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QUADRATURE FOR SELF-AFFINE DISTRIBUTIONS ON Rd

STEFFEN DEREICH AND THOMAS MÜLLER-GRONBACH

Abstract. This article presents a systematic treatment of quadrature problems for self-similar

probability distributions. We introduce explicit deterministic and randomized algorithms and

study their errors for integrands of varying fractional smoothness of Hölder-Zymund type. Con-

versely, we derive lower bounds for worst case errors of arbitrary integration schemes that prove

optimality of our algorithms in many cases. In particular, we see that that the effective dimen-

sion of the quadrature problem for functions of smoothness q > 0 is given by the quantization

dimension of order q of the fractal measure.

1. Introduction

The analysis of fractal sets and measures was initiated and popularised by Mandelbrot in
the 1980s, see [Man82], and has enormously advanced since then. We refer the reader to [Fal97]
and [Fal] for a rigorous introduction to this field. However, despite the abundant mathematical
literature on this topic, the analysis of integration problems on fractals seems to have found
almost no attention up to now. We are only aware of the article [BBCR13], which studies
integration problems on string-generated Cantor sets motivated by empirical findings on the
structure of brain synapses, see [Cra13]. The aim of the present paper is therefore to provide
a first step towards a systematic treatment of quadrature problems with respect to fractal
probability measures for function classes of varying smoothness.
Let d ∈ N. The computational task is to compute an approximation to the integral

(1) I(f) =

�
f dP

for a self-similar probability distribution P on Rd and a function f : Rd → R by means of a
deterministic or a randomized algorithm that is based on finitely many evaluations of f . In the
present article we restrict attention to the case that P is self-similar with respect to a finite
number of affine contractions and that f satisfies a smoothness condition of Hölder-Zygmund
type.
To be more precise, we fixm ∈ N\{1} as well as a vector S = (S1, . . . , Sm) of affine contractions

Sj : Rd → Rd with respect to a norm � · � on Rd and a vector ρ = (ρ1, . . . , ρm) ∈ (0, 1)m that
satisfies ρ1 + · · ·+ ρm = 1. We assume that P is self-similar with respect to (S, ρ), i.e., P is the
unique probability measure on Rd that satisfies

P =

m�

j=1

ρj Sj(P ).

In particular, P has compact support K ⊂ Rd, where K is the unique nonempty compact set in
Rd satisfying

K =

m�

j=1

Sj(K).

1
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See, e.g., Hutchinson [Hut81] and Falconer [Fal] for these facts and further properties of self-
similar distributions.
Smoothness classes of integrands f are specified by an open set D ⊂ Rd with K ⊂ D and a

positive number q ∈ (0,∞). We put q∗ = �q� − 1 ∈ N0 and we consider the set Fq = Fq(D) of
all functions f : D → R that are q∗-times continuously differentiable and have finite semi-norm

�f�Fq = sup

� |f (α)(x)− f (α)(y)|
�x− y�q−q∗ : α ∈ Nd0 with |α|1 = q∗ and x, y ∈ D with x �= y

�
,

where |α|1 = α1 + · · · + αd. Note that for a bounded set D the spaces Fq are hierarchically
ordered with respect to the parameter q, i.e., Fq ⊂ Fq� for q� < q.
We study the worst case error of algorithms on the unit ball Fq1 in Fq and we use the worst

case average number of evaluations of integrands f ∈ Fq1 to define the cost of an algorithm. We
are interested in the construction of algorithms with an optimal relation of error and cost.
We briefly describe our results with a focus on error estimates. A crucial quantity in our

analysis is given by the unique solution β > 0 of the equation

(2) (ρ1r
q
1)

β
q+β + · · ·+ (ρmrqm)

β
q+β = 1,

where

rj = sup
x�=y

�Sj(x)− Sj(y)�
�x− y� ∈ (0, 1)

denotes the Lipschitz constant of the contraction Sj for j = 1, . . . ,m. If the affine contractions
S1, . . . , Sm are similarities and satisfy the open set condition, see (S1) and (S2) in Section 6, then
the parameter β equals the quantization dimension of order q in the context of the quantization
problem for the probability measure P , see [GL01], and it turns out that β can be interpreted
as the effective dimension for the present quadrature problem.
Based on divide and conquer strategies that are adapted to the structure of the self-similarity

of P we construct easy to implement deterministic composite quadrature rules I(n) that use n
evaluations of any integrand f and achieve errors

|I(f)− I(n)(f)| ≤ c �f�Fq n
− q

β

for every f ∈ Fq, where c > 0 is a constant that neither depends on f nor on n, see Theorem 1.
We add that the actual computational cost of the method I(n) is proportional to n.
Employing variance reduction based on appropriate control variates we obtain randomized

composite quadrature rules �I(n) that use n evaluations of any integrand f and achieve errors

E[(I(f)− �I(n)(f))2]1/2 ≤ c �f�Fq n
−( q

β
+ 1

2
)

for every f ∈ Fq, where c > 0 is a constant that neither depends on f nor on n, see Theorem 2.
The algorithms �I(n) use sampling from the self-similar distribution P , which is not feasible in
general. We therefore provide a modified version Ī(n) of �I(n) that uses n evaluations of any inte-
grand f and satisfies the same error estimate as �I(n) but employs only the uniform distribution
on finite sets, see Theorem 3. The actual computational cost of Ī(n) is proportional to n log(n),
see Remark 8.
If the affine transformations S1, . . . , Sm are similarities and satisfy the open set condition

then the deterministic algorithms I(n) and the randomized algorithms �I(n) and Ī(n) are worst
case optimal in the following sense. There exists a constant c > 0 such that for any sequence of
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deterministic algorithms In with cost(In) ≤ n one has

sup
f∈Fq

1

|I(f)− In(f)| ≥ c n
− q

β

for all n ∈ N, and the same result with n
− q

β replaced by n
−( q

β
+ 1

2
)
is valid for sequences of

randomized algorithms, see Proposition 9.
If additionally ρ1 = · · · = ρm and r1 = · · · = rm then β equals the Hausdorff dimension of

the support K of P . In particular, one recovers the classical results for quadrature with respect
to the uniform distribution on the unit cube of Rd, see [Nov88]. We add that for many linear
problems with isotropic smoothness conditions the optimal order of convergence is determined
by the ratio of the smoothness and the dimension, see [Rit00, NW08, NW10, NW12] for an
overview and further references.
It will be convenient to formulate and prove our results in terms of semi-norms that are

slightly different from the semi-norm � · �Fq . Let Gq = Gq(D) and Hq = Hq(D) consist of all
functions f : D → R that are q∗-times continuously differentiable and have finite semi-norm

�f�Gq = sup

� |Dq∗v f(x)−Dq
∗
v f(y)|

�x− y�q−q∗ : v ∈ Rd with �v� = 1 and x, y ∈ D with x �= y

�

and

�f�Hq = sup

� |Dq∗x−yf(x)−Dq
∗
x−yf(y)|

�x− y�q : x, y ∈ D with x �= y

�
,

respectively, where Dq
∗
v f denotes the q∗-th directional derivative of f along v ∈ Rd. The corre-

sponding unit balls are denoted by Gq1 and Hq
1. We have

(3) �f�Hq ≤ �f�Gq ≤ �f�Fq sup{|v|q∗1 : v ∈ Rd, �v� = 1}
and

(4) �f�Fq ≤ �f�Gq sup{�v�q∗ : v ∈ Rd, |v|2 = 1},
where |v|p denotes the p-norm of v ∈ Rd for p = 1, 2. In particular, Fq = Gq ⊂ Hq. We add that
the inequalities in (3) are straightforward to show while inequality (4) is a consequence of the
fact that the polarization constant of a Hilbert space equals one. See, e.g., [Din99, Proposition
1.44] for a proof of the latter fact.
Throughout the following we restrict attention to the case D = Rd in order to avoid tech-

nicalities and simplify notation. The reader can easily verify that the algorithms I(n), �I(n),
Ī(n) constructed in Sections 4 and 5 are well-defined and satisfy the corresponding stated error
bounds also in the case D � Rd for sufficiently large indices n, see also Remark 1 for the details
in the case of the deterministic algorithms I(n). The worst case errors shrink with increasing D,
so that our lower bounds for D = Rd, see Proposition 9, immediately carry over to the general
case D ⊂ Rd.
We briefly outline the content of the paper. In Section 2 we collect some basic notation and

definitions. In Section 3 we introduce the notion of a cutset and motivate its crucial role for
the quadrature problem. Sections 4 and 5 are devoted to the construction and error analysis
of deterministic and randomized composite quadrature rules, respectively. Lower error bounds
that hold for arbitrary methods based on finitely many function evaluations are presented in
Section 6. The Appendix contains recursion formulas for the moments of a self-affine probability
measure.
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2. Preliminaries

We use #A to denote the cardinality of a set A. The identity mapping on A is denoted by
idA. Furthermore, cl(A) means the closure of a set A ⊂ Rd and

B(x,R) = {y ∈ Rd : �y − x� < R}, B(x,R) = {y ∈ Rd : �y − x� ≤ R}
denote the open and the closed ball in Rd with center x ∈ Rd and radius R ≥ 0, respectively.
The transpose of a x ∈ Rd and V ∈ Rd×d are denoted by xT and V T, respectively. Furthermore,

for a multi-index α ∈ Nd0 we put

xα = xα1
1 · · ·xαd

d , α! = α1! · · ·αd!.
For q > 0 we put q∗ = �q� − 1 as in the introduction, and we define the fractional factorial of

q by

q! = q(q − 1) · (q − q∗ + 1).

Let µ be a signed measure on the Borel sets of Rd. Then supp(µ) and |µ| denote the support
and the total variation of µ, respectively, and by �µ�TV we mean the total variation norm of µ.
If µ has compact support then

rad(µ) = inf{R ≥ 0: ∃x ∈ Rd : supp(µ) ⊂ B(x,R)} ∈ [0,∞)
is called the effective radius of µ. It is easy to see that the infimum is attained, i.e., there exists
x ∈ Rd such that

supp(µ) ⊂ B(x, rad(µ)).

The uniform distribution on a finite, non-empty set A is denoted by UA.
Finally, Pk denotes the class of polynomials p : Rd → R of order at most k ∈ N0.

3. Cutsets and Self-Similarity

Consider the set

T = {λ} ∪
∞�

�=1

{1, . . . ,m}�

of all words over the alphabet {1, . . . ,m} with λ denoting the empty word. We interpret T as
a complete m-ary tree with root λ and we use this structure to encode the self-similarity of the
probability measure P .
Let j = (j1, . . . , j�) ∈ T \{λ}. We use

j− =

�
(j1, . . . , j�−1), if � ≥ 2,
λ, if � = 1,

to denote the father of j and

|j| = �

to denote the level of j. We define

Sj = Sj1 ◦ · · · ◦ Sj�
and we put

xj = xj1 · · ·xj�
for any vector x = (x1, . . . , xm) ∈ Rm. Thus, Sj is an affine contraction with respect to the norm
� · � and the Lipschitz constant of Sj is bounded from above by

rj = rj1 · · · rj� .
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Furthermore, we put

|λ| = 0, Sλ = idRd , xλ = 1,

where x is any vector of real numbers. Finally, for any signed measure µ on the Borel sets of Rd
and any vertex j ∈ T we use

µj = Sj(µ)

to denote the image of µj with respect to Sj.
We turn to the notion of a cutset in the rooted tree T , which will serve as a crucial tool for

the construction of good quadrature rules. A finite subset C ⊂ T is called a cutset or tight, if
C = {λ} or if for any sequence (jk)k∈N ∈ {1, . . . ,m}N there exists a unique � ∈ N such that

(j1, . . . , j�) ∈ C,
see [Hut81]. In other words, any self-avoiding path in T from the root to infinity meets a cutset
C in exactly one vertex of C.
Proposition 1. Let C ⊂ T be a cutset. Then

P =
�

j∈C
ρj Pj.

Proposition 1 naturally leads to a divide and conquer strategy for the construction of quad-
rature rules. Roughly speaking, a cutset C divides the quadrature problem for P into #C sub-
problems specified by the weighted probability measures ρj Pj with j ∈ C. With increasing level
|j| the diameter of the support Sj(K) of Pj shrinks and, consequently, the quality of a Taylor
approximation of an integrand f on Sj(K) improves.

Proof of Proposition 1. We prove the proposition by induction over the cardinality of the cutset.
Clearly, #C = 1 implies C = {λ}, in which case the statement is trivial. Next, let n ∈ N and
suppose that the statement is true for any cutset with cardinality less than or equal to n. Let C
be a cutset of cardinality n+ 1. Pick a vertex j∗ = (j∗1 , . . . , j

∗
�∗) ∈ C with

�∗ = max
j∈C

|j|.

Then (j∗1 , . . . , j
∗
k) �∈ C for k = 1, . . . , �∗ − 1 and therefore

(5) (j∗−, 1), . . . , (j
∗
−,m) ∈ C

since otherwise one of the paths (j∗1 , . . . , j
∗
�∗−1, j, j, . . . ) with j ∈ {1, . . . ,m} would not meet the

cutset C. Put
C� = C\{(j∗−, 1), . . . , (j∗−,m)} ∪ {j∗−}

Then C� is a cutset since for all paths to infinity it is equivalent to hit one of the vertices
(j∗−, 1), . . . , (j

∗
−,m) or the vertex j

∗
−. Furthermore, #C� ≤ n, due to (5) and m ≥ 2.

By self-similarity of P with respect to (S, ρ) we have
m�

j=1

ρj P(j∗−,j)(A) =

m�

j=1

ρj Pj(S
−1
j∗−
(A)) = P (S−1

j∗−
(A)) = Pj∗−(A)

for all Borel sets A ⊂ Rd and, consequently,

P =
�

j∈C�
ρj Pj =

�

j∈C�\{j∗−}
ρj Pj + ρj∗−

m�

j=1

ρj P(j∗−,j) =
�

j∈C
ρj Pj,

which completes the proof. �
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4. Deterministic Composite Quadrature Rules

In this section we introduce and analyse deterministic quadrature formulas for the class
Hq = Hq(Rd). For a signed measure Q on Rd with finite support we define a corresponding
deterministic quadrature rule IQ : Hq → R by

IQ(f) =

�
f dQ.

and we call Q and IQ exact of order q∗ if

IQ(p) = I(p)

for every p ∈ Pq∗ .
We estimate the worst case error

eQ = sup
f∈Hq

1

|I(f)− IQ(f)|

of IQ on the unit ball Hq
1 in terms of the effective radius and the total variation norm of P −Q.

Proposition 2. If Q is exact of order q∗ then

eQ ≤ �P −Q�TV
(rad(P −Q))q

q!
.

Otherwise, eQ =∞.

Proof. Since Pq∗ is a linear subspace of Hq
1 the worst case error of IQ on Hq

1 is infinite if Q is
not exact of order q∗. Assume now that Q is exact of order q∗. Put R = rad(P −Q) and choose
x0 ∈ Rd such that supp(P − Q) ⊂ B(x0, R). Let f ∈ Hq and consider the q∗-th order Taylor-
polynomial p of f at x0. Let x ∈ B(x0, R)\{x0}. In order to obtain an estimate for f(x)− p(x),
we consider the function

h : [0, 1]→ R, t �→ f(x0 + (x− x0)t)− p(x0 + (x− x0)t).

Clearly,

h(k)(t) = Dkx−x0f(x0 + (x− x0)t)−Dkx−x0f(x0)

and, in particular, h(k)(0) = 0 for k = 0, . . . , q∗. Moreover,

|h(q∗)(t)| = t−q
∗ |Dq∗t(x−x0)f(x0 + (x− x0)t)−Dq

∗

t(x−x0)f(x0)| ≤ tq−q
∗ �x− x0�q �f�Hq .

Hence

|h(q∗−1)(t)| =
����
� t

0
h(q

∗)(s) ds

���� ≤
1

1 + q − q∗
t1+q−q

∗
Rq �f�Hq .

Iterating this argument we obtain

|h(t)| ≤ 1
q!
tqRq �f�Hq ,

which implies

|f(x)− p(x)| ≤ Rq

q!
�f�Hq .

Thus ����
�

f dP −
�

f dQ

���� =
����
�
(f − p) d(P −Q)

���� ≤ �P −Q�TV
Rq

q!
�f�Hq

as claimed. �
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For a signed measure Q on Rd with finite support and a cutset C ⊂ T we consider the signed
measure

QC =
�

j∈C
ρjQj,

which leads to the deterministic composite quadrature rule IQC : Hq → R given by

IQC(f) =

�
f dQC =

�

j∈C
ρj

�
f dQj.

We provide an estimate of the error of IQC , which seperates the effects of the choice of Q and
the choice of the cutset C.
Proposition 3. For every f ∈ Hq we have

|I(f)− IQC(f)| ≤ eQ �f�Hq

�

j∈C
ρj r

q
j .

Proof. By Proposition 1,

I(f)− IQC(f) =
�

j∈C
ρj

��
f dPj −

�
f dQj

�
.

Let j ∈ T . Since Sj is affine there exist A ∈ Rd×d and b ∈ Rd such that Sj(x) = Ax + b and

�Ax� ≤ rj �x� for every x ∈ Rd. In particular, we have f ◦ Sj ∈ Cq
∗
(Rd) and therefore

����
�

f dPj −
�

f dQj

���� =
����
�

f ◦ Sj dP −
�

f ◦ Sj dQ

���� ≤ �f ◦ Sj�Hq e(Q).

Let x, y ∈ Rd with x �= y and put v = x− y and u = Sj(x)− Sj(y). Then

Dq
∗
v (f ◦ Sj) =

�
Dq

∗
u f

�
◦ Sj.

Hence

|Dq∗v (f ◦ Sj)(x)−Dq
∗
v (f ◦ Sj)(y)| ≤ �Sj(x)− Sj(y)�q �f�Hq ≤ rqj �x− y�q �f�Hq .

We conclude that

(6) �f ◦ Sj�Hq ≤ rqj �f�Hq ,

which finishes the proof. �

The error estimate from Proposition 3 suggests to consider cutsets C such that all of the terms
ρjr

q
j with j ∈ C are approximately of the same size. To this end we put

sj = ρjr
q
j

for j ∈ {1, . . . ,m} and we define cutsets C(T ) for T ≥ 1 by
(7) C(T ) = {j ∈ T \{λ} : 1/T ≤ sj− and sj < 1/T}.
Recall the definition (2) of the effective dimension β > 0 and put

(8) θ =
β

β + q
.

Thus, θ ∈ (0, 1) is the unique positive number that satisfies
(9) sθ1 + · · ·+ sθm = 1.
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The following result states that the size of the cutsets C(T ) essentially behaves like T θ. Put

smin = min
j=1,...,m

sj , smax = max
j=1,...,m

sj .

Proposition 4. For every T ≥ 1 we have

T θ < #C(T ) ≤ s−θmin T
θ.

Proof. Put C(T ) = {λ} for T ∈ (0, 1). The proof of the proposition is based on the recursion

(10) ∀T ≥ 1: #C(T ) =
m�

k=1

#C(skT ).

For a proof of (10) let T ≥ 1 and put

Ck(T ) = {j ∈ C(T ) : j1 = k}

for k = 1, . . . ,m. Clearly,

C(T ) =
m�

k=1

Ck(T )

and Ck̃(T ) ∩ Ck(T ) = ∅ if k �= k̃. Moreover, it is easy to check that j �→ (k, j) defines a bijection
from C(skT ) to Ck(T ), and therefore

#C(T ) =
m�

k=1

#Ck(T ) =
m�

k=1

#C(skT ).

We prove by induction that

(11) ∀T ∈ [smin, s−nmax) : T θ < #C(T ) ≤ s−θmin T
θ

for every n ∈ N0, which clearly implies the statement of the proposition.
For n = 0 and T ∈ [smin, s−nmax) = [smin, 1) we have

T θ < 1 = #C(T ) ≤ (s−1minT )θ

as claimed. Next, assume that (11) holds for some n ∈ N0 and let T ∈ [s−nmax, s−n−1max ). Then
skT ∈ [smin, s−nmax) for all k ∈ {1, . . . ,m} and by (9) and (11) we obtain

T θ =

m�

k=1

(skT )
θ <

m�

k=1

#C(skT ) ≤
m�

k=1

s−θmin (skT )
θ = s−θmin T

θ.

Apply (10) to complete the proof of the induction step. �

We turn to the analysis of the quadrature rules IQC(T ) .

Proposition 5. Let Q be exact of order q∗ and T ≥ 1. The quadrature rule IQC(T ) uses

#supp(QC(T )) ≤ #supp(Q) s−θmin T θ

function evaluations and satisfies for every f ∈ Hq,

|I(f)− IQC(T )(f)| ≤ �P −Q�TV
(rad(P −Q))q

q!
s−θmin �f�Hq T−(1−θ).
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Proof. By Proposition 4,

# supp(QC(T )) ≤ #C(T )# supp(Q) ≤ #supp(Q) s−θmin T θ.
By Proposition 2 and Proposition 3,

|I(f)− IQC(T )(f)| ≤ �P −Q�TV
(rad(P −Q))q

q!
�f�Hq

�

j∈C(T )
sj.

By the definition of C(T ) and Proposition 4,
�

j∈C(T )
sj < T−1#C(T ) ≤ s−θmin T

−(1−θ),

which completes the proof. �

Put

Tn = max
�
1, smin (# supp(Q))

−1/θ n1/θ
�

and define

I
(n)
Q = IQC(Tn)

for every n ∈ N. The following error estimate is an immediate consequence of Proposition 5.

Theorem 1. Let Q be exact of order q∗. For every n ∈ N with n ≥ #supp(Q) s−θmin the quadrature
rule I

(n)
Q uses at most n function evaluations and satisfies for all f ∈ Hq,

|I(f)− I
(n)
Q (f)| ≤ �P −Q�TV

(rad(P −Q))q

q!
s−1min (# supp(Q))

q/β �f�Hq n−q/β .

Let us now explain how the arguments have to be changed in order to cover the quadrature
problem on general domains D.
Remark 1. In order to obtain error estimates on a general domain D one chooses a ball B that
contains the support of P −Q and defines

eQ = sup
f∈Hq

1(B)

|I(f)− IQ(f)|.

Proposition 2 remains true as is and Proposition 3 remains true for f ∈ Hq(D) provided that
�

j∈C
Sj(B) ⊂ D.(12)

Consequently, Theorem 1 is also true for f ∈ Hq(D), if (12) is fulfilled for the corresponding
cutsets. This is always the case for sufficiently large n since Sj(B) �⊂ D holds only for a finite
number of j ∈ T . Indeed, this follows from the estimate

d(Sj(B),K) := sup
x∈Sj(B)

min
y∈K

�x− y� ≤ rj d(B,K) (j ∈ T )

and the fact that there is a ε > 0 such that K +B(0, ε) ⊂ D due to compactness of K.

Remark 2. If Q is exact of order q∗ then, by Theorem 1 and (3), the worst case errors of I(n)Q

on Gq1 and Fq1 converge to zero as n → ∞ at least with order q/β in terms of the number of func-
tion evaluations. In Section 6 we show that this order of convergence is optimal within the class
of all deterministic algorithms based on finitely many function evaluations if the contractions
S1, . . . , Sm are similarities and satisfy the open set condition, see Proposition 9 and Theorem 4.
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Remark 3. Assume that

r1 = · · · = rm = r, ρ1 = · · · = ρm = 1/m.

Then s1 = · · · = sm = rq/m and the cutsets C(T ) are given by
C(T ) = {j ∈ T : |j| = �ln(T )/(ln(m) + q ln(1/r))�+ 1}.

Moreover,

β =
ln(m)

ln(1/r)
, θ =

ln(m)

ln(m/rq)
.

Assume that � · � = | · |2 and S1, . . . , Sm are similarities, see (S1) in Section 6. Then β equals
the similarity dimension of S since

m�

j=1

rβj = mrβ = 1.

If, additionally, S1, . . . , Sm satisfy the open set condition, see (S2) in Section 6, then β coincides
with the Hausdorff dimension of supp(P ). See [Hut81] for these facts.
In the particular case of the classical quadrature problem for the uniform distribution on the

unit cube [0, 1]d we have

m = 2d, r = 1/2, β = d,

and I
(n)
Q is a classical composite quadrature rule with the well-known order of convergence q/d.

Remark 4. By a result of Tchakaloff there exists a probability measure Q on Rd, which is exact
of order q∗ and satisfies

(13) supp(Q) ⊂ supp(P ), #supp(Q) ≤
�
d+ q∗

d

�
,

see [Tch57, BT06]. In particular, rad(P −Q) = rad(P ) and �P −Q�TV = 2 can be used for the
error estimates in Proposition 5 and Theorem 1 for this choice of Q.
Explicit constructions of signed measures Q with finite support that are exact of order q∗ can

be obtained, e.g., by polynomial interpolation methods, see Section 5, since the moments
�

xα dP (x), α ∈ Nd0,

of the self-affine measure P can easily be computed in a recursive way, see Proposition 10 in the
appendix.
For example, if d = 1 and # supp(P ) = ∞ then Gauss-Christoffel quadrature rules can be

determined by using orthonormal polynomials with respect to P , see, e.g., [MM08]. If q∗ ∈ 2N−1
we obtain a probability measure Q that is exact of order q∗ and satisfies

supp(Q) ⊂ Co(supp(P )), #supp(Q) = (q∗ + 1)/2,
where Co(A) denotes the convex hull of a set A ⊂ R. In particular, rad(P −Q) = rad(P ). Thus,

by Theorem 1 the corresponding composite Gauss-Christoffel quadrature rules I
(n)
Q satisfy for

all f ∈ Hq and n ≥ m(q∗ + 1)/2,

(14) |I(f)− I
(n)
Q (f)| ≤ 2

(rad(P ))q

q!

�
q∗ + 1
2

�q/β m
rq

�f�Hq n−q/β .
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Example 1. Consider a generalized Cantor distribution P on R, i.e.,

d = 1, m = 2, ρ1 = ρ2 = 1/2

and

S1(x) = rx, S2(x) = (1− r) + rx

for x ∈ R, where r ∈ (0, 1/2). Then

rad(P ) = 1/2, β =
ln(2)

ln(1/r)
.

Let q∗ ∈ 2N − 1. Then the corresponding composite Gauss-Christoffel quadrature rules satisfy
for all f ∈ Hq and n ≥ q∗ + 1,

|I(f)− I
(n)
Q (f)| ≤

4(q∗ + 1)q ln(1/r)/ ln(2)

q! 2q
�f�Hq n−q ln(1/r)/ ln(2),

see (14).
Consider the classical case r = 1/3. Then the moments

νk =

�
xk dP, k ∈ N0,

satisfy the recursive relation

νk =
2k−1

3k − 1
k−1�

i=0

�
k

i

�
2−i νi

for k ∈ N, see Remark 9 in the appendix. We determine the Gauss-Christoffel quadrature rule
IQ for q

∗ = 3. We have
ν0 = 1, ν1 = 1/2, ν2 = 3/8, ν3 = 5/16

and the first three orthonormal polynomials with respect to the Cantor distribution P are given
by p0 = 1 and

p1(x) =
√
8(x− 1/2), p2(x) =

√
160(x2 − x+ 1/8)

for x ∈ R. The support of Q is given by the zeros of p2, i.e.,

supp(Q) = {1/2−
�
1/8, 1/2 +

�
1/8},

and the corresponding weights are 1/2 each. Thus

Q =
1

2
δ
1/2−

√
1/8
+
1

2
δ
1/2+

√
1/8

.

Clearly, supp(Q) �⊂ supp(P ). A probability measure Q that is exact of order 3 and satisfies
supp(Q) ⊂ supp(P ) is, e.g., given by

Q =
63

288
(δ0 + δ1) +

81

288
(δ1/3 + δ2/3).

Example 2. We consider a self-affine distribution on the Koch curve. Thus

d = 2, � · � = | · |2, m = 4,
and the affine contractions S1, . . . , S4 are given by

Sj(x) = Ajx+ bj

with

A1 = A2 =
1

3

�
1 0
0 1

�
, A3 = AT

4 =
1

6

�
1 −

√
3√

3 1

�
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and

b1 =

�
0
0

�
, b2 =

�
2/3
0

�
, b3 =

�
1/3
0

�
, b4 =

�
1/2√
3/6

�
.

In particular,

r1 = r2 = r3 = r4 = 1/3.

Take

ρ1 = ρ2 = ρ3 = ρ4 = 1/4

and consider the probability measure P that is self-similar with respect (ρ, S). Using Proposi-
tion 10 in the appendix we obtain

�
xα dP (x) =





1/2, if α = (1, 0),√
3/18, if α = (0, 1),

19/60, if α = (2, 0),

1/60, if α = (0, 2),√
3/36, if α = (1, 1).

Define a probability measure Q on R2 by

Q =
6�

i=1

wi δxi

with

xi =





(1/6,
√
3/18), if i = 1,

(1/3, 0), if i = 2,

(1/3,
√
3/9), if i = 3,

(2/3,
√
3/9), if i = 4,

(5/6,
√
3/18), if i = 5,

(1, 0), if i = 6,

wi =





1/10, if i = 1,

3/10, if i = 2,

2/10, if i = 3,

2/10, if i = 4,

1/10, if i = 5,

1/10, if i = 6.

Then supp(Q) ⊂ supp(P ) and it is easy to check that
�

xα dQ(x) =

�
xα dP (x)

for all α ∈ N2
0 with |α|1 ≤ 2. Thus Q is exact of order 2 and satisfies (13).

We have

rad(P ) = 1/2, β =
ln(4)

ln(3)
, smin = 3

−3/4,

and therefore

|I(f)− I
(n)
Q (f)| ≤ 8

(3/2)q

q!
6q ln(3)/ ln(4) �f�Hq n−q ln(3)/ ln(4)

for all n ≥ 24 and f ∈ Hq with 2 < q ≤ 3, see Theorem 1 and Remarks 3 and 4.
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5. Randomized Composite Quadrature Formulas

We combine the cutset technique from the previous section with a variance reduction approach
to construct randomized quadrature rules.
Let q > 0 and consider a set X ⊂ Rd of cardinality

#X = dim(Pq∗) =
�
q∗ + d

d

�

such that the Lagrange interpolation problem with respect to X is poised in Pq∗ , i.e., for every
function f : Rd → R there exists a unique polynomial

fX ∈ Pq∗
such that for all x ∈ X,

f(x) = fX(x).

Let
{px : x ∈ X} ⊂ Pq∗

denote the corresponding basis of Pq∗ of Lagrange polynomials, i.e.,
fX =

�

x∈X
f(x) px

for every function f : Rd → R. Then

QX =
�

x∈X

��
px dP

�
δx

is a signed measure on the Borel sets of Rd, which satisfies

(15)

�
fX dP =

�
f dQX

for every function f : Rd → R. In particular, QX is exact of order q
∗.

Consider a cutset C ⊂ T and let N ∈ N. Take independent random variables

J1, . . . ,JN , X1, . . . , XN

such that for k = 1, . . . , N ,
Jk ∼ UC , Xk ∼ P,

and define a corresponding randomized composite quadrature rule �IX,C,N by

�IX,C,N (f) = IQC
X
(f) +

#C
N

N�

k=1

ρJk

�
f ◦ SJk

− (f ◦ SJk
)X
�
(Xk)

for f ∈ Hq.

Remark 5. We briefly comment on the construction of �IX,C,N . For f ∈ Hq we have

(16) I(f) = #C
�

C

�

Rd

ρj (f ◦ Sj)(x) dP (x) dUC(j)

by Proposition 1. Furthermore,

(17) IQC
X
(f) = #C

�

C

�

Rd

ρj (f ◦ Sj)X(x) dP (x) dUC(j),

due to (15), such that �IX,C,N is obtained by variance reduction based on the control variate
(j, x) �→ ρj (f ◦ Sj)X(x).



14 QUADRATURE FOR SELF-AFFINE DISTRIBUTIONS ON RD

For the analysis of the mean squared error of �IX,C,N we use

e(X) = sup
f∈Hq

1

��
(f(x)− fX(x))

2 dP

�1/2

to denote the worst case mean squared error of Lagrange interpolation in Pq based on the set
of nodes X for the unit ball Hq

1 in Hq with respect to P .

Proposition 6. For every cutset C and every N ∈ N the randomized quadrature rule �IX,C,N is
unbiased and satisfies for f ∈ Hq,

�
E(I(f)− �IX,C,N (f))2

�1/2 ≤ e(X) �f�Hq

�
#C
N

�

j∈C
s2j

�1/2

.

Proof. Clearly,

E(�IX,C,N (f)) = IQC
X
(f) + #C E

�
ρJ1 (f ◦ SJ1 − (f ◦ SJ1)X)(X1)

�
,

and by (16) and (17) we have

#C E
�
ρJ1(f ◦ SJ1)(X1)

�
−#C E

�
ρJ1 (f ◦ SJ1)X (X1)

�
= I(f)− IQC

X
(f),

which shows the unbiasedness of �IX,C,N .
It remains to estimate the variance of �IX,C,N . Clearly,

Var(�IX,C,N (f)) ≤
(#C)2
N

E
�
ρJ1 (f ◦ SJ1 − (f ◦ SJ1)X)(X1)

�2
.

Using the independence of J1 and X1 as well as (6) we obtain

E
�
ρJ1 (f ◦ SJ1 − (f ◦ SJ1)X)(X1)

�2
=
1

#C
�

j∈C
ρ2j E

�
(f ◦ Sj − (f ◦ Sj)X)(X1)

�2

≤ 1

#C
�

j∈C
ρ2j �f ◦ Sj�2Hq e2(X) ≤ e2(X)

#C �f�2Hq

�

j∈C
ρ2j r

2q
j ,

which completes the proof. �
Now we consider the particular choice of cutsets C = C(T ), see (7). Recall the definition (8)

of the parameter θ ∈ (0, 1).

Proposition 7. Let T ≥ 1 and N ∈ N. The randomized quadrature rule �IX,C(T ),N uses at most

#supp
�
Q

C(T )
X

�
+N ≤

�
q∗ + d

d

�
s−θmin T

θ +N

function evaluations and satisfies for every f ∈ Hq,
�
E(I(f)− �IX,C(T ),N (f))2

�1/2 ≤ e(X) s−θminN
−1/2 T−(1−θ).

Proof. By Proposition 4,

# supp(Q
C(T )
X ) ≤ #C(T ) supp(QX) ≤ s−θmin T

θ#X.

Furthermore, by the definition of C(T ) and by Proposition 4,
(18) #C(T )

�

j∈C(T )
s2j < (#C(T ))2 T−2 ≤ s−2θmin T

−(2−2θ).

Now apply Proposition 6 to obtain the error estimate, which completes the proof. �
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We adjust the parameter T to the number N of Monte Carlo repetitions by taking

T (N) = max

�
1, smin

�
q∗ + d

d

�−1/θ
N1/θ

�

and we put
�I(n)X = �IX,C(T (n/2)),�n/2�

for every n ∈ N with n ≥ 2.
Using Proposition 7 we immediately obtain the following result.

Theorem 2. For every n ∈ N with n ≥ 2s−θmin

�
q∗+d
d

�
the randomized quadrature rule �I(n)X uses

at most n function evaluations and satisfies for every f ∈ Hq,

�
E(I(f)− �I(n)X (f))

2
�1/2 ≤ 2q/β+1/2

�
q∗ + d

d

�q/β
e(X) s−1min �f�Hq n−(q/β+1/2).

Remark 6. Due to Theorem 2 the worst case errors of �I(n)X on the unit balls Gq1 and Fq1
converge to zero as n → ∞ with order at least q/β + 1/2 in terms of the number of function
evaluations. In Section 6 we show that this order of convergence is optimal within the class
of all randomized algorithms based on finitely many function evaluations if the contractions
S1, . . . , Sm are similarities and satisfy the open set condition, see Proposition 9 and Theorem 4.
As for the classical quadrature problem on the d-dimensional unit cube, we gain a power of 1/2
compared with the best possible order of convergence q/β for deterministic methods.

Remark 7. We provide an estimate of the quantity e(X) in terms of the Lagrange polynomials
px, x ∈ X, and the effective radius of P + |QX|.
Put R = rad(P + |QX|) and choose x0 ∈ Rd such that supp(P + |QX|) ⊂ B(x0, R). Let f ∈ Hq

1

and consider the q∗-th order Taylor-polynomial p of f at x0. Since p ∈ Pq∗ we have pX = p and
therefore

|f − fX| ≤ |f − p|+ |(f − p)X| ≤ |f − p|+max
x∈X

|f(x)− p(x)|
�

x∈X
|px|.

From the proof of Proposition 2 we know that

sup
z∈B(x0,R)

|f(z)− p(z)| ≤ Rq

q!
,

and therefore we have

(19) e(X) ≤
�
1 + sup

z∈supp(P )

�

x∈X
|px(z)|

� (rad(P + |QX|))q
q!

.

To implement the randomized quadrature rule �I(n)X requires an algorithm for sampling from the
self-similar distribution P . We present an alternative method, which overcomes this disadvantage

and has the same level of accuracy as �I(n)X .
For convenience we assume that QX is a probability measure. Let T2 ≥ T1 ≥ 1 and consider

independent random variables
Z,J, J̄1, J̄2, . . .

on some probability space (Ω,A,P) such that
Z ∼ QX, J ∼ UC(T1),

and for k ∈ N and j ∈ {1, . . . ,m},
(20) P(J̄k = j) = ρj .
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Put

J̄k =

�
(J̄1, . . . , J̄k), if k ∈ N,
λ, if k = 0,

and define
τ = min{k ∈ N0 : sJ sJ̄k

< 1/T2}.
We briefly discuss the law of the random vertex (J, J̄τ ). Note that sjT2 ≥ 1 for j ∈ C(T1)\C(T2)

and put

Dj =

�
C(sjT2), if j ∈ C(T1)\C(T2),
{λ}, if j ∈ C(T1) ∩ C(T2).

Lemma 1. The sets of vertices {(j, j̄) : j̄ ∈ Dj}, j ∈ C(T1), are pairwise disjoint with
C(T2) =

�

j∈C(T1)
{(j, j̄) : j̄ ∈ Dj}.

For all j ∈ C(T1) and j̄ ∈ Dj,

P((J, J̄τ ) = (j, j̄)) =
ρj̄

#C(T1)
.

Proof. For j ∈ C(T1) we put
Gj = {(j, j̄) : j̄ ∈ Dj}.

Pairwise disjointness of the sets Gj follows immediately from the fact that C(T1) is a cutset.
Let j ∈ C(T1) and j̄ ∈ Dj. If j ∈ C(T2) then (j, j̄) = j ∈ C(T2). Otherwise j̄ ∈ C(sjT2), and we

have s(j,̄j) = sj sj̄ < sj/(sjT2) = 1/T2 as well as s(j,̄j)− = sj sj̄− ≥ sj/(sjT2) = 1/T2, which yields

(j, j̄) ∈ C(T2). Thus, Gj ⊂ C(T2).
Let � ∈ N and (j1, . . . , j�) ∈ C(T2). Put i∗ = min{i ∈ {1, . . . , �} : s(j1,...,ji) < 1/T1} and let

j = (j1, . . . , ji∗), j̄ = (ji∗+1, . . . , j�).

Clearly, (j1, . . . , j�) = (j, j̄) and sj ∈ C(T1). Assume sj ∈ C(T2). Then i∗ = �, and therefore j̄ = λ,
since otherwise 1/T2 > sj ≥ s(j1,...,j�)− ≥ 1/T2. On the other hand, if sj �∈ C(T2) then i∗ < �
and we have sj̄ = s(j1,...,j�)/sj < 1/(sjT2) as well as sj̄− = s(j1,...,j�)−/sj ≥ 1/(sjT2), which yields
sj̄ ∈ C(sjT2). Hence (j1, . . . , j�) ∈ Gj, which completes the proof of the first statement in the
lemma.
Let j ∈ C(T1) and j̄ ∈ Dj, and put � = |̄j| ∈ N0. It is easy to see that

{J = j, J̄τ = j̄} = {J = j, J̄� = j̄}.
Furthermore, J and J̄� are independent and P(J̄� = j̄) = ρj̄, due to (20), which yields the second
statement in the lemma and completes the proof. �
Take N independent copies

(Z1,J1, J̄τ,1), . . . , (ZN ,JN , J̄τ,N )

of (Z,J, J̄τ ) and define a corresponding randomized composite quadrature formula by

ĪX,T1,T2,N (f) = I
Q

C(T1)
X

(f) +
#C(T1)
N

N�

k=1

ρJk

�
f ◦ SJk

− (f ◦ SJk
)X
�
(SJ̄τ,k

◦ Zk).

For the error analysis of ĪX,T1,T2,N we put

Λ(X) = sup
��

x∈X
|px(z)| : |z|2 ≤ rad(P + |QX|)

�
.
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Lemma 2. Assume that QX is a probability measure. Let T2 ≥ T1 ≥ 1 and N ∈ N. The
randomized quadrature rule ĪX,T1,T2,N satisfies for every f ∈ Hq,

E
�
ĪX,T1,T2,N (f)

�
= I

Q
C(T2)
X

(f)

and

Var
�
ĪX,T1,T2,N (f)

�
≤ (1 + Λ(X))2 (3 rad(P + |QX|))2q

(q!)2
s−2θmin �f�2Hq N−1 T−2(1−θ)

1 .

Proof. Let f ∈ Hq. Clearly,

E
�
ĪX,T1,T2,N (f)

�
= I

Q
C(T1)
X

(f) + #C(T1)E
�
ρJ (f ◦ SJ − (f ◦ SJ)X)(SJ̄τ

◦ Z)
�
.

By the independence of Z and (J, J̄τ ) and by Lemma 1,

E
�
ρJ (f ◦ SJ − (f ◦ SJ)X)(SJ̄τ

◦ Z)
�
=

�

j∈C(T1)

�

j̄∈Dj

ρj ρj̄
#C(T1)

E
�
(f ◦ Sj − (f ◦ Sj)X)(Sj̄ ◦ Z)

�
.

Moreover,

�

j∈C(T1)

�

j̄∈Dj

ρj ρj̄ E(f ◦ Sj ◦ Sj̄ ◦ Z) =
�

j∈C(T2)
ρj

�
f ◦ Sj dQX =

�
f dQ

C(T2)
X = I

Q
C(T2)
X

(f)

and
�

j∈C(T1)

�

j̄∈Dj

ρj ρj̄ E((f ◦ Sj)X(Sj̄ ◦ Z)) =
�

x∈X

�

j∈C(T1)
ρj f(Sj(x))

�

j̄∈Dj

ρj̄ E(px ◦ Sj̄(Z)).

Since Sj̄ is affine we have px ◦ Sj̄ ∈ Pq∗ for all j̄ ∈ Dj. Thus, by Proposition 1,

�

j̄∈Dj

ρj̄ · E(px ◦ Sj̄(Z)) =
�

j̄∈Dj

ρj̄

�
px ◦ Sj̄ dQX =

�

j̄∈Dj

ρj̄

�
px ◦ Sj̄ dP =

�
px dP

for every j ∈ C(T1), and we conclude that
�

j∈C(T1)

�

j̄∈Dj

ρj ρj̄ E((f ◦ Sj)X(Sj̄ ◦ Z)) =
�

j∈C(T1)
ρj

�

x∈X
f(Sj(x))

�
px dP

=
�

j∈C(T1)
ρj

�
f ◦ Sj dQX = I

Q
C(T1)
X

(f),

which finishes the proof of the first statement in the lemma.
We proceed with the proof of the variance estimate. By Lemma 1,

Var
�
ĪX,T1,T2,N (f)

�
≤ (#C(T1))2

N
E
�
ρJ (f ◦ SJ − (f ◦ SJ)X)(SJ̄τ

◦ Z)
�2

=
#C(T1)
N

�

j∈C(T1)
ρ2j

�

j̄∈Dj

ρj̄ E
�
(f ◦ Sj − (f ◦ Sj)X)

2(Sj̄(Z))
�

≤ #C(T1)
N

�

j∈C(T1)
ρ2j �f ◦ Sj�2Hq

�

j̄∈Dj

ρj̄ sup
g∈Hq

1

�
(g − gX)

2(Sj̄) dQX.(21)
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Put R = rad(P + |QX|) and choose x0 ∈ Rd such that supp(P + |QX|) ⊂ B(x0, R). Fix j ∈ C(T1)
as well as j̄ ∈ Dj and let g ∈ Hq

1. Consider the q
∗-th order Taylor-polynomial p of g at x0 and

let x ∈ X. Similar to the proofs of Proposition 2 and (19),

|g(Sj̄(x))− gX(Sj̄(x))| ≤ |g(Sj̄(x))− p(Sj̄(x))|+ sup
z∈X

|g(z)− p(z)|
�

z∈X
|pz(Sj̄(x))|

≤ 1
q!

�
�Sj̄(x)− x0�q +Rq

�

z∈X
|pz(Sj̄(x))|

�
.

If j̄ = λ then

�Sj̄(x)− x0� = �x− x0� ≤ R.

Next, assume j̄ �= λ. Then Sj̄ has a fixed point x
∗ ∈ Rd and we have x∗ ∈ supp(P ), see [Hut81].

Hence

�Sj̄(x)− x0� ≤ �Sj̄(x)− Sj̄(x
∗)�+ �x∗ − x0� ≤ rj̄ �x− x∗�+R ≤ 3R.

It follows

�Sj̄(x)− x0�q +Rq
�

z∈X
|pz(Sj̄(x))| ≤ (3R)q(1 + Λ(X)),

which yields

(22)

�
(g − gX)

2(Sj̄) dQX ≤ (3R)
2q

(q!)2
(1 + Λ(X))2.

Combine (21) with (22) and use (6) to conclude that

Var
�
ĪX,T1,T2,N (f)

�
≤ #C(T1)

N

(3R)2q

(q!)2
(1 + Λ(X))2 �f�2Hq

�

j∈C(T1)
s2j

�

j̄∈Dj

ρj̄.

By Proposition 1 and (18)

#C(T1)
�

j∈C(T1)
s2j

�

j̄∈Dj

ρj̄ = #C(T1)
�

j∈C(T1)
s2j ≤ s−2θmin T

−(2−2θ)
1 ,

which finishes the proof of the lemma. �

As a direct consequence of Lemma 2 and Proposition 5 we obtain the following estimate of
the error of ĪX,T1,T2,N . For the number of function evaluations of this method we obviously have

the same upper bound as for the method �IX,C(T1),N , see Proposition 7.

Proposition 8. Assume that QX is a probability measure. Let T2 ≥ T1 ≥ 1 and N ∈ N. The
randomized quadrature rule ĪX,T1,T2,N uses at most

#supp
�
Q

C(T1)
X

�
+N ≤

�
q∗ + d

d

�
s−θmin T

θ
1 +N

function evaluations and satisfies for every f ∈ Hq,

�
E(I(f)− ĪX,T1,T2,N (f))

2
�1/2

≤ (1 + Λ(X)) (3 rad(P + |QX|))q
q!

s−θmin �f�Hq

�
T
−(1−θ)
2 +N−1/2 T−(1−θ)

1

�
.
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We adjust the parameters T1 and T2 to the number N of Monte Carlo repetitions by taking

(23)
T
(N)
1 = max

�
1, smin

�
q∗ + d

d

�−1/θ
N1/θ

�
,

T
(N)
2 = N1/(2(1−θ)) T (N)

1 ,

and we put

Ī
(n)
X = Ī

X,T
(n/2)
1 ,T

(n/2)
2 ,�n/2�

for all n ∈ N with n ≥ 2.
The following result immediately follows from Proposition 8.

Theorem 3. Assume that QX is a probability measure. For every n ∈ N with n ≥ 2s−θmin

�
q∗+d
d

�

the randomized quadrature rule Ī
(n)
X uses at most n function evaluations and satisfies for every

f ∈ Hq,

�
E(I(f)− Ī

(n)
X (f))

2
�1/2 ≤ (1 + Λ(X)) (3 rad(P + |QX|))q

q!
s−1min 2

q/β+1 �f�Hq n−(q/β+1/2).

Remark 8. We briefly discuss the computational cost that is needed to compute a realization

of Ī
(n)
X (f) for f ∈ Hq. Consider, more generally, the randomized quadrature rule ĪX,T1,T2,N and

define

costcomp(ĪX,T1,T2,N ) = sup
f∈Hq

1

E costcomp(ĪX,T1,T2,N , f),

where costcomp(ĪX,T1,T2,N , f) is given by the (random) sum of

1) the number n1 of calls to a random number generator for the uniform distribution on X
or {1, . . . ,m},

2) the number n2 of evaluations of f at points in Rd, and
3) the number n3 of basic arithmetic operations (summation, subtraction, multiplication,
division)

that are needed to compute a realization of ĪX,T1,T2,N (f).
Since

C(T ) ⊂ {1, . . . ,m}�ln(T )/ ln(s−1
max)�

for any T ≥ 1, it is clear that the random vector (Z,J, J̄τ ) can be simulated with at most
c1 ln(T2) calls to a random number generator for the uniform distribution on X or {1, . . . ,m},
where the constant c1 > 0 only depends on #X and m. Hence n1 ≤ c1N ln(T2). By Proposition 8
we have n2 ≤ c2(#C(T1)+N) where the constant c2 > 0 only depends on #X. Finally, it is easy
to see that n3 ≤ c3N ln(T2), where the constant c3 only depends on d and #X. Consequently,

costcomp(ĪX,T1,T2,N , f) ≤ c (#C(T1) +N ln(T2))

for every input f ∈ Hq, where the constant c > 0 neither depends on T1 nor on T2 nor on N ,
and therefore

costcomp(Ī
(n)
X ) ≤ c ln(n)n,

where the constant c > 0 does not depend on n.
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6. Lower bounds and optimality

We study generalized deterministic and randomised algorithms for the quadrature problem
given by (1) that are based on finitely many evaluations of an integrand f ∈ Gq at points in Rd.
Our goal is to provide sharp lower bounds for the worst case mean squared error on the unit
ball Gq1 of any such algorithm in terms of its worst case average number of function evaluations.
A generalized randomised algorithm is specified by a probability space (Ω,A,P) and a triple

(ψ, ν, ϕ),

where

• ψ = (ψk)k≥1 is a sequence of mappings

ψk : Rk−1 × Ω→ Rd,

which are used to sequentially determine random evaluation nodes in Rd for a given
integrand f ∈ Gq,

• the mapping
ν : Gq × Ω→ N

determines the random total number of evaluations of f , and
• ϕ = (ϕk)k≥1 is a sequence of mappings

ϕk : Rk × Ω→ R,

which are used to obtain the random approximation to I(f) based on the observed
function values of f .

To be more precise, we define

Nψ
k : Gq × Ω→ Rk

for k ∈ N by
Nψ
k (f, ω) = (y1(f, ω), . . . , yk(f, ω)),

where

y1(f, ω) = f(ψ1(ω))

and

y�(f, ω) = f
�
ψ�(y1(f, ω), . . . , y�−1(f, ω), ω)

�
, � = 2, . . . , k.

For given ω ∈ Ω and input f ∈ Gq the algorithm sequentially performs ν(f, ω) evaluations of f
at the points

ψ1(ω), ψ2(y1(f, ω)), . . . , ψν(f,ω)(y1(f, ω), . . . , yν(f,ω)−1(f, ω)) ∈ Rd

and finally applies the mapping ϕν(f,ω)(·, ω) : Rν(f,ω) → R to the data Nψ
ν(f,ω)(f, ω) to obtain the

real number
�Iψ,ν,ϕ(f, ω) = ϕν(f,ω)

�
Nψ
ν(f,ω)(f, ω), ω

�
,

as an approximation to I(f). The induced mapping

�Iψ,ν,ϕ : Gq × Ω→ R

is called a generalized randomized algorithm if the mappings

�Iψ,ν,ϕ(f, ·) : Ω→ R and ν(f, ·) : Ω→ N,

are random variables for all f ∈ Gq.
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We use Aran
q to denote the class of all generalized randomized algorithms. The error and the

cost of �I ∈ Aran
q are defined by

e(�I) = sup
f∈Gq

1

�
E|I(f)− �I(f, ·)|2

�1/2

and

cost(�I) = inf
�
sup
f∈Gq

1

E(ν(f, ·)) : �I = �Iψ,ν,ϕ
�
,

respectively. Note that the definition of the cost of �I takes into account that the representation
�I = �Iψ,ν,ϕ is not unique in general.
A generalized randomized algorithm �I ∈ Aran

q is called deterministic if the mapping �I(f, ·) is
constant for all f ∈ Gq. In this case we have �I = �Iψ,ν,ϕ with mappings
(24) ψk : Rk−1 → Rd, ν : Hq → N, ϕk : Rk → R,

and it is easy to see that

cost(�I) = inf
�
sup
f∈Gq

1

ν(f) : �I = �Iψ,ν,ϕ
�
,

where the infimum extends over all triples (ψ, ν, ϕ) that satisfy (24). The class of all generalized
deterministic algorithms is denoted by Adet

q .
Note that the deterministic quadrature rules introduced in Section 4 and the randomized

quadrature rules introduced in Section 5 belong to Adet
q and Aran

q , respectively.
Let n ∈ N. The crucial quantities for our analysis are the n-th minimal errors

edetn (Gq1) = inf{e(�I) : �I ∈ Adet
q , cost(�I) ≤ n}

and

erann (Gq1) = inf{e(�I) : �I ∈ Aran
q , cost(�I) ≤ n},

i.e., the smallest possible error that can be achieved by generalized deterministic algorithms
based on at most n function evaluations and the smallest possible error that can be achieved by
generalized randomized algorithms that use at most n function evaluations on average, respec-
tively.
By Theorem 1, Theorem 2 and Remark 4 we have

edetn (Gq1) ≤ c n−q/β , erann (Gq1) ≤ c n−(q/β+1/2)

for n sufficiently large, where the constant c > 0 does not depend on n. We show that both
bounds are sharp if the following two conditions are satisfied.

(S1) The contractions S1, . . . , Sm are similarities, i.e.,

Sj(x) = rjVj x+ bj , x ∈ Rd,

where rj ∈ (0, 1), bj ∈ Rd and Vj ∈ Rd×d satisfies

�Vjx� = rj �x�
for all x ∈ Rd.

(S2) The contractions S1, . . . , Sm satisfy the open set condition, i.e.,

∃ ∅ �= O ⊂ Rd, open: S1(O), . . . , Sm(O) are pairwise disjoint and
m�

i=1

Si(O) ⊂ O.
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Proposition 9. Assume that the contractions S1, . . . , Sm are similarities and satisfy the open
set condition. Then there exists c > 0 such that for every n ∈ N,

edetn (Gq1) ≥ c n−q/β

and

erann (Gq1) ≥ c n−(q/β+1/2).

The proof of Proposition 9 will be based on the following lemma, which itself is a consequence
of more general results on lower bounds for minimal errors in the context of linear problems
with standard information, see [Nov88].

Lemma 3. Let n, k ∈ N with k > n and let ε > 0. Assume that there exist Borel-measurable
functions

h1, . . . , hk : Rd → [0,∞)
such that

(a) the sets {hi �= 0} are pairwise disjoint,
(b) for all σ1, . . . , σk ∈ {−1, 1},

k�

i=1

σi hi ∈ Gq1 ,

(c) for every i = 1, . . . , k �
hi dP ≥ ε.

Then

edetn (Gq1) ≥ (k − n) ε.

Furthermore, if k > 4n then

erann (Gq1) ≥ (k/4− n)1/2 ε.

Proof of Proposition 9. Fix a non-empty open setO ⊂ Rd according to condition (S2). According
to [Sch94] we may assume that O ∩K �= ∅. Choose x ∈ O ∩K and note that P (B(x, ε)) > 0 for
every ε > 0. Take any non-negative function h ∈ Gq1 with

∅ �= {h �= 0} ⊂ O

and choose ε > 0 such that B(x, ε) ⊂ O and infy∈B(x,ε) h(y) > 0. Then
�

h dP > 0.

Consider a cutset C ⊂ T \{λ} and put
Oj = Sj(O)

as well as

hj =
rqj
2
h ◦ S−1

j

for all j ∈ C. Below we will prove that the set of functions {hj : j ∈ C} satisfies the conditions
(a) to (c) in Lemma 3 with

ε =
1

2
min
j∈C

sj

�
h dP.
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For the particular choice of C = C(T ) with T ≥ 1 we have minj∈C(T ) sj ≥ sminT
−1. Moreover,

#C(T ) ≥ T θ, see Proposition 4. Let n ∈ N. Choose T = (2n)1/θ and apply Lemma 3 with
k = #C(T ) ≥ 2n to obtain

edetn (Gq1) ≥ 2−1/θ−1smin
�

h dP n−(1/θ−1).

Choose T = (6n)1/θ and apply Lemma 3 with k = #C(T ) ≥ 6n to conclude

erann (Gq1) ≥ 2−3/2 6−1/θsmin
�

h dP n−(1/θ−1/2).

It remains to verify properties (a) to (c) in Lemma 3 for the functions hj with j ∈ C. We first
note that the sets Oj are pairwise disjoint since C is a cutset, see [Hut81, Sec. 5.2]. By definition
of h we have

(25) {hj �= 0} ⊂ Oj,

whence condition (a) is satisfied.
Furthermore, Sj(supp(P )) ⊂ cl(Sj(O)) for every j ∈ T , see [Hut81, Sec. 5.2]. Hence

Pj�(Oj) = Pj�(Oj ∩ cl(Oj�)) = Pj�(∅) = 0
for all j, j� ∈ C with j �= j�. Therefore, by Proposition 1,�

hj dP =
�

j�∈C
ρj�

�

Oj

hj dPj� =
1

2
ρj r

q
j

�

Oj

h ◦ S−1
j dPj =

1

2
ρj r

q
j

�

O
h dP =

1

2
sj

�
h dP,

which shows property (c).
Finally, let σ = (σj)j∈C ∈ {−1, 1}#C and consider the function

f =
�

j∈C
σj hj.

Clearly, f ∈ Cq
∗
(Rd) and for x, y, v ∈ Rd with �v� = 1 we have

(26) Dq
∗
v f(x)−Dq

∗
v f(y) =

�

j∈C
σj (D

q∗
v hj(x)−Dq

∗
v hj(y)).

For j = (j1, . . . , j�) ∈ C we put
Vj = Vj1 · · ·Vj� , uj = V −1

j v.

By (S1) we have

S−1
j (x) = r−1j V −1

j x+ aj

for some aj ∈ Rd, and therefore,

Dq
∗
v hj(x) =

1

2
rqjD

q∗
v (h ◦ S−1

j )(x) =
1

2
rq−q

∗
j Dq

∗
uj
h(S−1

j (x)).

Consequently, for every j ∈ C,

(27) |Dq∗v hj(x)−Dq
∗
v hj(y)| ≤

1

2
rq−q

∗
j �S−1

j (x)− S−1
j (y)�q−q

∗
=
1

2
�x− y�q−q∗ .

We show that for every z ∈ Rd,

(28) #{j ∈ C : Dq∗v hj(z) �= 0} ≤ 1,
which jointly with (26) and (27) implies |Dqvf(x)−Dqvf(y)| ≤ �x− y�q−q∗ and hereby completes
the proof of property (b).
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For the proof of (28) we consider the functions

gj : R → R, t �→ hj(z + tv),

for j ∈ C. Clearly, gj ∈ Cq
∗
(Rd) and

Dq
∗
v hj(z) = g

(q∗)
j (0).

Let j ∈ C with g(q
∗)

j (0) �= 0. Assume that there exists a sequence (t�)�∈N in R\{0} such that
lim�→∞ t� = 0 and z + t� v ∈ Rd\Oj for all � ∈ N. Then gj(t�) = 0 for every � ∈ N, and, using
the mean value theorem, we obtain by induction that there exists a sequence (t̃�)�∈N in R\{0}
such that lim�→∞ t̃� = 0 and g

(q∗)
j (t̃�) = 0 for every � ∈ N. The latter contradicts g(q

∗)
j (0) �= 0.

Hence there exists t0 > 0 such that

{z + tv : t ∈ (−t0, t0)\{0}} ⊂ Oj.

Consequently, gj�(t) = 0 for all j
� �= j and t ∈ (−t0, t0)\{0}, which implies g(q

∗)
j� (0) = 0 for all

j� �= j and finishes the proof. �

Combining Theorem 1 with Proposition 9 we conclude that the deterministic quadrature rules

I
(n)
Q perform asymptotically optimal in the class Adet

q of all deterministic methods for quadrature

with respect to P , if the conditions (S1) and (S2) are satisfied. Similarly, from Theorem 2 and

Proposition 9 we obtain that the randomized quadrature rules �I(n)X perform asymptotically
optimal in the class Aran

q of all randomized methods for quadrature with respect to P , if the
conditions (S1) and (S2) are satisfied.

Theorem 4. Assume that the contractions S1, . . . , Sm are similarities and satisfy the open set
condition. Then there exist c2 ≥ c1 > 0 such that for sufficiently large n ∈ N,

c1 n
−q/β ≤ edetn (Hq

1) ≤ e(I
(n)
Q ) ≤ c2 n

−q/β

and

c1 n
−(q/β+1/2) ≤ erann (Hq

1) ≤ e(�I(n)X ) ≤ c2 n
−(q/β+1/2).

Appendix: Moments of self-affine measures

We provide a recursion formula for the computation of moments of P in the case of affine
linear contractions

Sj(x) = Ajx+ bj

with Aj ∈ Rd×d and bj ∈ Rd for j = 1, . . . ,m.
Put V = Rd and consider a d-dimensional random vector X with

X ∼ P.

For every � ∈ N the mapping

V � � (v1, . . . , v�) �→ E(vT1 X · · · vT� X) ∈ R

is multilinear and hence it defines a real-valued linear mappingM� on the �-th tensor power V
⊗�

via

M�(v1 ⊗ · · · ⊗ v�) = E(vT1 X · · · vT� X).
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Proposition 10. For every � ∈ N the mapping

idV ⊗l −
m�

j=1

ρj (A
T
j )

⊗� : V ⊗l → V ⊗l

is a bijection and for every v = v1 ⊗ · · · ⊗ v� ∈ V ⊗l we have

M�

�
idV ⊗l −

m�

j=1

ρj (A
T
j )

⊗�
�
(v) =

m�

j=1

ρj

� ��

i=1

vTi bj +
�

∅�=I�{1,...,�}

��

i∈Ic
vTi bj

�
M#I

��

i∈I
AT
j vi

��
.

Proof. Let � ∈ N and v1, . . . , v� ∈ V . By the self-similarity of P and the particular form of the
contractions Sj we have

E(vT1 X · · · vT� X) =
m�

j=1

ρj E(vT1 SjX · · · vT� SjX)

=

m�

j=1

ρj
�

I⊂{1,...,l}

��

i∈Ic
vTi bj

�
E
��

i∈I
vTi AjX

�
,

which implies the recursion formula.
Consider any norm �·�V ⊗l on V ⊗l such that �v1⊗· · ·⊗v��V ⊗l = �v1� · · · �v�� for v1, . . . , v� ∈ V .

Then v1 ⊗ · · · ⊗ v� =
�m
j=1 ρj(A

T
j v1 ⊗ · · · ⊗AT

j v�) implies

�v1� · · · �v�� =
���
m�

j=1

ρj(A
T
j v1 ⊗ · · · ⊗AT

j v�)
���
V ⊗l

≤
m�

j=1

ρj�AT
j v1� · · · �AT

j v�� ≤ �v1� · · · �v��
m�

j=1

ρjr
�
j ,

and, consequently, v1 ⊗ · · · ⊗ v� = 0. Hence the mapping idV ⊗l −
�m
j=1 ρj (A

T
j )

⊗� is injective,
which completes the proof. �

Remark 9. The recursion formula in Proposition 10 simplifies significantly in the case of d = 1.
Taking v1 = · · · = v� = 1 we immediately obtain

E(X�) =
�
1−

m�

j=1

ρjA
l
j

�−1 m�

j=1

ρj

l−1�

k=0

�
l

k

�
bl−kj Akj E(Xk).
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[77] P. A. Cioica, S. Dahlke, N. Döhring, S. Kinzel, F. Lindner, T. Raasch, K. Ritter,
and R. L. Schilling. Adaptive Wavelet Methods for Elliptic Stochastic Partial
Differential Equations. Preprint 77, DFG-SPP 1324, January 2011.

[78] G. Plonka, S. Tenorth, and A. Iske. Optimal Representation of Piecewise Hölder
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