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Abstract

Hypergraphs allow to encode higher-order relationships in data and are thus a very
flexible modeling tool. Current learning methods are either based on approxima-
tions of the hypergraphs via graphs or on tensor methods which are only applica-
ble under special conditions. In this paper, we present a new learning framework
on hypergraphs which fully uses the hypergraph structure. The key element is a
family of regularization functionals based on the total variation on hypergraphs.

1 Introduction

Graph-based learning is by now well established in machine learning and is the standard way to deal
with data that encode pairwise relationships. Hypergraphs are a natural extension of graphs which
allow to model also higher-order relations in data. It has been recognized in several application
areas such as computer vision [1, 2], bioinformatics [3, 4] and information retrieval [5, 6] that such
higher-order relations are available and help to improve the learning performance.

Current approaches in hypergraph-based learning can be divided into two categories. The first one
uses tensor methods for clustering as the higher-order extension of matrix (spectral) methods for
graphs [7, 8, 9]. While tensor methods are mathematically quite appealing, they are limited to so-
called k-uniform hypergraphs, that is, each hyperedge contains exactly & vertices. Thus, they are not
able to model mixed higher-order relationships. The second main approach can deal with arbitrary
hypergraphs [10, 11]. The basic idea of this line of work is to approximate the hypergraph via a stan-
dard weighted graph. In a second step, one then uses methods developed for graph-based clustering
and semi-supervised learning. The two main ways of approximating the hypergraph by a standard
graph are the clique and the star expansion which were compared in [12]. One can summarize their
results by stating that there exists no approximation which fully encodes the hypergraph structure.
Earlier it has been proven that an exact representation of the hypergraph via a graph retaining its cut
properties is impossible [13].

In this paper, we overcome the limitations of both existing approaches. We note that both for cluster-
ing and semi-supervised learning the key element, either explicitly or implicitly, is the cut functional.
Our aim is to directly work with the cut defined on the hypergraph. We discuss in detail the differ-
ences of this hypergraph cut and the cut functionals induced by the clique and star expansion in
Section 2.1. Then, in Section 2.2, we introduce the total variation on a hypergraph as the Lovasz
extension of the hypergraph cut. Based on this, we propose a family of regularization functionals
which interpolates between the total variation and a regularization functional enforcing smoother
functions on the hypergraph corresponding to Laplacian-type regularization on graphs. We show a
model for semi-supervised learning based on these regularizers in Section 3. Furthermore, in the
line of recent research on tight relaxations of balanced graph cuts [14, 15, 16, 17], we show in Sec-
tion 4 that there exists a tight relaxation of the normalized hypergraph cut. In both applications, a
new type of convex optimization problems has to be solved for which we derive first-order gradient
methods in Section 5. The main ingredients of these algorithms are proximal mappings for which



we provide a novel algorithm and analyze its complexity. In the experimental section 6, we show
that fully incorporating hypergraph structure is beneficial in semi-supervised learning and clustering
on hypergraphs. All proofs are moved to the supplementary material.

2 The Total Variation on Hypergraphs

A large class of graph-based algorithms in semi-supervised learning and clustering is based either
explicitly or implicitly on the cut. Thus, we discuss first in Section 2.1 the hypergraph cut and
the corresponding approximations of [11, 12]. In Section 2.2, we introduce in analogy to the total
variation on graphs, the total variation on hypergraphs as the Lovasz extension of the hypergraph cut
as well as a corresponding family of regularization functionals.

2.1 Hypergraphs, Graphs and Cuts

Hypergraphs allow to model relations which are not only pairwise as in graphs but involve multiple
vertices. In this paper, we consider weighted undirected hypergraphs H = (V, E,w) where V is
the vertex set with |V| = n and E the set of hyperedges with |E| = m. Each hyperedge e € E
corresponds to a subset of vertices, i.e., to an element of 2V. The vector w € R™ contains for each
hyperedge e its non-negative weight w,. In the following, we use the letter H also for the incidence
matrix H € RIVI*IEl which is fori € V and e € E,

1 ifiece
H;.= ’
’ {0 else.

The degree of a vertex ¢ € V is defined as d; = ZeeE weH; . and the cardinality of an edge e can
be written as |e[ = .y, Hj .. We would like to emphasize that we do not impose the restriction
that the hypergraph is k-uniform, i.e., that each hyperedge contains exactly k vertices.

The considered class of hypergraphs contains the set of undirected, weighted graphs which is equiv-
alent to the set of 2-uniform hypergraphs. The motivation for the total variation on hypergraphs
comes from the correspondence between the cut on a graph and the total variation functional. Thus,
we recall the definition of the cut on weighted graphs G = (V, W) with weight matrix . Let

C = V\C denote the complement of C in V. Then, for a partition (C, C), the cut is defined as

cute(C, C) = Zi,j:z’ec,jeé Wig-
This standard definition of the cut carries over naturally to a hypergraph H
cutH(C',é) :Z cEl: We- ey

eNC#D, eNCH#D

Thus, the cut functional on a hypergraph is just the sum of the weights of the hyperedges which have
vertices both in C' and C'. It is not biased towards a particular way the hyperedge is cut, that is, how
many vertices of the hyperedge are in C resp. C'. This emphasizes that the vertices in a hyperedge
belong together and we penalize every cut of a hyperedge with the same value.

In order to handle hypergraphs with existing methods developed for graphs, the focus in previous
works [11, 12] has been on transforming the hypergraph into a graph. In [11], they suggest to use
the clique expansion (CE), i.e., every hyperedge e € H is replaced with a fully connected subgraph

where every edge in this subgraph has weight % This leads to the cut functional cutcg,

cutes(C,0) =Y em _ olenCllenC. )
eNC#D, eNC#QD |€|

Note that in contrast to the hypergraph cut (1), the value of cutc g depends on the way each hyper-
edge is cut since the term |e N C| |eN C'| makes the weights dependent on the partition. In particular,
the smallest weight is attained if only a single vertex is split off, whereas the largest weight is at-
tained if the partition of the hyperedge is most balanced. In comparison to the hypergraph cut, this
leads to a bias towards cuts that favor to split off single vertices from a hyperedge which in our point
of view is an undesired property for most applications. We illustrate this with an example in Figure
1, where the minimum hypergraph cut (cut) leads to a balanced partition, whereas the minimum



Figure 1: Minimum hypergraph cut cut z vs. minimum cut of the clique expansion cutc: For edge
weights w; = wy = 10, wy = ws = 0.1 and w3z = 0.6 the minimum hypergraph cut is (Cy,C)
which is perfectly balanced. Although cutting one hyperedge more and being unbalanced, (Cy, C)
is the optimal cut for the clique expansion approximation.

clique expansion cut (cutcg) not only cuts an additional hyperedge but is also unbalanced. This is
due to its bias towards splitting off single nodes of a hyperedge. Another argument against the clique
expansion is computational complexity. For large hyperedges the clique expansion leads to (almost)
fully connected graphs which makes computations slow and is prohibitive for large hypergraphs.

We omit the discussion of the star graph approximation of hypergraphs discussed in [12] as it is
shown there that the star graph expansion is very similar to the clique expansion. Instead, we want
to recall the result of Ihler et al. [13] which states that in general there exists no graph with the same
vertex set V' which has for every partition (C, C') the same cut value as the hypergraph cut.

Finally, note that for weighted 3-uniform hypergraphs it is always possible to find a corresponding
graph such that any cut of the graph is equal to the corresponding cut of the hypergraph.
Proposition 2.1. Suppose H = (V,E,w) is a weighted 3-uniform hypergraph. Then, W &
RVIXIVI defined as W = %Hdiag(w)HT defines the weight matrix of a graph G = (V, W) where
each cut of G has the same value as the corresponding hypergraph cut of H.

Proof. The cut value of a partition (C, C) of G is given as
_ 1 _
cutg(C,C) = 5 > lenCllenCluw,.

eckE

The product |e N C||e N C| takes the values 2 if e is cut by C' and zero otherwise. Because of the
factor % we thus get equivalence to the hypergraph cut. O

2.2 The Total Variation on Hypergraphs

In this section, we define the total variation on hypergraphs. The key technical element is the Lovasz
extension which extends a set function, seen as a mapping on 2", to a function on R!V!.

Definition 2.1. Let S : 2V — R be a set function with S(0) = 0. Let f € RV, let V be ordered
such that f1 < fo < ... < f,, and define C; = {j € V|j > i}. Then, the Lovasz extension
S :RIVI - R of S is given by

n n—1
S =D F (S(Cz‘fl) - g(Ci)) =Y S(C)(fir1 — i) + ASV).
i=1 i=1
Note that for the characteristic function of a set C C V, we have S(1¢) = S(C).

It is well-known that the Lovasz extension .S is a convex function if and only if S is submodular
[18]. For graphs G = (V, W), the total variation on graphs is defined as the Lovasz extension of the

graph cut [18] given as TV : RVI 5 R, TVea(f) = % szzl wiil fi — fil-
Proposition 2.2. The total variation TV ;; : RV — R on a hypergraph H = (V, E, w) defined as
the Lovasz extension of the hypergraph cut, S(C) = cuty (C, C), is a convex function given by
TVa(f) =) we(qngfi - rjneigfj) =Y w, max |fi = f5l-
eckE ’

eck



Proof. Using C;_; = C; U {i} and C; = C;_; U {i} the Lovasz extension can be written as

TV (f) = i fi(eut(Cioy, Cim) = cut(C1, Gy ) = i fi(eut({i}, Cim) — eut(Cy, (i)

=1

n

A X we X w)= e mn)
i=1 cEE,ice cEE,i€e ee J
en{l,...,i—1}#£0 en{i+1,...,n}#0

It is easy to see that the Lovasz extension of the hypergraph cut is a convex function. Since the
maximum of convex functions is convex, — min;c. f; = max;ec, f; and the hyperedge weights are
non-negative, we have a non-negative combination of convex functions which is convex. Alter-
natively, one could use that the hypergraph cut is submodular and the Lovasz extension of every
submodular set function is convex. 0

Note that the total variation of a hypergraph cut reduces to the total variation on graphs if H is
2-uniform (standard graph). There is an interesting relation of the total variation on hypergraphs
to sparsity inducing group norms. Namely, defining for each edge e € E the difference operator
D : RVl — RVIXWVIby (D.f)ij = fi — f; ifi,7 € e and 0 otherwise, TV g can be written
as, TV (f) = > ccpWe || Defllo» which can be seen as inducing group sparse structure on the
gradient level. The groups are the hyperedges and thus are typically overlapping. This could lead
potentially to extensions of the elastic net on graphs to hypergraphs.

It is known that using the total variation on graphs as a regularization functional in semi-supervised
learning (SSL) leads to very spiky solutions for small numbers of labeled points. Thus, one would
like to have regularization functionals enforcing more smoothness of the solutions. For graphs this
is achieved by using the family of regularization functionals Q¢ j, : RVl 5 R,

n

Qp(f) =5 O wilfi— il

i,j=1

For p = 2 we get regularization functional of the (combinatorial) graph Laplacian which is the basis
of a large class of methods for SSL on graphs. In analogy to graphs, we define the corresponding
family of regularizers on hypergraphs.

Definition 2.2. The regularization functionals Qg ,, RVl = R for a hypergraph H = (V, E,w)
are defined for p > 1 as

Qup(f) = we(rgggcfi — min fj)p-
ecE

Lemma 2.1. The functionals Qp ,, : RIVI — R are convex.

Proof. The p-th power of positive, convex functions for p > 1 is convex as

(fOz + (1= Ny)" < (Mf(2) + 1= Nf@)" <M (@) + (1= N)f(y)?
where the last inequality follows from the convexity of 2 on R . Thus, the p-th power of meax fi—

min f; is convex. O
Jj€e

Note that Qp 1 (f) = TV (f). If H is a graph, Q2 reduces to the Laplacian regularization Q¢ .
Note that for characteristic functions of sets, f = 1¢, it holds Qg ,(1c) = cuty(C, 5). Thus,
the difference between the hypergraph cut and its approximations such as clique and star expansion
carries over to Qg , and Qg p-

3 Semi-supervised Learning

With the regularization functionals derived in the last section, we can immediately write down a
formulation for two-class semi-supervised learning on hypergraphs similar to the well-known ap-
proaches of [19, 20]. Given the label set L we construct the vector Y € R" with Y; = 0if¢ ¢ L



and Y; equal to the label in {—1, 1} if ¢ € L. We propose to solve
. 1
= argmin g |f = Y3+ AQu,(f), 3)
fERIVI

where A > 0 is the regularization parameter. In Section 5, we discuss how this convex optimization
problem can be solved efficiently for the case p = 1 and p = 2. Note, that other loss functions than
the squared loss could be used. However, the regularizer aims at contracting the function and we
use the label set {—1,1} so that f* € [—1,1]IVI. However, on the interval [~1, 1] the squared loss
behaves very similar to other margin-based loss functions.

In general, we recommend to use p = 2 as it corresponds to Laplacian-type regularization for
graphs which is known to work well. For graphs p = 1 is known to produce spiky solutions for
small numbers of labeled points. This is due to the effect that cutting “out” the labeled points leads
to a much smaller cut than, e.g., producing a balanced partition. However, in the case where one has
only a small number of hyperedges this effect is much smaller and we will see in the experiments
that p = 1 also leads to reasonable solutions.

4 Balanced Hypergraph Cuts

In Section 2.1, we discussed the difference between the hypergraph cut (1) and the graph cut of
the clique expansion (2) of the hypergraph and gave a simple example in Figure 1 where these
cuts yield quite different results. Clearly, this difference carries over to the famous normalized cut
criterion introduced in [21, 22] for clustering of graphs with applications in image segmentation.
For a hypergraph the ratio resp. normalized cut can be formulated as
_ ty(C,C _ ty(C,C
RCut(C,C) = cutn (€, ) NCut(C, C) = _eutn(C.0)
|C|C| vol(C) vol(C)
which incorporate different balancing criteria. Note, that in contrast to the normalized cut for graphs
the normalized hypergraph cut allows no relaxation into a linear eigenproblem (spectral relaxation).

Thus, we follow a recent line of research [14, 15, 16, 17] where it has been shown that the stan-
dard spectral relaxation of the normalized cut used in spectral clustering [22] is loose and that a
tight relaxation can be formulated in terms of a nonlinear eigenproblem. Although nonlinear eigen-
problems are non-convex, one can compute nonlinear eigenvectors quite efficiently at the price of
loosing global optimality. However, it has been shown that the potentially non-optimal solutions
of the tight relaxation, outperform in practice the globally optimal solution of the loose relaxation,
often by large margin. In this section, we extend their approach to hypergraphs and consider general

balanced hypergraph cuts Beut(C, C) of the form, Beut(C, C) = ‘m;%é), where 5 : 2V — R,

is a non-negative, symmetric set function (that is S(C') = S(C)). For the normalized cut one has
S(C) = vol(C) vol(C) whereas for the Cheeger cut one has S(C) = min{vol C,volC}. Other
examples of balancing functions can be found in [16]. Our following result shows that the balanced
hypergraph cut also has a tight relaxation into a continuous nonlinear eigenproblem [14].

Theorem 4.1. Let H = (V, E, w) be a finite, weighted hypergraph and S : RVl — R be the Lovasz
extension of the symmetric, non-negative set function S : 2V — R. Then, it holds that

min ZeEE we(r?eaex fim fjneiél f]) = min M
eRIVI S(f) Sccv o §0)

Further, let f € RVI and define Cy := {i € V| f; > t}. Then,
cuty (Cy, Cy) < Yecr we(r?gx fim e 13)
teR - S(Cy) S(f)

Proof. By Prop. 2.2 the Lovasz extension of cut (C, C) is given by Y., we ( max f; — min f;).
1€ JjE€e

Noting that both cut g (C, C) and S(C) vanish on the full set V, the proof then follows from the
recent result [17], which shows in this case the equivalence between the set problem and the contin-
uous problem written in terms of the Lovasz extensions. O



The last part of the theorem shows that “optimal thresholding” among all level sets of f € RIVI can
only lead to a better or equally balanced hypergraph cut.

The question remains how to minimize the ratio Q(f) = ngf)f). As discussed in [16], every

Lovasz extension S can be written as a difference of convex positively 1-homogeneous functions'
S = 51 — S5. Moreover, as shown in Prop. 2.2 the total variation TV g is convex. Thus, we have
to minimize a non-negative ratio of a convex and a d.c. function?. For this we use the RatioDCA
algorithm of [16], which for completeness is shown in Algorithm 1. The main part of RatioDCA is

Algorithm 1 RatioDCA — Minimization of a non-negative ratio of 1-homogeneous d.c. functions

1: Input: Q = giisR;

2: Initialization: f° = random with || f°|| = 1, A\° = Q(f°)

3: repeat

4 s1(f%) € 0S1(fF), ra(f*) € ORa(fF)

S 4 = angmin {Raw) = u,ra(£4)) + M (Salw) = a(£4)))}
6 AR (Ry(FFY) = Ry(£5H)/(S1(F5) — Sa(fF+))

7: until M <€

Ak
8: Output: eigenvalue \*+1 and eigenvector f5+1.

the inner problem which is a convex optimization problem. In our case R; = TV, Ry = 0 and the
inner problem reads

1<t {TV i (u) + X¥ (Sa(u) — (u, 51(f%)))} “)

While the strategy for general balancing functions is discussed in [16], we restrict ourselves for
simplicity to submodular balancing functions, in which case .S is convex and thus Sy = 0. Note that
the balancing functions of ratio/normalized cut and Cheeger cut are submodular. It turns out that the
inner problem is very similar to the semi-supervised learning formulation (3). The efficient solution
of both problems is discussed in the next section.

min”u

S Algorithms for the Total Variation on Hypergraphs

The problem (3) we want to solve for semi-supervised learning and the inner problem (4) of Ra-
tioDCA have a common structure. They are the sum of convex functionals where one of them is the
novel regularizer 2 ,,. We propose to solve these problems using a primal-dual algorithm, denoted
PDHG in this paper, which was proposed in [23, 24]. Its main idea is to iteratively solve for each
convex term in the objective function a so-called proximal problem. Solving the proximal problem
w.r.t. a mapping g : R" — R and a vector z € R" means to compute the proximal map prox,
defined by
prox, () = arg min{ x v — 73 + g(x)}.
rER" 2

The main idea here is that often these proximal problems can be solved efficiently leading to a fast
convergence of the overall algorithm. In order to point out the common structure of PDHG for both
(3) and the inner problems of Algorithm 1, we first consider a general optimization problem of the
form

minsern{G(f) + F(Kf)}, Q)
where K € R™™ and G : R™ — R, F : R™ — R are lower-semicontinuous convex functions.
Recall that the conjugate function of G* of G is defined as

G () = sup {(z, /) — G(/)}
feRn

and similarly for F*. In terms of these conjugate functions, we can write the dual problem of (5) as
—mingerm {G* (=K a) + F*(a)}. 6)

'A function f : R? — R is positively 1-homogeneous if Vo > 0, f(ax) = af (z).
2A function is called d.c. if it can be written as a difference of convex functions



The PDHG algorithm for (5) has the following general form. For convergence proofs we refer to
[23, 24].

Algorithm 2 PDHG
1: Imitialization: f(©) = f(©) = 0,0 € [0,1], 0,7 > 0 with o7 < 1/||K||3
2: repeat
32 a® = prox, g (@) 4 o K fR)
4 fD = prox g (F®) = 7K (™))
50 fFD — ptl) g(f(k+1) _ f(k))
6: until relative duality gap < €
7: Output: f++1),

We will now apply this general setting to the convex optimization problems arising in this paper.
First, the following Table 1 shows how one can choose G in (5) in order to solve (3) and (4),
provides the solutions of the corresponding proximal problems, and gives the conjugate functions.
Note that we write the constraint in the inner problem of RatioDCA via the indicator function ¢|.|,<1
defined by ¢.|,<1(z) = 0, if [lz[[2 < 1 and +o0 otherwise. Clearly, both proximal problems have
an explicit solution.

G(f) = %Hf ~ Y3 G(f) = ~(s1:(fF). ) + <1 (f)
Prox, ¢y (%) = - (@ + TY) prOXTG(f) (7) = max{fﬁr;jlrg(}k)uz}
G*(z) = 3llz + Y5 - 31Y13 G*(z) = [lz + 51 (fF)[l2

Table 1: Data-dependent terms of the SSL functional (3) (left) and the inner problem of RatioDCA
(4) (right) with respective proximal map and conjugate.

Second, we discuss the choice of F' and K to incorporate Qg .

PDHG algorithm for (2 ;. Let m. denote the number of vertices in hyperedge e € F. The main
idea is to write

)‘QHJ(f) = F(Kf) = Z(F(e,l)(Kef) + F(e,2) (Kef))7 @)
ecE
where the rows of the matrices K. € R™<" are the i-th standard unit vectors for ¢ € e and the
functionals Fi, ;) : R™¢ — R are defined as
F(e,l)(a(e’l)) = \w, max(a(e’l))7 F(e’g)(a(e’Q)) = —\w, min(a(e’z)).
The primal problem has thus the form
mingepn{G(f) + > (Fle1)(Kef) + Flez)(Kef))}-
eeE

In contrast to the function GG, we need in the PDHG algorithm the proximal maps for the conjugate
functions of F{, jy. They are given by

* _ * _
Feny = s Fleo) = t=Saues

where Sy, = {z € R™e : Y7 x; = M., z; > 0} is the scaled simplex in R™<. By (6) the
dual problem has the form

N ) en {G( Z K'(a (e;1) o g les 2) )+ Z Lse, ale 1) )+ Losg, (a(e’Q)))}7

eck eck

where G* is given as in Table 1. The solutions of the proximal problems for F( 1) and F(e 1

are simply the orthogonal projections onto these simplexes written here as Pg¢ — and P_g¢
respectively. These projections can be performed in linear time, cf., [25].



Algorithm 3 PDHG for Qp ;

- Initialization: f(©) = f©) = 0,0 € [0,1], 0,7 > 0 with o7 < 1/(2max;—;,__.{c:})
: repeat

ale) T _ Ps¢ (a(e’l)(k) +0K.f¥), ecE

a(e,2)(k+1) — P_gc. (a(e,Z)(k) _‘_O_KEJ?(I@))’ ecE

e

FU = prox,(f9) = 737,y KI(a(D ™ 4 a2
f(k-‘rl) _ f'(k-‘rl) + e(f(k-H) _ f(k))

: until relative duality gap < €

: Output: [+,

A U S e

Using the proximal mappings we have presented so far, we obtain Algorithm 3. In line 1, ¢; is the
number of hyperedges the vertex i lies in. This bound on the product of the step sizes can be derived
as follows

eel
It is important to point out here that the algorithm decouples the problem in the sense that in every
iteration we solve subproblems which treat the functionals G, F{. 1), F¢,2) separately and thus can
be solved in an efficient way.

PDHG algorithm for (25 5. We define G and K. as above. Moreover, we set
F.(a®) = Aw, (max(a®) — min(a®))?. 8)

=:the(a®)

Hence, the primal problem can be written as
mingern {G(f) + Y Fe(Kcf)}-
eckE

To formulate the dual problem we need the conjugate of F. To this end, we first derive the conjugate
function of h. defined in (8), i.e.,

he(a®) = sup {{a*, ¢) — (max(¢) — min(¢))*}.

pER™Me

Lemma 5.1. Let o® € R™e andty = afandt_ =), o of. It holds that

i >0

h:(ae) — { %ti lf (ae’1> =0,

+00 otherwise.

Proof. Using the decomposition, ¢ = ¢ 4+ ~1, where (1), 1) = 0 and v € R, we can write
(@, ¢) — (max(¢) —min(¢))* = 7 (a%, 1) + (%, ¢) — (max(y) — min(y))*.

Thus for (a®, 1) # 0, we have h%(a®) = co. Now we consider the case where (o, 1) = 0. We
write [ = {i : of <O}and I}, ={i : of > 0} anddefinet =3 ,.; ofandt_ =3, ; af.
Note that (a®, 1) = 0 implies t; = —t_. Let us assume a = max(¢) and b = min(¢) are fixed. To
maximize (a®, ¢) — (max(¢) — min(¢))? it is clearly best to choose ¢; = a fori € I_ and ¢; = b
for ¢ € I;. Consequently,

(o, ¢) — (max(¢) — min(¢))* = t4(b—a) — (b —a)*. ©
We maximize the gap A = b — a for the objective m(A) = t, A — A? and obtain the maximizer as
2
A= % Thus we have h}(a®) = tf if (a%,1) # 0. O
Witht, =37 eso0f and i =37, . o af we thus get
ey 0N L ﬁweﬁ ift, =—t_,
Fe(af) =Aweh ()\we> { +0oo otherwise. (10)



So, we obtain the dual problem
. * e 1 e e e
—minge {G*(—= > Kla%)+ > M(t+)2 +) oyt +19)},
ecE ecE ¢ ecE
ira$ >0 O[;-i and 1< = Zi:uf<0 OL?.
As we have seen in (10), the conjugate functions F are not indicator functions and we thus solve

the corresponding proximal problems via proximal problems for F,. More specifically, we exploit
the fact that

where t§ =}

prox, p. (@°) = a&° — prox1 . (a“), (11)
see [26, Lemma 2.10], and use the following novel result concerning the proximal problem on the
right-hand side of (11).

Proposition 5.1. For any o > 0 and any &° € R™¢ the proximum
1 1
proxip (G°) = argmin{=||a® — a°||% + — Mw,(max(a®) — min(a*®))?}

o e aeER™Me 2 g
can be computed with O(m, log m.) arithmetic operations.
We will now derive such an algorithm. To simplify the notation, we consider instead of %Fe the
function h : R™ — R defined by

h(a) = (max(a) — min(a))?

and show that prox,,j, (@), # > 0, can be computed with O(m logm) arithmetic operations.
Let us fix & € R™. For every pair 7, s € [min(«), max(a)] with » > s, we define a("*) by
r ifa;>r
™ =4 q; ifas € (rs) (12)
s ifa; <s

Clearly, if r = max(prox,,,()) and s = min(prox,,,()) then a(™*) = prox,, (a). Hence, the
above definition allows us to write the proximal problem in terms of the variables r, s since for

1 o
(r,8) = argmin{_ o™ — o[} + p(F - 5)°} (13)
7,5 N %f—/k -
=:E, (,5) =Ba(73)

we have

prox,,(a) = alm®),
Our goal is now to find a minimizer of (13). To this end, we first order « in an increasing order which
can be done in O(m log m) arithmetic operations. W.1.o.g. we assume here that the components of «
are pairwise different. Moreover, we introduce the following notation. For r, s € a1, oy, ] there exist

unique p,q € {1,...,m} characterized by ap—pt+1 = min{a;la; > 7} and oy = max{a;|a; <
s}. Thus, the directional partial derivatives w.r.t. r and s are given by

oF - oF !

Wj(n s) = i:mZ_pH(ai —r), gi(r, s) = ;(5 — ). (14)

They tell us how much we increase F; by decreasing r and increasing s, respectively. On the other
hand both of these changes lead to a decrease in the energy E». More precisely, it holds that

OF; _ 95 (r,s) =2u(s —r). (15)

or- (rs) Ost
Thus, the main ideas behind our algorithm are as follows. Starting with » = max(a) and s =
min(«), we decrease r and increase s keeping the two partial derivatives of (14) equal. We stop
when the sum of the partial derivatives vanishes. So, the optimal r, s are characterized by the system

m q

Z (; — 1) = Z(s—ai), (16)
1=m—p+1 =1

> (ai—r)+2u(s—r)=0. (17)
1=m—p+1



We will now generate a sequence of pairs (%), s(¥) satisfying () > s(*) and (16) for each k. The
corresponding indices needed to calculate the partial derivatives will be denoted by p(*), ¢(*). The
main procedure is described in the next lemma.

Lemma 5.2. Assume r(F) € (U p(0) 5 Q) 11| and s(k) e [y, gy 1) and property (16)
holds for (r®) | s(K)). Then, we can either choose
(1) _ ) _ 4 ) _ o) (k+1)
r =" — W(S —s\"™) and s = Qg 41 (18)

or
PFD Z gy and D = 50 4 q; ;( (]) _ 1)y (19)

such that v+ ¢ [ p (k) s Q) 41)) stk ¢ (Qqr), gwy 1] and (16) holds true for
(rk+1) | g(k+1)),

Proof. Property (16) for (r*+1) s(*+1)) means that

m q®

Z <OZ (k+1) Z(S(k+1) (20)

i=m—pk) 41
Since by assumption (16) holds for (r(¥), s(¥)), equation (20) is equivalent to

P (P () — () (g(6) _ (41,

If we set (r**+1) s(k*+1) according to (18) but 71 < a,, ). Then we get

w _ av (k)
r (k) (Ocq(k)Jrl — S ) < Oy (k)
w , P (k)
= s\ + o )( — Ozm_p(k)) < Qgk) 415
i.e., we can choose r(k“), s(k+1) according to (19) and vice versa. ]

After each computation of a new pair (r(’”l), s(k+1)) we check if the left-hand side of (17) is
smaller than zero (note that initially the left-hand side of (17) is negative and it is increasing for
every iteration). If this is not the case, we found the intervals where the optimal values r and s lie
in. Restricted to this domain the functional E; + E is a differentiable. Hence, we can compute 7, s
as follows.

Lemma 5.3. Assume that the optimal r, s of (13) fulfill 7 € [Ctyy—p, ¥m—pt1] and s € [0g, Qgi1].
Then, it holds that

m

§= (q+2u— Zm (2/1') )71( QN Z Qi +Za7

i=m—p+1 a7’+2’u p+2M'L m—p+1 =1

= i((q +2u)s — ;ai).

Proof. When restricted to [oy, aii1] X [tj, aj11], the function (r,s) — Ey(r,s) + Ea(r,s) is a
quadratic function in (r, s). We can thus simply set the gradient to zero and solve the corresponding
system of linear equations which yields the above result. O

In conclusion, we obtain the following algorithm. Note that after the sorting, the algorithm takes in
the order of m steps to compute the proximum which proves Proposition 5.1.

Hence, the corresponding PDHG algorithm can be formulated as follows.
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Algorithm 4 — Solution of the proximal problem prox ,, («)

: Sort o € R™ in increasing order.

- Initialization: r(*) = max(a), s() = min(a)

: while %(r(’“, sy < 2pu(r® — sy and ¢*) +1 < m — p*) do
Find (r(*+1) s(:+1)) according to Lemma 5.2.

end while

Compute r, s as described in Lemma 5.3.

Output: After restoring the original order, set

A A o T

r ifa; >,
(prox, (@) = § @i ifa; € (rys), fori=1,...,m.
s ifa; <s,

Algorithm 5 PDHG for Q-
1: Initialization: f(©) = f(©) = 0,0 € [0,1], 0,7 > O with o7 < 1/ max;—1___.{c;}
2: repeat - -
30 ottt — e Lo, fOR) proxi p (at® 4 oK f*¥), ecE
4 fOHD = prox, o (f®) — 73, cp KI(as*TY))
50 fUHD) = pUel) 4 g(pUetl) — (k)
6: until relative duality gap < €
7: Output: f++1),

We solve the subproblems in line 3 via Algorithm 4. Note that the bound on the step sizes is now
doubled, i.e., less restrictive since we have defined for each hyperedge one functional F, and not
two as for p = 1, i.e.,

KNS = IKTK 2 = || Y KIKe|lo = maxizy,.nfei}-

eck
6 Experiments

As our literature review revealed, in practice the method of Zhou et al [11] is most often used for
clustering and semi-supervised learning on hypergraphs. We compare to them on the selection of
UCI datasets which are summarized in Table 2. Zoo, Mushrooms and 20Newsgroups® have been
used also in [11] and contain only categorical features. As in [11], a hyperedge of weight one is
created by all data points which have same the value of a categorical feature. This is repeated for
all possible values of every categorical feature. For covertype a subset of the features is numerical.
These features are turned into categorical features by binning them into 10 bins of equal size. We
create two datasets each with two classes (4,5 and 6,7) of the original dataset.

3This is a modified version by Sam Roweis of the original 20 newsgroups dataset available at http:
//www.cs.nyu.edu/~roweis/data/20news_wl00.mat.

Prop. \ Dataset Zoo Mushrooms | Covertype (4,5) | Covertype (6,7) | 20Newsgroups
Number of classes | 7 2 2 2 4

V] 101 8124 12240 37877 16242

|E| 42 112 104 123 100

Y ecr el 1717 170604 146880 454522 65451

|E| of Clique Exp. | 10201 | 65999376 143008092 1348219153 53284642

Table 2: Datasets used for SSL and clustering. Note that the clique expansion leads for all datasets
to a graph which is close to being fully connected as all datasets contain large hyperedges. For
covertype (6,7) the weight matrix needs over 10GB of memory, the original hypergraph only 4MB.
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Semi-supervised Learning. In [11], they suggest to use a regularizer induced by the normalized
Laplacian L¢ g arising from the clique expansion

_1 _1
Lep=1- D i HW' HT D2,
where Dcg is a diagonal matrix with entries dpc (i) = Y .o HN%‘ and W’ € RIFIXIEl jg

diagonal matrix with entries w’(e) = w,/|e|. The semi-supervised learning problem can then be
formulated with A > 0 as

argming g {[[f — Y3+ A (f, Lepf)}-

The advantage of this formulation is that the solution can be found via a linear system. However, as
Table 2 indicates the obvious downside is that Lo g is a potentially very dense matrix and thus one
needs in the worst case |V |2 memory and O(|V|?) computations. This is in contrast to our method
which needs 2 . ; [e| 4 [V/| memory. For the largest example (covertype 6,7), where the clique
expansion fails due to memory problems, our method takes 30-100s (depending on \). We stop our
method for all experiments when we achieve a relative duality gap of 1076,

In the experiments we do 10 trials for different numbers of labeled points. We choose the regulariza-
tion parameter for both methods from the set 107%, where k = {0,1,2,3,4,5,6} via 5-fold cross
validation. The resulting errors and standard deviations can be found in the following table (first
row lists the no. of labeled points).

Zoo 20 25 30 35 40 45 50

Zhou et al. 35.1£17.2 | 30.3£7.9 40.7+14.2 | 29.7£8.8 32.9+£16.8 | 27.6£10.8 | 25.3+t14.4

Q1 29+3.0 1.4+22 2.2+21 0.7+1.0 0.7+1.5 09+14 1.9+ 3.0

Qm 2 2.3+1.9 1.5+24 2.94+2.3 09+14 0.8+1.7 1.24+1.8 1.6 2.9
Mushr. 20 40 60 80 100 120 160 200
Zhou et al. 15.5 +£12.8| 10.9+4.4 | 9.5 +£2.7 10.3+£2.0 | 9.0+ 4.5 8.8+1.4 8.8 +2.3 9.3£+1.0
Qi 19.5+£10.5 10.8+3.7 | 74+38 | 56+1.9 | 57+22 | 54+24 4.9+3.8 5.6 £3.8
Qp2 184+ 7.4 98+45| 99+5.5 6.4+2.7 6.3+ 2.5 45+18| 44+21| 3.0+0.6
covert45 20 40 60 80 100 120 160 200
Zhou et al. 189+4.6 | 18.3£5.2 17.2£6.7 16.6+£6.4 | 17.6%£5.2 18.4+5.1 19.24+4.0 | 20.4%£2.9
Qma 21.4+0.9 17.6+2.6 12.6+4.3 7.6+3.5 6.2+3.8 4.5+ 3.6 26+1.6 1.5+1.3
QH.2 20.7 £ 2.0 16.1+£4.1 109+49 59+37| 46+34| 33+£31| 22+18| 1.0+1.1
covert67 20 40 60 80 100 120 160 200
Qm.1 40.6 = 8.9 6.4+10.4 | 3.6 +3.2 3.3£25 1.8+0.8 1.3+0.9 0.9+0.4 1.24+0.9
QH2 25.24+18.3| 43+96| 21+20| 22+14| 14+1.1| 1.0+08| 0.7+04 | 1.1+0.8
20news 20 40 60 80 100 120 160 200
Zhou et al. 455+ 7.5 | 34.4+3.1 31.5+t1.4 29.8+4.0 27.0+1.3 273+1.5 25.7+1.4 25.0+1.3
Qm1 65.7 £ 6.1 61.4£6.1 53.245.7 | 46.243.7 | 42.4+3.3 | 40.9£3.2 | 36.1£1.5 | 34.7£3.6
Qm.2 55.0 + 4.8 48.0+6.0 | 45.0+5.9 | 40.3+3.0 | 38.3£2.7 | 38.14+2.6 | 35.0+2.8 | 34.1£2.0

We observe that our SSL methods based on Q0 ,, p = 1,2 outperform consistently the clique ex-
pansion technique of Zhou et al [11] on all datasets except 20newsgroups*. However, 20newsgroups
is a very difficult dataset as only 10,267 out of the 16,242 data points are different which leads to a
minimum possible error of 9.6%. A method based on pairwise interaction such as the clique expan-
sion can better deal with such label noise as the hyperedges for this dataset are very large and thus
accumulate the label noise. On all other datasets we observe that incorporating hypergraph structure
leads to much better results. As expected our squared TV functional (p = 2) outperforms slightly
the total variation on hypergraph (p = 1) even though the difference is small. However, as 2z 2
reduces to the standard regularization based on the graph Laplacian, which is known to work well,
we recommend this for general SSL on hypergraphs.

Clustering. We use the normalized hypergraph cut as clustering objective. For more than two
clusters we recursively partition the hypergraph until the desired number of clusters is reached.
For comparison we use the normalized spectral clustering approach based on the Laplacian Loy
[11](clique expansion). The first part (first 6 columns) of the following table shows the clustering
errors of both methods as well as the normalized cuts achieved by these methods on the hypergraph
and on the graph resulting from the clique expansion. Moreover, we show results (last 4 columns)
which are obtained based on a kNN graph (unit weights) which is built based on the Hamming
distance (note that we have categorical features) in order to check if the hypergraph modeling of the

“Note that the results on 20newsgroups differ from [11] and communication with the authors of [11] could
not clarify the difference.
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problem is actually useful compared to a standard similarity based graph construction. The number
k is chosen as the smallest number for which the graph becomes connected and we compare results
of normalized 1-spectral clustering [14] and the standard spectral clustering [22]. Note that the
employed hypergraph construction has no free parameter.

Clustering Error % Hypergraph Ncut Graph(CE) Ncut Clustering Error % kNN-Graph Ncut

Dataset Ours [11] Ours [11] Ours [11] [14] [22] [14] [22]
Mushrooms 10.98 32.25 0.0011 0.0013 | 0.6991 0.7053 48.2 48.2 le-4 le-4
Zoo 16.83 15.84 0.6739 0.6784 | 5.1315  5.1703 5.94 5.94 1.636 1.636

20-newsgroup 47.77 33.20 0.0176 0.0303 | 2.3846 1.8492 66.38 66.38 0.1031 0.1034
covertype (4,5) | 22.44 22.44 0.0018 0.0022 | 0.7400  0.6691 22.44 22.44 0.0152  0.02182
covertype (6,7) 8.16 - 8.18e-4 - 0.6882 - 45.85 45.85 0.0041 0.0041

First, we observe that optimizing the normalized cuts on hypergraphs yields better or similar results
in terms of clustering errors compared to the clique expansion (except for 20-newsgroup for the same
reason given in the previous paragraph). The improvement is significant in case of Mushrooms while
for Zoo our clustering error is slightly higher. However, we always achieve smaller normalized
hypergraph cuts. Moreover, our method sometimes has even smaller cuts on the graphs resulting
from the clique expansion, although it does not directly optimize this objective in contrast to [11].
Again, we could not run the method of [11] on covertype (6,7) since the weight matrix is very
dense. Second, the comparison to a standard graph-based approach where the similarity structure
is obtained using the Hamming distance on the categorical feature shows that using hypergraph
structure is indeed useful. Nevertheless, we think that there is room for improvement regarding the
construction of the hypergraph.
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