and

ιγn(s) = sup
�
(εnZ ∩ [0, t]) ∪ {s ∈ (0, t] : hn ≤ |ΔYs| < ε�} ∪ {S1, . . . , Sm}

�
.

Here the random variables S1, . . . , Sm are independent of Π|(0,t]×B(0,ε�) and W . Likewise
the random variable Zε

t given {Γ = γ} has the same distribution as the unconditional
random variable

Zε,γ
t = ΥBt +

m�

j=1

σj
σ
ξj yj 1l{|yj |≥ε}

with σ1, . . . , σm and ξ1, . . . , ξm being independent (also of B) with the same distribution
as the marks of the point process Π. Consequently, statement (34) follows if for every γ
as above

lim
n→∞

E[f(Z̄n,ε,γ
t )] = E[f(Zε,γ

t )].

We keep γ fixed and analyse Z̄n,ε,γ
t for n ∈ N sufficiently large, i.e., with t ∈ εnZ. We

partition (0, t] into t/εn n-windows. We call the kth n-window to be occupied by Sj if Sj

is the only time in the window ((k − 1)εn, kεn]. Further, we call a window to be empty,
if none of the times S1, . . . , Sm is in the window. For each window k = 1, . . . , t/εn that is
empty, we set

Zn,γ
k = ε−1/2n σ

� kεn

(k−1)εn
(Wιγn+1(u−) −Wιγn(u−)) dWu,

and for a window ((k − 1)εn, kεn] being occupied by j

Zn,γ
k = ε−1/2n (Wιγn+1(Sj−) −Wιγn(Sj−)) yj 1l{|yj |≥ε}

The remaining Zn,γ
k can be defined arbitrarily since we will make use of the fact that the

event Tn that all windows are either empty or occupied satisfies P(Tn) → 1.

We first analyse the contribution of the occupied windows. Given that Tn occurs and
that S1, . . . , Sm are in windows k1, . . . , km, the random variables Zn,γ

k1
, . . . ,Zn,γ

km
are inde-

pendent. We consider their conditional distributions: conditionally, each Sj is uniformly
distributed on the respective window and the last displacement in B(0, ε�)\B(0, hn), resp.
B(0, hn)\B(0, hn+1) has occurred an independent exponentially distributed amount of
time ago; with parameter λn = ν(B(0, ε�)\B(0, hn)), resp. λn+1 − λn. Therefore, the
conditional distribution of (Sj − ιn(Sj), Sj − ιn+1(Sj)) is the same as the one of

�
min(U εn , Eλn),

M�

i=1

1l((i−1)εn,iεn](U εn) min
�
U εn − i−1

M
, Eλn , Eλn+1−λn

��

23



where U εn , Eλn and Eλn+1 are independent random variables with U εn being uniformly
distributed on [0, εn] and Eλn , Eλn+1−λn being exponentially distributed with parameters
λn and λn+1 − λn. Consequently, conditionally, one has that

Zn,γ
kj

d
= ε−1/2n

�
min(U εn , Eλn)−min

� M�

i=1

1l((i−1)εn,iεn](U εn)(U εn− i−1
M

), Eλn , Eλn+1−λn

��1/2
ξ yj 1l{|yj |≥ε},

where ξ denotes an independent standard normal. By assumption, λn/εn → θ as n→ ∞
so that the latter distribution converges to the one of

σj

σ
ξjyj. Hence, conditionally on Tn

one has �

k∈N∩[0,t/εn]
kth n-window occupied

Zn,γ
k ⇒

m�

j=1

σj
σ
ξjyj 1l{|yj |≥ε}

Next, we analyse the contribution of all empty windows. Given Tn, there are t/εn −
m empty windows and the corresponding random variables Zn,γ

k are independent and
identically distributed. We have

E[Zn,γ
1 |(0, εn] empty, Tn] = 0

since W is independent of the event we condition on. Further, by Itô’s isometry and the
scaling properties of Brownian motion one has

Var
�
Zn,γ
1

�� (0, εn] empty, Tn
�
= ε−1n σ2 E

� � εn

0

(Wιγn+1(u)
−Wιγn(u))

2 du
���(0, εn] empty, Tn

�

= εnσ
2 E

�
(Wε−1

n ιγn+1(Uεn ) −Wε−1
n ιγn(Uεn ))

2
�� (0, εn] empty, Tn

�

= εnσ
2 E

�
ε−1n ιγn+1(U εn)− ε−1n ιγn(U εn)]

�� (0, εn] empty, Tn
�
.

(35)

Here we denote again by U εn an independent uniform random variable on [0, εn] and
we used that conditionally the processes ιγn and ιγn+1 are independent of the Brownian
motion W . As above we note that the distributions of ε−1n ιγn+1(U εn) and ε−1n ιγn(U εn) are
identically distributed as

ε−1n

�
Eλn+1 ∧ U εn

M

�
and ε−1n

�
Eλn ∧ U εn

�
.

By assumption (ML2) these converge in L1 to EMθ ∧ U1/M and Eθ ∧ U1, respectively.
Hence, computing the respective expectations gives with (35)

ε−1n Var
�
Zn,γ
1

�� (0, εn] empty, Tn
�
→ σ2

M − 1

M

e−θ − (1− θ)

θ2
=: Υ2.

The uniform L2-integrability of L(ε
−1/2
n Zn,γ

1 | (0, εn] empty, Tn) follows by noticing that
by the Burkholder-Davis-Gundy inequality there exists a universal constant κ such that

E
�
(Zn,γ

1 )4
�� (0, εn] empty, Tn

�
≤ κε−2n σ4 E

��� εn

0

(Wιγn+1(u)
−Wιγn(u))

2 du
�2���(0, εn] empty, Tn

�

≤ 4κ σ4 E
�

sup
u∈[0,εn]

W 4
u

�
= 4κ σ4 ε2n E

�
sup

u∈[0,1]
W 4

u

�
.
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Hence, conditionally on Tn one has
�

k∈N∩(0,t/εn]
kth n-window empty

Zn,γ
k ⇒ N (0,Υ2t).

Given Tn the contribution of the empty and occupied windows are independent, so that
since P(Tn) → 1, generally

t/εn�

k=1

Zn,γ
k ⇒ Zε,γ

t .

It remains to show that

lim
n→∞

�
Z̄n,ε,γ
t −

t/εn�

k=1

Zn,γ
k

�
= 0, in probability.

This follows immediately by noticing that, given Tn, one has

Z̄n,ε,γ −
t/εn�

k=1

Zn,γ
k = σε−1/2n

�

k∈N∩[0,t/εn]
kth n-window occupied

� kεn

(k−1)εn
(Wιn+1(u−) −Wιn(u−)) dWu,

where the sum on the right hand side is over m independent and identically distributed
summands each having second moment smaller than ε2n.

4th step: In the last step we combine the results of the previous steps. By step one, it
suffices to verify equation (33). Provided that the statement is true for A = Ω, the system
of sets A for which (33) is satisfied is a Dynkin system. Consequently, it suffices to verify
validity for sets A ∩ A� with A ∈ σ(Wt) and A� ∈ σ(Γ). By step two one has

lim
n→∞

|E[1lA∩A�f(Zn,ε
t )− P(A)E[1lA�f(Z̄n,ε

t )]| → 0

and by step three
lim
n→∞

E[1lA� f(Z̄n,ε)] = E[1lA� f(Zε
t )]

so that
lim
n→∞

E[1lA∩A�f(Zn,ε
t ) = P(A)E[1lA� f(Zε

t )].

The proof is complete by noticing that σ(Wt) is independent of σ(Γ, Zε
t ) so that

P(A)E[1lA�f(Z̄ε
t )] = E[1lA∩A�f(Z̄ε

t )].

3 Scaled errors of derived quantities

In this section we collect results that will enable us to deduce the main central limit
theorems with the help of Theorem 1.5.
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3.1 The integrated processes

The following lemma is central to the proof of Theorems 1.9 and 1.10.

Lemma 3.1. If Assumptions (ML1) and (ML2) hold, then one has

lim
n→∞

ε−1n E
����
� T

0

(X̂n
t − X̄n

t ) dt
���
2�

= 0.

Proof. With bn := b−
�
B(0,hn)c

x ν(dx) we have for t ∈ [0, T ]

X̂n
t − X̄n

t = a(X̂ιn(t)) (Y
h
t − Y h

ιn(t)) = a(X̂ιn(t)) (bn(t− ιn(t)) + σ(Wt −Wιn(t))). (36)

We estimate

E
����
� T

0

a(X̂ιn(t)) bn(t− ιn(t)) dt
���
2�

≤ b2n ε
2
n T E

�� T

0

|a(X̂n
ιn(t−))|2 dt

�
.

The latter expectation is uniformly bounded over all n, see Lemma 5.12. Further b2n =
o(ε−1n ) by Lemma 5.10. Consequently, the first term is of order o(εn). By Fubini

E
�� � T

0

a(X̂ιn(t)) σ (Wt −Wιn(t)) dt
�2�

= σ2
� T

0

� T

0

E[a(X̂ιn(t)) (Wt −Wιn(t))a(X̂ιn(u)) (Wu −Wιn(u))] dt du.

Further, for 0 ≤ t ≤ u ≤ T ,

E[a(X̂ιn(t)) (Wt−Wιn(t))a(X̂ιn(u)) (Wu−Wιn(u))|ιn, X̂ιn(t)] = 1l{ιn(t)=ιn(u)}a(X̂ιn(t))
2((t∧u)−ιn(t))

and since the statement is symmetric in the variables t, u also for 0 ≤ u ≤ t ≤ T .
Consequently,

E
�� � T

0

a(X̂ιn(t)) σ (Wt −Wιn(t)) dt
�2�

≤ 2ε2nσ
2

� T

0

E[a(X̂ιn(t))
2] dt.

We recall that the latter expectation is uniformly bounded so that theis term is also of
order o(εn).

3.2 The supremum

The results of this subsection are central to the proof of Theorem 1.8. We first give some
qualitative results for solutions X = (Xt)t∈[0,T ] of the stochastic differential equation

dXt = a(Xt−) dYt

with arbitrary starting value. We additionally assume that a does not attain zero.
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Lemma 3.2. One has for every t ∈ [0, T ] that, almost surely,

sup
s∈[0,t]

Xs > X0 ∨Xt.

Proof. We only prove that
sup
s∈[0,t]

Xs > Xt

and remark that the remaining statement follows by similar simpler considerations.

1st step: In the first step we show that

1√
ε
(Xt−ε+εs −Xt−ε)s∈[0,1]

stably
=⇒ (σ a(Xt)Bs)s∈[0,1].

We show the statement in two steps: first note that

1√
ε
(Xt−ε+εs −Xt−ε)s∈[0,1] and

1√
ε
(a(Xt−ε) (Yt−ε+εs − Yt−ε))s∈[0,1]

are equivalent in ucp. Further, Zε := (ε−1/2(YT−ε+εs − Yt−ε))s∈[0,1] is independent of
a(Xt−ε) and a(Xt−ε) tends to a(Xt), almost surely. Hence, it remains to show that Zε

converges for ε ↓ 0 in distribution to σB. Note that Zε is a Lévy-process with triplet
(b
√
ε, σ2, νε), where νε(A) = ε ν(

√
εA) for Borel sets A ⊂ R\{0}. It suffices to show that

Lévy-processes Z̄ε with triplet (0, 0, νε) converge to the zero process.
We uniquely represent Z̄ε as

Z̄ε
t = Z̄ε,r

t + ¯̄Zε,r − bε,rt

with independent Lévy processes Z̄ε,r
t and ¯̄Zε,r, the first one with triplet (0, 0, νε|B(0,r)),

the second one being a compound Poisson process with intensity ν|B(0,r)c , and with bε,r :=�
B(0,r)c

x dνε(x). Clearly, for δ > 0

P
�

sup
t∈[0,1]

|Z̄ε
t | > δ

�
≤ 1l{|bε,r|>δ/2} + P

�
sup
t∈[0,1]

|Z̄ε,r
t | > δ/2

�
+ P( ¯̄Zε,r �= 0). (37)

For r > 0 one has

r ν(B(0, r)c) ≤
�

B(0,r)c
|x| dνε(x) = ε

�

B(0,
√
εr)c

|x|√
ε
dν(x)

≤ √
ε

�

B(0,
√
εr)

x2√
εr
ν(dx) ≤ 1

r

�
x2 ν(dx).

Hence, |bε,r| ≤ δ/2, for sufficiently large r, and P( ¯̄Zε,r �= 0) ≤ ν(B(0, r)c) ≤ 1
r2

�
x2 ν(dx).

Further, �

B(0,r)

x2 dνε(x) =

�

B(0,
√
εr)

x2 dν(x) → 0
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so that Doob’s L2-inequality yields

lim
ε↓0

P
�

sup
t∈[0,1]

|Z̄ε,r
t | > δ/2

�
= 0.

Plugging these estimates into (37) gives

lim sup
ε↓0

P
�

sup
t∈[0,1]

|Z̄ε
t | > δ

�
≤ 1

r2

�
x2 ν(dx)

and the statement of step one follows by noticing that r > 0 can be chosen arbitrarily
large.

2nd step: Clearly, for ε ∈ (0, t],

P( sup
s∈[0,t]

Xs = Xt) ≤ P
�
ε−1/2 sup

s∈[0,1]
(Xt−ε+εs −Xt−ε) = ε−1/2(Xt −Xt−ε)

�
.

The set of all càdlàg functions x : [0, 1] → R with sups∈[0,1] xs = x1 is closed in the
Skorokhod space so that

P
�

sup
s∈[0,t]

Xs = Xt

�
≤ lim sup

ε↓0
P
�
ε−1/2 sup

s∈[0,1]
(Xt−ε+εs −Xt−ε) = ε−1/2(Xt −Xt−ε)

�

≤ P
�
a(Xt) sup

s∈[0,1]
σBs = a(Xt)B1

�
= 0.

Lemma 3.3. Suppose that a(x) �= 0 for all x ∈ R. There is a unique random time S (up
to indistinguishability) such that, almost surely,

sup
s∈[0,T ]

Xs = XS

and one has ΔXS = 0. Further, for every ε > 0, almost surely,

sup
s∈[0,S]:|s−S|≥ε

Xs < XS.

Proof. 1st step: First we prove that the supremum supt∈[0,T ]Xt is almost surely attained
at some random time S with ΔXS = 0. By compactness of the time domain, we can find
an almost surely convergent [0, T ]-valued sequence (Sn)n∈N of random variables, say with
limit S, with

lim
n→∞

XSn = sup
t∈[0,T ]

Xt.

Let h > 0. We represent Y as sum

Yt = Y h
t +

N�

k=1

1l[Tk,T ](t)ΔYTk
,
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where T1, . . . , TN are the increasingly ordered times of the discontinuities of Y being larger
than h. Further, Y h is a Lévy process that is independent of Ȳ h := Y − Y h. Given Ȳ h,
for every k = 1, . . . , N , the process (Xt)t∈[Tk−1,Tk) solves the SDE

dXt = a(Xt−) dY h
t

and we have, almost surely, that

XTk− = XTk−1
+

� Tk

Tk−1

a(Xs) dY
h
s .

Consequently, we can apply Lemma 3.2 and conclude that, almost surely, for each k =
1, . . . , N + 1,

sup
s∈[Tk−1,Tk)

Xs > XTk−1
∨XTk−

with T0 = 0 and TN+1 = T . Hence, almost surely,

sup
s∈[0,T ]

Xs > sup
k=1,...,N+1

XTk−1
∨XTk−.

Consequently, S is almost surely not equal to 0 or T or a time with displacement larger
than h. Since h > 0 was arbitrary, we get that, almost surely, ΔXS = 0, so that

XS = lim
n→∞

XSn = sup
t∈[0,T ]

Xt, almost surely.

2nd step: We prove that for every t ∈ [0, T ] the distribution of sups∈[0,t]Xs has no atom.
Suppose that it has an atom in z ∈ R. We consider the stopping time

T{z} = inf{t ∈ [0, T ] : Xt = z}

with the convention T{z} = ∞ in the case when z is not hit. For ε > 0, conditionally on

the event {T{z} ≤ T − ε} the process (X̃s)s∈[0,ε] with

X̃s = XT{z}+s

starts in z and solves dX̃s = a(X̃s) dỸs with Ỹ denoting the T{z}-shifted Lévy process Y .
Hence, by Lemma 3.2, one has almost surely on {T{z} ≤ T − ε} that

z = X̃0 < sup
s∈[0,ε]

X̃s ≤ sup
s∈[0,T ]

Xs.

Since ε > 0 is arbitrary and X does not attain its supremum in T , it follows that
P(sups∈[0,T ]Xs = z) = 0.

3rd step: We prove that the supremum over two disjoint time windows [u, v) and [w, z)
with 0 ≤ u < v ≤ w < z ≤ T , satisfies

sup
s∈[u,v)

Xs �= sup
s∈[w,z)

Xs,
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almost surely. By the Markov property, the random variables sups∈[u,v)Xs and sups∈[w,z)Xs

are independent given Xw and we get

P
�

sup
s∈[u,v)

Xs = sup
s∈[w,z)

Xs

�
=

�
P
�

sup
s∈[w,z)

Xs = y
���Xw = x

�
dP(Xw,sups∈[u,v) Xs)(x, y),

were P(Xw,sups∈[u,v) Xs) denotes the distribution of (Xw, sups∈[u,v)Xs). We note that the
conditional process (Xs)s∈[w,z) is again a solution of the SDE started in x and by step two
the inner conditional probability equals zero.

4th step: We finish the proof of the statement. For given ε > 0, we choose deterministic
times 0 = t0 < t1 < . . . < tm = T with tk − tk−1 ≤ ε. By step three, there is, almost
surely, one window in which the supremum is attained, say in [tM−1, tM), and

sup
s∈[0,T ]:|S−s|≥ε

Xs ≤ sup
k∈{1,...,m}\{M}

sup
s∈[tk−1,tk)

Xs < sup
s∈[tM−1,tM )

Xs = XS.

Lemma 3.4. Suppose that a(x) �= 0 for all x ∈ R and denote by S the random time at
which X attains its maximum. One has

ε−1/2n

�
sup

t∈[0,T ]
Xn+1

t − sup
t∈[0,T ]

Xn
t

�
− Un,n+1

S → 0, in probability.

Proof. With Lemma 3.3 we conclude that, for every ε > 0, one has with high probability
that

���ε−1/2n

�
sup

t∈[0,T ]
Xn+1

t − sup
t∈[0,T ]

Xn
t

�
− Un,n+1

S

��� ≤ sup
t:|t−S|≤ε

��ε−1/2n (Xn+1
t −Xn

t )− Un,n+1
S

��

= sup
t:|t−S|≤ε

|Un,n+1
t − Un,n+1

S |.

For ε, δ > 0 consider

Aε,δ = {(s, x) ∈ [0, T ]× D(R) : sup
(t,u):s−ε≤t≤u≤s+ε

: |xt − xu| ≥ δ}.

Note that cl(Aε,δ) ⊂ A2ε,δ and recall that (S, Un,n+1) ⇒ (S, U). Hence,

lim sup
n→∞

P
����ε−1/2n sup

t∈[0,T ]
Xn+1

t − ε−1/2n sup
t∈[0,T ]

Xn
t − Un,n+1

S

��� ≥ δ
�

≤ lim sup
n→∞

P((S, Un,n+1) ∈ Aε,δ) ≤ P((S, U) ∈ A2ε,δ).

Note that U is almost surely continuous in S so that for ε ↓ 0, P((S, U) ∈ A2ε,δ) → 0.

30



4 Proofs of the central limit theorems

In this section we prove all central limit theorems and Theorem 1.11. We will verify
the Lindeberg conditions for the summands of the multilevel estimate �S(F ), see (4). As
shown in Lemma 5.9 in the appendix, a central limit theorem holds for the idealised
approximations X1, X2, . . . , if

1) limn→∞ Var(ε
−1/2
n (F (Xn+1)− F (Xn)) = ρ2 and

2) (ε
−1/2
n (F (Xn+1)− F (Xn)) : k ∈ N) is uniformly L2-integrable.

The section is organised as follows. In Section 4.1 we verify uniform L2-integrability of the
error process in supremum norm which will allow us to verify property 2) in the central
limit theorems. In Section 4.2 we prove Theorems 1.6 and 1.9, essentially by verifying
property 1).

It remains to deduce Theorems 1.8 and 1.10 from the respective theorems for the idealised
scheme. By Lemmas 1.2, 1.4 and 3.1, switching from the idealised to the continuous or
piecewise constant approximation leads to asymptotically equivalent L2-errors. Hence,
the same error process can be used and, in particular, uniform L2-integrability prevails
due to Lemma 5.8. Consequently, the identical proofs yield the statements.

Finally, we prove Theorem 1.11 in Section 4.3.

4.1 Uniform L2-integrability

Proposition 4.1. The sequence (ε
−1/2
n supt∈[0,T ] |Xn+1

t −Xn
t |)n∈N is uniformly L2-integrable.

To prove the proposition we will make use of the perturbation estimates given in the
appendix, see Section 5.4. Recall that Un,n+1 = ε

−1/2
n (Xn+1 −Xn) satisfies the equation

Un,n+1
t =

� t

0

Dn,n+1
s− Un,n+1

s− dYs + ε−1/2n

� t

0

Dn
s−A

n
s− (Ys− − Yιn(s−)) dYs

− ε−1/2n

� t

0

Dn+1
s− An+1

s− (Ys− − Yιn+1(s−)) dYs.

We use approximations indexed by m ∈ N: we denote by Un,n+1,m = (Un,n+1,m
t )t∈[0,T ] the

solution of the equation

Un,n+1,m
t =

� t

0

Dn,n+1
s− Un,n+1,m

s dYm
s + ε−1/2n σ

� t

0

Dn
s−An,m

s− (Ws− −Wιn(s−)) dYm
s

− ε−1/2n σ

� t

0

Dn+1
s− An,m

s− (Ws− −Wιn+1(s−)) dYm
s ,

(38)

where Ym = (Ym
t )t∈[0,T ] is given by

Ym
t = bt+ σWt + lim

δ↓0

�

(0,t]×(B(0,m)\B(0,δ))
x dΠ̄(s, x),

31



and An,m = (An,m
t )t∈[0,T ] is the simple adapted càdlàg process given by

An,m
t =

�
An

t , if |An
t | ≤ m,

0, else.

The proof of the proposition is achieved in two steps. We show that

1. limm↑∞ lim supn→∞ E[supt∈[0,T ] |Un,n+1
t − Un,n+1,m

t |2] = 0 and

2. for every p ≥ 2 and m ∈ N, E[supt∈[0,T ] |Un,n+1,m
t |p] <∞.

Then the uniform L2-integrability of (supt∈[0,T ] |Un,n+1
t |)n∈N follows with Lemma 5.8.

Lemma 4.2. One has,

lim
m↑∞

lim sup
n→∞

E
�

sup
t∈[0,T ]

|Un,n+1
t − Un,n+1,m

t |2
�
= 0.

Proof. The processes Un,n+1,m are perturbations of Un,n+1 as analysed in Lemma 5.14.
More explicitly, the result follows if there exists a constant κ > 0 such that

E
�

sup
t∈[0,T ]

���ε−1/2n

� t

0

Dn
s−An,m

s− (Ws− −Wιn(s−)) dYm
s

���
2�

≤ κ, (39)

for all n,m ∈ N, and

lim
m→∞

lim sup
n→∞

ε−1n E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ys− − Yιn(s−))dYs

− σ

� t

0

Dn
s−An,m

s− (Ws− −Wιn(s−))dYm
s

���
2�

= 0.

(40)

Using Lemma 5.11, the uniform boundedness of Dn, conditional independence of An,m
s−

and Ws− −Wιn(s−) given ιn, there exists a constant κ1 > 0 such that

ε−1n E
�
sup
0≤r≤t

���
� r

0

Dn
s−An,m

s− (Ws− −Wιn(s−)) dYm
s

���
2�

≤ κ1

� T

0

ε−1n E
�
|An,m

s− |2|Ws− −Wιn(s−)|2
�
ds

≤ κ1

� T

0

E
�
|An,m

s− |2
�
ds ≤ κ1

� T

0

E
�
|An

s−|2
�
ds

for all n,m ∈ N. The latter integral is uniformly bounded by Lemma 5.12 and the
Lipschitz continuity of a.

We proceed with the analysis of (40). The expectation in (40) is bounded by twice the
sum of

Σ(1)
n,m := ε−1n E

�
sup

t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ys−−Yιn(t−)) dYs−σ

� t

0

Dn
s−A

n
s−(Ws−−Wιn(s−)) dYm

s

���
2�
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and

Σ(2)
n,m := ε−1n E

�
sup

t∈[0,T ]

���
� t

0

Dn
s−A

n
s−(Ws−−Wιn(t−)) dYm

s −
� t

0

Dn
s−An,m

s− (Ws−−Wιn(t−)) dYm
s

���
2�
.

The term Σ
(1)
n,m is the same as the one appearing in (20) when replacing Y ε by Ym. One

can literally translate the proof of (20) to obtain that

lim
m→∞

lim sup
n→∞

Σ(1)
n,m = 0.

arises when replacing Y (20) in Lemma 2.3 and it remains to work on the second one. By
uniform boundedness of Dn and Lemma 5.11, there exists a constant κ2 not depending
on n,m ∈ N with

Σ(2)
n,m ≤ κ2 ε

−1
n

� T

0

E[(An
s− −An,m

s− )2(Ws− −Wιn(s−))
2] ds

≤ κ2

� T

0

E
�
(An

s− −An,m
s− )2

�
ds

≤ 2κ2

� T

0

E
�
(An

s− − a(Xs−))2] ds+ 2κ2

� T

0

E[(a(Xs−)−An,m
s− )2

�
ds

where we have used again that given ιn the random variables An
s− − An,m

s− and Ws− −
Wιn(s−) are independent. The first integral in the previous line tends to zero by Lipschitz
continuity of a and L2-convergence of supt∈[0,T ] |Xn

t − Xt| → 0, (see Proposition 4.1 of
[11]). Further the second integral satisfies

lim sup
n→∞

� T

0

E[(a(Xs−)−An,m
s− )2

�
ds ≤

� T

0

E[1l[m,∞)(|Xs−|) a(Xs−)2
�
ds

which tends to zero as m→ ∞ since supt∈[0,T ] |Xt| is square integrable.

Lemma 4.3. For every m ∈ N and p ≥ 2, one has

sup
n∈N

E
�

sup
t∈[0,T ]

|Un,n+1,m
t |p

�
<∞.

Proof. Since Yh has bounded jumps, it has finite pth moment. Dn,n+1 is uniformly
bounded and by part one of Lemma 5.15 it suffices to prove that

E
�

sup
t∈[0,T ]

���ε−1/2n

� t

0

Dn
s−An,m

s− (Ws− −Wιn(s−)) dYm
s

���
p�

is uniformly bounded over all n ∈ N for fixed m ∈ N. Using Lemma 5.11 and the uniform
boundedness of Dn and An,m over al n ∈ N we conclude existence of a constant κ3 such
that for every n ∈ N

E
�

sup
t∈[0,T ]

���
� t

0

Dn
s−An,m

s− (Ws− −Wιn(s−)) dYm
s

���
p�

≤ κ3

� T

0

E
�
|Ws− −Wιn(s−)|p

�
ds ≤ κ3Tε

p/2
n .
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4.2 Proof of the central limit theorems for X1, X2, . . .

In this section we prove Theorems 1.6 and 1.9. By Proposition 4.1 and the Lipschitz
continuity of F with respect to supremum norm, we conclude that (ε

−1/2
n (F (Xn+1) −

F (Xn)) : n ∈ N) is uniformly L2-integrable in both settings. In view of the discussion at
the beginning of Section 4 it suffices to show that

lim
n→∞

Var(ε−1/2n (F (Xn+1)− F (Xn)) = Var(∇f(AX) · AU)

in the first setting and

lim
n→∞

Var(ε−1/2n (F (Xn+1)− F (Xn)) = Var(f �(XS) · US)

in the second setting. By dominated convergence it even suffices to show weak convergence
of the distributions appearing in the variances. Theorem 1.6 follows from the following
lemma.

Lemma 4.4. Under the assumptions of Theorem 1.6, one has

ε−1/2n (F (Xn+1)− F (Xn) ⇒ ∇f(AX) · AU.

Proof. For n ∈ N, let Zn := AXn and set Z = AX. Since Z ∈ Df , almost surely, we
conclude that

lim
n→∞

ε−1/2n (f(Zn)− f(Z)−∇f(Z)(Zn − Z)) = 0, in probability, (41)

Indeed, one has f(Zn) − f(Z) −∇f(Z)(Zn − Z) = Rn(Zn − Z) for appropriate random
variable Rn that converge in probability to zero since Zn − Z → 0, in probability, and f
is differentiable in Z. Further, for fixed ε > 0 we choose δ > 0 large and estimate

P(|ε−1/2n Rn(Zn − Z)| > ε) ≤ P(|Rn| > ε/δ) + P(|ε−1/2n (Zn − Z)| > δ).

The first summand converges to zero as n → ∞ and the second term can be made
uniformly arbitrarily small over n by choosing δ sufficiently large due to tightness of the
sequence (ε

−1/2
n (Zn−Z))n∈N. The equation (41) remains true when replacing Zn by Zn+1

and we conclude that

lim
n→∞

ε−1/2n (f(Zn+1)−∇f(Z)(Zn+1 − Zn)) = 0, in probability.

By Theorem 1.5 and the fact that A is continuous in PU -almost every point we conclude
that

(Y,Aε−1/2n (Xn+1 −Xn)) ⇒ (Y,AU) and, hence, ε−1/2n (Zn+1 − Zn)
stably
=⇒ AU,

by Lemma 5.2. Consequently, since ∇f(Z) is σ(Y )-measurable we get

(∇f(Z), ε−1/2n (Zn+1 − Zn)) ⇒ (∇f(Z), AU)

and the proof is finished by noticing that the scalar product is continuous.
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Analogously, Theorem 1.9 is a consequence of the following lemma.

Lemma 4.5. Under the assumptions of Theorem 1.9, one has

ε−1/2n

�
f
�

sup
s∈[0,T ]

Xn+1
s

�
− f

�
sup

s∈[0,T ]
Xn

s

��
⇒ f �(XS) · US,

where S denotes the time where X attains its maximum.

Proof. By Lemma 3.3 there exists s unique time S at which X attains its maximum and
by Lemma 3.4 one has

ε−1/2n

�
sup

s∈[0,T ]
Xn+1

s − sup
s∈[0,T ]

Xn
s

�
− Un,n+1

S → 0, in probability.

By Theorem 1.5 and Lemma 5.2, one has

(Y, S, Un,n+1) ⇒ (Y, S, U)

and the function [0, T ] × D(R) → R, (s, u) �→ us is continuous in PS,U -almost all (s, u)
since U is almost surely continuous in S by Lemma 3.3. Consequently,

(Y, Un,n+1
S ) ⇒ (Y, US) and, hence, ε−1/2n

�
sup

s∈[0,T ]
Xn+1

s − sup
s∈[0,T ]

Xn
s

�
stably
=⇒ US.

The rest follows as in the proof of Lemma 4.4.

4.3 Proof of Theorem 1.11

Proof of Theorem 1.11. 1st step: Denote by E = (Et)t∈[0,T ] the stochastic exponential of

(
� t

0
a�(Xs−) dYs)t∈[0,T ]. In particular, E does not hit zero with probability one, see for

instance [18, Thm. 1.4.61]. In the first step we show that E[UsUt|Y ] = Υ2 φs,t(Y ), where

φs,t(Y ) = σ4EsEt
� s

0

(aa�)(Xu−)2

E2u−
du+ σ2 lim

δ↓0
EsEt

�

u∈(0,s]:
|ΔYu|≥δ

(aa�)(Xu−)2 ΔY 2
u

(1 + a�(Xu−)ΔYu)2E2u−
(42)

and the limit is taken in ucp.

We define L̄ = (L̄t)t∈[0,T ] by

L̄t = σ2ΥBt + lim
δ↓0

�

s∈(0,t]:
|ΔYs|≥δ

1

1 + a�(Xs−)ΔYs
ΔLs

and note that the process is well defined since the denominator does not attain the value
zero by assumption. Using the product rule and independence of W and B it is straight
forward to verify that �

Et
� t

0

(aa�)(Xs−)

Es−
dL̄s

�
t∈[0,T ]
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solves the stochastic integral equation (11) and by strong uniqueness of the solution
equals U , almost surely. We write

Ut = σ2Υ Et
� t

0

(aa�)(Xs−)

Es−
dBs

� �� �
=:Zt

+ lim
δ↓0

Et
�

s∈(0,t]:
|ΔYs|≥δ

(aa�)(Xs−)

(1 + a�(Xs−)ΔYs)Es−
ΔLs

� �� �
Z

(δ)
t

and note that given Y the processes Z and Z(δ) are independent and have expectation
zero. Further, for 0 ≤ s ≤ t ≤ T one has

E[ZsZt|Y ] = EsEt
� s

0

(aa�)(Xu−)2

E2u−
du

and

E[Z(δ)
s Z

(δ)
t |Y ] = EsEt

�

u∈(0,s]:
|ΔYu|≥δ

(aa�)(Xu−)2 ΔY 2
u

(1 + a�(Xu−)ΔYu)2E2u−
E[σ2u].

One easily computes that E[σ2u] = σ2Υ2. Altogether, it follows the wanted statement.

2nd step: Let A = (A1, . . . , Ad) : D(R) → Rd be a linear map of integral type meaning
that there are finite signed measures µ1, . . . , µd on [0, T ] with

Ajx =

� T

0

xs dµj(s).

Then by conditional Fubini and step one,

Var[∇f(AX) · AU ] =
d�

i,j=1

E[∂if(AX)AiU ∂jf(AX)AjU ]

=
d�

i,j=1

E
�
∂if(AX) ∂jf(AX)E

��

[0,T ]2
UuUv dµi ⊗ µj(u, v)

���Y
��

= Υ2

d�

i,j=1

E
�
∂if(AX) ∂jf(AX)

�

[0,T ]2
φu,v(Y ) dµi ⊗ µj(u, v)

�
.

3rd step: The supremum dependent case follows by noticing that step one remains valid
when choosing s = t = S since S is σ(Y )-measurable.

5 Appendix

5.1 Stable and weak convergence

We briefly introduce the concept of stable convergence first appearing in Rényi [28].
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Definition 5.1. Let F0 denote a sub-σ-field of F . A sequence (Zn)n∈N of F0-measurable
random variables taking values in a Polish space E converges stably with respect to F0

to an E-valued F -measurable random variable Z, if for every A ∈ F0 and continuous and
bounded function f : E → R

lim
n→∞

E[1lA f(Zn)] = E[1lA f(Z)].

We briefly write Zn stably
=⇒ Z.

Stable convergence admits various equivalent definitions.

Theorem 5.2. Let (Zn) and Z be F0-measurable, resp. F-measurable, random variables
taking values in a Polish space E. The following statements are equivalent:

1. Zn
stably
=⇒ Z with respect to F0

2. for all bounded F0-measurable random variables U and all bounded and continuous
functions f : E → R one has

lim
n→∞

E[U f(Zn)] = E[U f(Z)]. (43)

If F0 = σ(Y ) for a random variable Y taking values in a Polish space E �, then stable
convergence is equivalent to weak convergence

(Y, Zn) ⇒ (Y, Z), in E × E �. (44)

Proof. The first equivalence is an immediate consequence of the fact that the set of F0-
measurable random variables U for which

lim
n→∞

E[U f(Zn)] = E[U f(Z)]

is true is linear and closed with respect to L1-norm. Further, (44) implies Zn
stably
=⇒ Z

since the L1-closure of random variables g(Y ) with g : E � → R bounded and continuous

contains all indicators 1lA with A ∈ F0. Conversely, assuming Zn
stably
=⇒ Z, the sequence

of random variables ((Y, Zn) : n ∈ N) is tight in the product topology and for any
g : E � → R bounded and continuous one has E[g(Y )f(Zn)] → E[g(Y )f(Z)] which implies
that (Y, Zn) ⇒ (Y, Z). The last statement is proved in complete analogy with the proof
of the corresponding statement for weak convergence.

As the latter theorem shows stable and weak convergence are intimately connected and
we will make use of results of Jacod and Protter [17] on weak convergence for stochastic
differential equations. For the statement we need the concept of uniform tightness.
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Definition 5.3. Let (Ft)t∈[0,T ] be a filtration and (Zn : n ∈ N) be a sequence of càdlàg
(Ft)-semi-martingales. For δ > 0 we represent each semi-martingale uniquely in the form

Zn
t = Zn

0 + An,δ
t +Mn,δ

t +
�

s≤t

ΔZn
s 1l{|ΔZn

s |>δ}, for t ∈ [0, T ],

where An,δ = (An,δ
t )t∈[0,T ] is a càdlàg predictable process of finite variation and M =

(Mn,δ
t )t∈[0,T ] is a càdlàg local martingale, both processes starting in zero. We say that

(Zn : n ∈ N) is uniformly tight, if the sequence,

�Mn,δ,Mn,δ�T +

� T

0

|dAn,δ
s |+

�

0≤s≤T

|ΔZn,i| 1l{|ΔZn,i
s |>δ}

is tight. The definition does not depend on the particular choice of δ. Multivariate
processes are called uniformly tight if each component is uniformly tight.

We cite [17, Thm. 2.3] which is a consequence of [23].

Theorem 5.4. Let Z,Z1, Z2, . . . be càdlàg one-dimensional semi-martingales and H be
a càdlàg one-dimensional adapted process. If

(i) (Zn : n ∈ N) is uniformly tight and

(ii) ((H,Zn) : n ∈ N) ⇒ (H,Z) in D(R2),

then �
H,Zn,

� ·

0

Hs−dZn
s : n ∈ N

�
⇒

�
H,Z,

� ·

0

Hs−dZs

�
, in D(R3).

We state a consequence of [23, Thm. 8.2].

Theorem 5.5. Let H,Z, Z1, Z2, . . . be as in the previous theorem. Further let Y be an
adapted càdlàg semi-martingale. We define Un := (Un

t )t∈[0,T ] and U := (Ut)t∈[0,T ] by,

Un
t = Zn

t +

� t

0

Un
s−Hs−dYs, Ut = Zt +

� t

0

Us−Hs−dYs, for t ∈ [0, T ].

If �
Zn,

� ·

0

Hs−dYs

�
⇒

�
Z,

� ·

0

Hs−dYs

�
, in D(R2),

then �
Zn,

� ·

0

Hs−dYs, U
n
�
⇒

�
Z,

� ·

0

Hs−dYs, U
�
, in D(R3).

The definition of uniform tightness and the two theorems above have natural extension to
the multivariate setting and we refer the reader to [23] for more details. Further results
about stable convergence of stochastic process can be found in [15] and [18].

A helpful lemma in the treatment of weak convergence is the following:
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Lemma 5.6. Let A,A1, A2, . . . be processes with trajectories in D(Rd).

1. Suppose that for every m ∈ N, Am, A1,m, A2,m, . . . are processes with trajectories in
D(Rd) such that

(a) ∀δ > 0: limm→∞ lim supn→∞ P(supt∈[0,T ] |An,m
t − An

t | > δ) = 0

(b) limm→∞ P(supt∈[0,T ] |Am
t − At| > δ) = 0.

Provided that one has convergence An,m ⇒ Am for every m ∈ N, it is also true that

An ⇒ A.

2. Suppose that B1, B2, . . . are processes with trajectories in D(Rd) such that for all
δ > 0

lim
n→∞

P( sup
t∈[0,T ]

|Bn
t − An

t | > δ) = 0.

Then one has weak convergence An ⇒ A if and only if Bn ⇒ A.

Proof. To prove weak convergence on D(Rd) it suffices to consider bounded and continuous
test functions f : D(Rd) → R that are additionally Lipschitz continuous with respect to
supremum norm. Using this it is elementary to verify statement 1) and statement 2) is
an immediate consequence of 1).

Remark 5.7. In general we call approximations Am, A1,m, A2,m, . . . with properties (a)
and (b) of part one of the lemma good approximations for A,A1, A2, . . . . Further, ap-
proximations B1, B2, . . . as in part two will be called asymptotically equivalent in ucp to
A1, A2, . . . .

5.2 Auxiliary estimates

We will make use of the following analogue of Lemma 5.6 for tightness.

Lemma 5.8. Let (An)n∈N and, for every m ∈ N, (A
(m)
n )n∈N be sequences of L2-integrable

random variables. If
lim
m→∞

lim sup
n→∞

E[|An − A(m)
n |2] = 0

and, for every m ∈ N, the sequence (A
(m)
n )n∈N is uniformly L2-integrable, then also the

sequence (An)n∈N is uniformly L2-integrable. In particular, if a real sequence (Bn)n∈N is
uniformly L2-integrable with

lim
n→∞

E[|Bn − An|2] = 0,

then (An)n∈N is uniformly L2-integrable.
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Proof. For η > 0 and n,m ∈ N, one has

E
�
|An|21l{|An|≥η}

�
≤ 2E

�
|An − A(m)

n |2
�
+ 2E

�
|A(m)

n |21l{|An|≥η}
�

≤ 2E
�
|An − A(m)

n |2
�
+ 2E

�
|A(m)

n |21l{|A(m)
n |≥η/2}

�

+ 2E
�
|A(m)

n |21l{|A(m)
n |<η/2,|An−A

(m)
n |≥η/2}

�

≤ 2E
�
|An − A(m)

n |2
�
+ 2E

�
|A(m)

n |21l{|A(m)
n |≥η/2}

�
+
η2

2
P(|An − A(m)

n | ≥ η/2)

≤ 4E
�
|An − A(m)

n |2
�
+ 2E

�
|A(m)

n |21l{|A(m)
n |≥η/2}

�
,

where we used Chebychew’s inequality in the last step. Let now ε > 0. By assumption we
can choosem sufficiently large such that for all large n, say for n ≥ n0, 4E

�
|An−A(m)

n |2
�
≤

ε/2. Further, by the uniform L2-integrability of (A
(m)
n )n∈N we can choose η large to ensure

that for all n ∈ N, 2E
�
|A(m)

n |21l{|A(m)
n |≥η/2}

�
≤ ε/2 so that E

�
|An|21l{|An|≥η}

�
≤ ε for n ≥ n0.

For n = 1, . . . , n0− 1 this estimate remains true for a sufficiently enlarged η, since finitely
many L2-integrable random variables are always uniformly L2-integrable.

Lemma 5.9. Let A1, A2, . . . be real random variables and let (εk)k∈N as (ML1) and L(δ)
and nk(δ) as in (13). Suppose that

1. Var(ε
−1/2
k−1 Ak) → ζ and

2. (ε
−1/2
k−1 Ak : k ∈ N) is L2-uniformly integrable.

Denote by (Ak,j : k, j ∈ N) independent random variables with L(Ak,j) = L(Ak). The

random variables (�Sδ : δ ∈ (0, 1)) given by

�Sδ :=

L(δ)�

k=1

1

nk(δ)

nk(δ)�

j=1

Ak,j

satisfy
δ−1(�Sδ − E[�Sδ]) ⇒ N (0, ζ).

Proof. Without loss of generality we can and will assume that the random variables
A1, A2, . . . have zero mean.

1st step: We first show that the variance of �Sδ converges. One has

Var(�Sδ) =

L(δ)�

k=1

1

nk(δ)
Var(Ak) =

L(δ)�

k=1

� δ2

L(δ)εk−1

�
εk−1

� �� �
=:ak,δ

Var(Ak)

εk−1
.

It is elementary to verify that
�L(δ)

k=1 (ak,δδ
−2−L(δ)−1) → 0 as δ ↓ 0. By the boundedness

of (Var(Ak)/εk−1)k∈N one has

���δ−2 Var(�Sδ)−
1

L(δ)

L(δ)�

k=1

Var(Ak)

εk−1

��� → 0
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and we get that limδ↓0 Var(δ−1 �Sδ) = ζ since the Césaro mean of a convergent sequence
converges to its limit.

2nd step: In view of the Lindeberg condition, see for instance [20, Thm. 5.12], it suffices
to verify that for arbitrarily fixed κ > 0 one has

Σ(δ) :=

L(δ)�

k=1

n
(δ)
k�

j=1

E
�� Ak,j

δn
(δ)
k

�2
1l{|Ak,j/(δn

(δ)
k )|>κ}

�
→ 0 as δ ↓ 0.

One has

Σ(δ) ≤ δ−2
L(δ)�

k=1

εk−1

n
(δ)
k

E
� A2

k

εk−1
1l
{ |Ak|√

εk−1
>

κδn
(δ)
k√

εk−1
}

�
.

We note that for k = 1, . . . , L(δ)

εk−1 ≥ εL(δ)−1 = TM−L(δ)+1 ≥ Tδ2,

where we used that α ≥ 1/2 in the previous step. Hence, for these k, one has δn
(δ)
k /

√
εk−1 ≥

δ−1
√
εk−1L(δ) ≥

√
TL(δ). Consequently,

Σ(δ) ≤ δ−2
L(δ)�

k=1

εk−1

n
(δ)
k

E
� A2

k

εk−1
1l{ |Ak|√

εk−1
>κ

√
TL(δ)}

�
.

By uniform L2-integrability of (Ak/
√
εk−1)k∈N and the fact that L(δ) → ∞ we get that

E
� A2

k

εk−1
1l{ |Ak|√

εk−1
>κ

√
TL(δ)}

�
≤ a(δ), for k = 1, . . . , L(δ),

with (aδ)δ∈(0,1) being positive reals with limδ↓0 aδ = 0. Hence, Σ(δ) ≤ aδδ
−2�L(δ)

k=1
εk−1

n
(δ)
k

and

we remark that the analysis of step one yields equally well that δ−2
�L(δ)

k=1
εk−1

n
(δ)
k

converges

to a finite limit.

5.3 Estimates for Lévy-driven SDEs

Lemma 5.10. Let (εn) and (hn) be positive decreasing sequences such that

sup
n∈N

ν(B(0, hn)
c) εn <∞.

One has

εn

��

B(0,hn)c
x ν(dx)

�2
→ 0, as n→ ∞. (45)
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Further, if the limit limn→∞ ν(B(0, hn))
c εn =: θ exists and is strictly positive, then

limn→∞ hn/
√
εn = 0. If additionally

�
x2 log2(1 + 1/x) ν(dx) <∞, then

lim
n→∞

�

B(0,hn)

x2 ν(dx) log2
�
1 +

1

εn

�
= 0 and lim

n→∞
h2n
εn

log2
�
1 +

1

εn

�
= 0. (46)

Proof. One has for fixed h > 0 for all n ∈ N that

εn

��

B(0,hn)c
x ν(dx)

�2
≤ 2εn

��

B(0,h)c
x ν(dx)

�2
+ 2εn

��

B(0,h)\B(0,hn)

x ν(dx)
�2

The first term on the right hand side tends to zero since εn tends to zero. Further, the
Cauchy-Schwarz inequality yields for the second term

εn

��

B(0,h)\B(0,hn)

x ν(dx)
�2

≤ εn ν(B(0, hn)
c)

�

B(0,h)

x2 ν(dx).

By assumption (εnν(B(0, hn)
c)) is uniformly bounded and by choosing h arbitrarily small

we can make the integral as small as we wish. This proves (45).

We assume that limn→∞ ν(B(0, hn))
c εn =: θ > 0. The second statement follows by noting

that

θ2
h2n
εn

∼ εnh
2
n ν(B(0, hn)

c)2 ≤ εn

��

B(0,hn)c
x ν(dx)

�2
→ 0.

The first estimate in (46) follows from
�

B(0,hn)

x2ν(dx) ≤
�

B(0,hn)

x2 log2
�
1 +

1

x

�
ν(dx)

� �� �
→0

(log(1 + 1/hn))
−2

and recalling that hn/
√
εn → 0. The second estimate in (46) follows in complete analogy

to the proof of (45).

Lemma 5.11. Let p ≥ 2 and suppose that E[|YT |p] < ∞. Then there exists a finite
constant κ such that for every predictable process H one has

E
�

sup
t∈[0,T ]

���
� t

0

Hs dYs

���
p�

≤ κ

� T

0

E[|Hs|p] ds.

If p = 2 one can choose κ = 2b2T + 8(σ2 +
�
x2 ν(dx)).

Proof. The proof is standard, see for instance [27, Thm. V.66]. The explicit constant in
the p = 2 case can be directly deduced with Doob’s L2-inequality and the Cauchy-Schwarz
inequality.

Lemma 5.12. Irrespective of the choice of the parameters (εn) and (hn), one has

sup
n∈N

E
�

sup
t∈[0,T ]

|Xn
t |2

�
<∞.

The proof of the lemma is standard and can be found for instance in [22, Lemma 8].
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5.4 Perturbation estimates for SDEs

In this section we collect perturbation estimates for solutions of stochastic differential
equations. For n,m ∈ N, we denote by Zn, Z̄n, Zn,m and Z̄n,m càdlàg semimartingales
and by Y a square integrable Lévy process all with respect to the same filtration. Further,
let Hn, Hn,m and H be càglàd adapted processes. We represent Y as in (2) and consider
as approximations the processes Y m = (Y m

t )t∈[0,T ] given by

Y m
t = bt+ σWt + lim

δ↓0

�

(0,t]×(Vm\B(0,δ))
x dΠ̄(s, x),

where V1, V2, . . . denote an increasing sequence of Borel sets with
�

m∈N Vm = R\{0}.
In the first part of the subsection we derive perturbation estimates for the processes
Un,m = (Un,m

t )t∈[0,T ] and Ūn,m = (Un,m
t )t∈[0,T ] given as solutions to

Un,m
t =

� t

0

Un,m
s− Hn,m

s dY m
s + Zn,m

t

and

Ūn,m
t =

� t

0

Ūn,m
s− Hn,m

s dYs + Z̄n,m
t .

Lemma 5.13. Suppose that

sup
t∈[0,T ]

|Hn,m
t | and E

�
sup

t∈[0,T ]

��Zn,m
t

��2
�

(47)

are uniformly bounded over all n,m ∈ N. Then

sup
n,m∈N

E
�

sup
t∈[0,T ]

��Un,m
t

��2
�
<∞.

Proof. Suppose that the expressions in (47) are bounded by κ1, denote by T a stopping
time and define zT (t) = E[sups∈[0,t∧T ] |Un,m

s |2] for t ∈ [0, T ]. By Lemma 5.11, there exists
a finite constant κ2 such that,

zT (t) ≤ 2κ2

� t

0

E
�
1l{s≤T }|Ūn,m

s− |2|Hn,m
s |2

�
ds+ 2E

�
sup
s∈[0,t]

��Zn,m
s

��2
�

≤ 2κ2κ
2
1

� t

0

zT (s) ds+ 2κ1.

We replace T by a localising sequence (Tk)k∈N of stopping times for which each zTk is finite
and conclude with Gronwall’s inequality that zTk is uniformly bounded over all k ∈ N and
n,m ∈ N. The result follows by monotone convergence.
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Lemma 5.14. Suppose that
sup

t∈[0,T ]
|Hn,m

t |

is uniformly bounded over all n,m and that Y m = Y for all m ∈ N or

sup
n,m∈N

E
�

sup
t∈[0,T ]

��Zn,m
t

��2] <∞.

If additionally

lim
m→∞

lim sup
n→∞

E
�

sup
t∈[0,T ]

|Zn,m
t − Z̄n,m

t |2
�
= 0, (48)

then,

lim
m→∞

lim sup
n→∞

E
�

sup
t∈[0,T ]

|Un,m
t − Ūn,m

t |2
�
→ 0, as n→ ∞.

Proof. We rewrite, for t ∈ [0, T ],

Un,m
t − Ūn,m

t =

� t

0

(Un,m
s− − Ūn,m

s− )Hn,m
s dYs −

� t

0

Un,m
s− Hn,m

s d(Y − Y m)s + Zn,m
t − Z̄n,m

t .

We fix n,m ∈ N and consider z(t) = E[sups∈[0,t] |Un,m
s −Ūn,m

s |2] for t ∈ [0, T ]. Further, de-
note by κ1 a uniform bound for supn,m∈N sup |Ht|n,m and, if applicable, for supn,m E[supt∈[0,T ] |Zn,m

t |2].
Using that (a1 + a2 + a3)

2 ≤ 3(a21 + a22 + a23) (a1, a2, a3 ∈ R) and Lemma 5.11, we get that

z(t) ≤ 3κ2κ
2
1

� t

0

z(s) ds+ 3E
�
sup
s∈[0,t]

���
� s

0

Un,m
s− Hn,m

u d(Y − Y m)u

���
2�

+ 3E
�
sup
s∈[0,t]

|Zn,m
s − Z̄n,m

s |2
�

with κ2 being uniformly bounded. In view of (48) the statement follows with Gronwall’s
inequality, once we showed that

lim
m→∞

lim sup
n→∞

E
�

sup
t∈[0,T ]

���
� t

0

Un,m
s− Hn,m

s d(Y − Y m)s

���
2�

= 0.

If Y = Y m this is trivially true. In the remaining case we can apply Lemma 5.13 due to
the uniform boundedness of E[supt∈[0,T ] |Zn,m

t |2] and conclude with Doob’s L2-inequality
and the martingale property of Y − Y m that

E
�

sup
t∈[0,T ]

���
� t

0

Un,m
s− Hn,m

s d(Y − Y m)s

���
2�

≤ 4

� T

0

E
�
|Un,m

s− |2|Hn,m
s |2

�
d�Y − Y m�s

≤ 4κ21κ3 T

�

V c
m

x2 ν(dx)

with κ3 denoting the constant appearing in Lemma 5.13. All constants do not depend on
n,m and the latter integral tends to 0 as m→ ∞.
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We denote by τ1, τ2, . . . adapted càdlàg processes with τn(t) ≤ t for all t ∈ [0, T ] and focus
on perturbation estimates for the processes Un = (Un

t )t∈[0,T ] and Ūn = (Ūn
t )t∈[0,T ] given as

solutions to

Un
t =

� t

0

Un
τn(s−)H

n
s dYs + Zn

t ,

and

Ūn
t =

� t

0

Ūn
τn(s−)Hs dYs + Z̄n

t .

Lemma 5.15. 1. (Stochastic convergence) If

a) τn(t) = t, for t ∈ [0, T ],

b) Zn − Z̄n → 0 and Hn −H → 0 in ucp, as n→ ∞, and

c) the sequences (supt∈[0,T ] |Zn
t | : n ∈ N) and (supt∈[0,T ] |Hn

t | : n ∈ N) are tight,

then,
Un − Ūn → 0 in ucp, as n→ ∞.

2. (Moment estimates) Let p ≥ 2. If

a) Y has Lévy measure ν satisfying
�
|x|p ν(dx) <∞, and

b) the expressions

sup
t∈[0,T ]

|Hn
t | and E

�
sup

t∈[0,T ]
|Zn

t |p
�

are uniformly bounded over n ∈ N,

then
sup
n∈N

E
�

sup
t∈[0,T ]

|Un
t |p

�
<∞.

Proof. 1.): Statement 1.) follows when combing Theorem 2.5 b) and Theorem 2.3 d)
in [17].

2.): Since
�
|x|p ν(dx) <∞ the process (Yt) has bounded pth moment and the statement

can be proved similarly as Lemma 5.13 by using Lemma 5.11 and Gronwall’s inequality.
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Driven Stochastic Differential Equations. Preprint 24, DFG-SPP 1324, August
2009.

[25] S. Dahlke, M. Fornasier, and T. Raasch. Multilevel Preconditioning for Adaptive
Sparse Optimization. Preprint 25, DFG-SPP 1324, August 2009.



[26] S. Dereich. Multilevel Monte Carlo Algorithms for Lévy-driven SDEs with Gaus-
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[67] E. Novak and H. Woźniakowski. On the Power of Function Values for the Ap-
proximation Problem in Various Settings. Preprint 67, DFG-SPP 1324, November
2010.
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