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LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR
OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT

THORSTEN ROHWEDDER!AND ANDRE USCHMAJEW

Abstract. Alternating linear schemes (ALS), with the Alternating Least Squares algorithm
a notable special case, provide one of the simplest and most popular choices for the treatment of
optimization tasks by tensor methods. An according adaptation of ALS for the recent TT (= tensor
train) format (Oseledets, 2011) has recently been investigated in (Holtz, Rohwedder, Schneider,
2011). With the present work, the positive practical experiences with TT-ALS is backed up with
an according local linear convergence theory for the optimization of convex functionals J. The
main assumption entering the proof is that the redundancy introduced by the TT parametrization
7 matches the null space of the Hessian of the induced functional j = J o 7, and we give conditions
under which this assumption can be expected to hold.

Key words. ALS, high-dimensional optimization, local convergence, nonlinear Gauss-Seidel,
tensor product approximation, tensor train, T'T decomposition

AMS subject classifications. 15A69, 65K10, 90C06

1. Introduction. In many application areas, the treatment of the respective
governing equations amounts to the treatment of discrete tensors, i.e. of high dimen-
sional quantities X € R™ *"2>"*"d_ For example, such problems arise in the context
of life sciences and physics in the discretization of functions from tensor spaces, often
defined implicitly as the solution of e.g. partial differential or integral equations, with
various Schrodinger equation type models and the Fokker-Planck equation providing
prominent examples. Another field where problems posed on high-dimensional spaces
turn up naturally is the active field of data mining problems. Since the standard
approaches to all such problems have a computational complexity growing exponen-
tially in the dimension d of the tensors, the only effective remedy is often the use of a
data-sparse representation or approximation of the tensors exploiting concepts of ten-
sor product approximations, and the development of such concepts has consequently
become an important and active field of mathematical research during the last years.

As a classical approach to multi-dimensional problems, the canonical format (also
known as CANDECOMP /PARAFAC model, [26]) is extensively used in practical ap-
plications for extraction of information, i.e. linear least squares problems. This is
contrasted by a lack of desirable theoretical properties [5]. Also, for treatment of
more complex equations as optimization problems, application of this format is possi-
ble [10], but has to be stabilized by somewhat artificial techniques [9]; when it comes
to treatment of equations based on a manifold approach [17], CANDECOMP lacks the
basic property of being an embedded manifold, meaning that a stable, non-redundant
parametrization of the set of rank-r-tensors cannot be given, ruling out the canonical
format for such approaches. An alternative is provided by the — also quite classi-
cal — Tucker format [35], with the set of Tucker tensors of bounded rank forming a
weakly closed set [11] with manifold properties [25], fostering for instance its applica-
tion in quantum chemistry [4]. In practical application of the Tucker format, one is
then unfortunately confronted with the problem that although it sometimes reduces
complexity immensely, the ansatz still scales exponentially in d, often prohibiting its
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2 THORSTEN ROHWEDDER AND ANDRE USCHMAJEW

application to problems of higher dimension d. Hackbusch therefore generalized the
idea of subspace approximation, being the basis of the Tucker decomposition, to a hi-
erarchical ansatz proposed in [16]: High-dimensional tensors are therein successively
decomposed to component tensors of order 3, which then can be treated separately, so
that the complexity stays linear or at least polynomial in the dimension d. Many de-
sirable theoretical features of this approach have recently been verified: Results on the
existence of best approximations and minimizers of convex functionals from [11, 12]
also apply to the hierarchical Tucker format; extending results from [19], manifold
properties can be verified [37].

From the practical side, two notable special cases of the hierarchichal ansatz
have received major attention: The HT format as used by Grasedyck [14], using a
symmetric decomposition tree, and the TT format, as introduced independently by
Tyrtyshnikov and Oseledets [30, 32], using a linear decomposition tree. For both
approaches, the applicability to various problems has lately been investigated with
promising results, see e.g. [1, 2, 20, 24, 27]; while the former approach seems to be su-
perior on some problems in the sense that it sometimes provides lower ranks [15], the
latter has advantage of being conceptually quite simple, thus often allowing for a sim-
pler analysis from the theoretical point of view, and enabling, from the practical side,
a robust sequential treatment of resulting equations to be solved for the component
tensors. In particular, one of the authors of the present publication was co-author of
the previous work [20], in which the well-known Alternating Least Squares (ALS) has
been adapted to the treatment of more global high-dimensional optimization tasks
like linear equations, eigenvalue equations etc. using the TT format. We found that
stable equations can be derived from concept of left- and right-orthogonality; pro-
ceeding in “sweeps” inspired by the DMRG algorithm used in quantum chemistry
[34, 40] gives an iteration scheme that we termed the Alternating Linear Scheme for
optimization in the TT format (also abbreviated by ALS, introduced alongside with
a modified variant MALS enabling dynamical rank-adaptation, see [20]). Our practi-
cal experience, as partly reported in [20], is that the ALS shows extraordinarily nice
convergence behaviour similar to that of ALS applied to the Tucker format. Although
other approaches based on tangent space of the TT manifold may be more suitable for
treatment of e.g. differential equations [17, 19], and although ALS might be refined
by using locally quadratically convergent methods near the sought optimum, the ALS
approach is in fact at the moment our basic method of choice for the treatment of
optimization problems in the sense that even with its striking simplicity, it converges
stably, efficiently and reliable to stationary points of the parametrized problem. Of
course, these points might not be the global minima on the approximation manifold
under consideration — it has recently even be shown that the computation of global
rank-1-best approximations is an NP-hard problem [18]. The occurrence of local
minima is a (not solely theoretical) problem common to many tensor optimization
methods; in the case of ALS for the TT format, it is often treated by random per-
turbation of computed stationary points (e,g, in practical applications from quantum
chemistry), and has for the DMRG/MALS algorithm also readily been attacked in
the recent publication [6] in a more systematic way.

The aim of the present paper is to back-up our positive practical experiences with
ALS with an according theoretical investigation of the convergence behaviour of the
algorithm when applied in the above form to the treatment of convex optimization
problems in the TT format. Our practical observation in [20] was that ALS provides
a very robust linear convergence behaviour.
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In this work we deliver the according theoretical result, by rigorously proving
local linear convergence under certain reasonable positive definiteness conditions on
the Hessian of the functional to be minimized. Our proof is an adaptation of the
concept followed in the recent paper [36], where one of the authors showed local
convergence of PARAFAC-ALS: in the neighborhood of a solution, the ALS algorithm
is identified as a perturbation of the linear block Gauss-Seidel method applied to
the Hessian at the solution [3, 29, 33]. This Hessian is only semidefinite due to
the non-uniqueness of the TT representation. In contrast to the linear case, one
has to completely remove the null space of the Hessian from the iteration to keep
the contractive properties of the Gauss-Seidel method. This can be achieved by
introducing a local normalization operator which chooses a unique representation for
the TT tensors. While this is necessary to link the convergence analysis to existing
results on the nonlinear Gauss-Seidel method [23, 28], it turns out that the sequence
of TT tensors generated by the ALS algorithm is independent of the choice of their
representations therein (Proposition 3.3 below). From the convergence result for one
choice of representations one hence obtains a practically relevant convergence result for
whole equivalence class of all possible representations. In other words, a convergence
result for ALS regarded as an algorithm on the manifold of tensors of fixed TT rank.

In short, the content of the paper can be outlined as follows: We start off in
Section 2 with a collection of facts about the TT-format that later enter the proof of
convergence; aside from ideas based on the previous work [19], we also introduce the
concepts of orbits and normalization. In Section 3, we devise a generic ALS algorithm
for which we prove convergence under assumptions on the solution and on the Hessian
of the functional (Theorem 3.7 and Corollaries 3.8, 3.9). Based on this, convergence
for the ALS from [20] is deduced (Theorem 3.10), and some supplementary results
are provided in Sections 3.4 and 3.5. Sufficient conditions for the main assumption
on the Hessian to hold are presented in Section 4.

2. The TT tensor format. Although the basic idea of our convergence theorem
is quite simple, a certain amount of technicalities and notions is needed to formulate
it. In this section we first recall the TT (tensor train) format [30, 32].

2.1. The TT decomposition. Let d € N and ny,ns,...,ng € N be given.
We use the notation R™**">* %" for the space of d-th order tensors and treat its
elements X as d-dimensional arrays, whose entries are indexed by

X(z1,%2,-..,2d), z;=1,2,...,n5 1=1,2,...,d.
Let r = (r1,72,...,74_1) where 0 < 7; < n; are integers. Further we set rq = r4 = 1.
The elements of the space

d
ﬂ — X Rr,-,l Xn; Xr;

i=1

are denoted by U = (U;,Usy,...,Uy). The z;-th lateral slice of a third-order com-
ponent tensor U; € R™i-1%" %" will be denoted by U;(z;), that is, for z; fixed U;(z;)
is the ;1 X 7; matrix given by

Ui(zi)]ksk, = Uilky, i, k).
Consider the mapping

T: U — RM>Xm2XXna, Uy 1(U) = 7(Uy, Uy, ..., Uy)
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given pointwise by
T(U) (21,22, ..., 24) = Ur(21)U2(22) ... Ug(z4)- (2.1)

Since 7 = r4 = 1, this matrix product indeed results in a real number for each
multi-index (z1,z2,...,24)-

DEFINITION 2.1 (TT<, format). A tensor of the form X = 7(U) is called a
TT<, tensor or a tensor in TT<, format, and U is called a TT<, decomposition of
X. The image of T is denoted by

T<r — T(u) C Rruxngx---xnd

and is called the set of TT tensors of rank at most r.

The mapping (Uq, Us,...,U,) — 7(Uy, Us,...,Uy,) is multilinear, so that the
TT<, decomposition has a lot of nice structural properties which are similar to those
of rank-one tensors, and thus allow for an analogous treatment, at least to some
extent. In fact, rank-one tensors are TT <, tensors where all r; = 1.

2.2. Unfoldings and TT rank. If we treat a tensor X € R™1%n2X""XNd 35 g
matrix

X(z] c R(nl-...-ni)x(ni+1-...-nd),
then this is called the i-th canonical unfolding of X. Its matrix rank is called the
i-th separation rank of X. To fix the ordering of multi-indices we choose the reverse
lexicographical ordering, e.g., (1,1),(2,1),(1,2), (2, 2).

For Uc U and i = 1,2,...,d we further define the matrices

US' = [Uy (21)Us(5) . .. Ui ()] € RMmzemix (2:2)
and
U2 = [Ui(2:)Uis1(zi41) - - - Ugzg)] € RTi-1Xminisnna, (2.3)

In U= the row vectors Uy (z1)Us(z2) . .. Us(z;) are stacked below each other (in reverse
lexicographical order). Analogously, the columns U;(z;)Uit1(2s41) - - - Ug(zq) of UZ?
are arranged. According to (2.1), the i-th unfolding of a TT<, tensor X = 7(U) can
be written as

X0 = gsigzitt, (2.4)

Hence, the i-th separation rank of a TT<, tensor X = 7(U) is at most r;. On the
other hand, if rank X9 < 7, for ; = 1,2,...,d — 1, it is always possible, using the
successive SVD algorithm of Oseldets [30], to find U € U such that X = 7(U) is a
TT<, decomposition. This makes the following definition meaningful.

DEFINITION 2.2 (TT rank). A tensor X has TT rank r = (r1,7r2,...,74-1), if
rank X =p; fori=1,2,...,d — 1. The values r; are called T'T ranks of X.

Note that we have the trivial bounds

d

r; < min ( li[ nj, H nj) (2.5)

J=1  j=it+l

for the TT ranks.
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It follows from the above considerations that
T<r = {X € Rm X2 | TT-rank(X) <r},

where the inequality is understood element-wise. By the semicontinuity of matrix
rank, this shows that 7<, is closed.

Another useful description of the TT rank was given in [19]. If we look at the
component tensors U; of a TT <, decomposition X = 7(U), we can unfold them either
into the matrices

Ui(1)
Ul = Ui:(2) € R(ri—imixrd) (2.6)
Ui(.ni)
or into
Ul = [U:(1) Ui(2) - Ui(m)] € R,

These operations are called left and right unfolding of U;, respectively. With respect
to the inverse lexicographical ordering the following recursive relations hold:

US = (I,, e USTHUE (2.7)
and
U = Uk, o UZHY) (2.8)

(where one should set US? = U2+! = 1). Using (2.1) and (2.7) inductively, one can
characterize the TT ranks as follows [19].

PROPOSITION 2.3. A tensor X = 7(U) in the TT<, format has TT rank r if and
only if fori=1,2,...,d — 1 it holds

rank U] = rank UZ | =r,. (2.9)
Note that this implies the relations
T; S Ti—1MN; and T S Ti+1Mi4+1, (210)

which, by induction, are equivalent to (2.5). The TT ranks r; of a tensor X are hence
not unrelated among each other. Since rq = r4 = 1, they can first increase for growing
¢ but have to decrease from a certain index on.

In what follows we will mainly focus on tensors of fixed TT rank r. According to
the above proposition, they are parametrized by the set

U={U€elU|rank Ul =rank U | =7, for i = 1,2,...,d — 1},

which is open and dense in . Here it is silently assumed that I is not empty.
PROPOSITION 2.4. The set

Te = {X € Rm>n2XXnd | TT.rank(X) = r} = 7(U)

) . ) . . a7 d-1
is an embedded submanifold in R™>*m2**na of dimension dimU — Y ;_; rZ and

) ) : : .57 -1
7: U — Ty is a submersion, that is, |y is of constant rank dimU — Zle 2,
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Note that submersion are always open maps [7, (16.7.5)]. Hence 7 maps open sets
in U onto open sets in 7. We do not give a proof of the above proposition here, but
refer to [37]. In the earlier work [19] it is shown that 7, is an immersed submanifold.

We conclude with the remark that 7 is not closed, but its closure is the set 7<,
of all decomposable tensors. This holds because, by the continuity of 7, the closure

of 7; contains 7(U) = T<, which is already closed.

2.3. Equivalent TT representations. One difficulty of the TT, format is
that representations are highly nonunique. Clearly, by looking at (2.1), we have

7(U) = 7(U) whenever it holds
Ui(z1) = Ur(21)Ar, Ua(za) = A7' Ua(za), and Ui(z;) = A7\ Ui(z:) A; (2.11)

for i = 2,3,...,d — 1, where the A; are nonsingular r; X r; matrices. For rank-one
tensors this is called scaling indeterminacy and we will use this terminology for TT
tensors as well. The question whether the scaling indeterminacy (2.11) is the only
kind of nonuniqueness has a simple answer.

PROPOSITION 2.5. A TT<, decomposition X = 7(U) is unique up to the scaling
indeterminacy (2.11) if and only if X has TT rank r.

Proof. The necessity of this condition follows from the fact that a TT <z decom-
position with #; < r; can be artificially extended to a TT <, decomposition by adding
zero blocks to the third-order components U;. This is then not covered by the oper-
ation (2.11). On the other hand, if rank X9 = r; for i = 1,2,...,d — 1, then (2.4)
implies US? = U<i4; and U2it! = A-1U>#1 for nonsingular A;. Using (2.7) one
finds that this is equivalent to (2.11), which proves the sufficiency of the condition. O

The scaling operation (2.11) can be regarded as the action of the Lie group

d—1

G = X GL(ry)

on U, which we denote by
0: U x G —U: (U,A) — U =:6(U,A),

with U defined by (2.11). Obviously 6 is continuous. For fixed U € U we use the
shorthand Ay for the map A — 6(U, A), and denote by

My ={U=0y(A) |Ac G}
the orbits of the group action. Proposition 2.5 states that
My ={U ell | 7(U) = 7(U)}. (2.12)

By showing that Ay is an embedding (that is, an immersion which is also an home-
omorphism onto My), one can prove that My is an embedded (not connected)
submanifold of U of dimension 221;11 r? (cf. [37]). The tangent space of My at U
will be denoted by TMy. Using the fact that the derivative of the matrix inverse

A A1 at a point A is the linear mapping H — —A"'HA™!, one calculates

05 (A)H] = (U Hy, —AT 'H1 A7 Uy Ay + AT U Hs, . ..
ey AT Hy 5 AT Uy Agn + A7 Uy Hy o, — A7 Ha 1 A7 Ugly),
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d—1
where H = (Hy, Hy,...,Hq—1) € X ,_, R"*", and expressions like AU;B with
matrices A, B are understood slicewise as AU;(z;)B.! Evaluating this formula at the
identity | = (Ir,, Ip,y. .., Ir, ,) gives

d—1
TMy = {f()H] [H e X R}
i=1
= {(UlHla_H1U2+U2H2,... (2.13)
d—1 .
coy—Hg 2Uq41 +Ugq 1Hy 4, _Hd—lUdfl) He X RHXT‘,‘}
i=1

2.4. Normalization. Elements in the same orbit parametrize the same TT ten-
sor and are therefore called equivalent. It would be convenient and useful to find a
normal form of TT rank r tensors which fixes a representation within the orbits. An
ideal normalization operator R: U — U would have the properties (i) R(U) € My
and (ii) R|aq,, is constant for all U € Y. Since My is not connected, one might only
require that R| a4, is constant on the connected components of My, but even then it
is not clear whether such an operator exists. For our purposes, we only need a local
variant. We use the shorthand A(U) for a function U — G.

DEFINITION 2.6. An operator of the form

R:OCU—-U:U~ 0y(A(U))

defined on an open subset O of U is called local normalization operator if
(i) R*(U) = R(U) for all U € O,
(ii) R is smooth in a neighborhood of its fized points,

(i) R|amy is constant in a neighborhood of fized points U.

The existence of local normalization operators is guaranteed.

PROPOSITION 2.7. For every U* € U there exists an open neighborhood O of U*
and a local normalization operator Ry-: O — U such that Ry-(U*) = U*.

Surely, this assertion can be pieced together from similar results in textbooks
(see, e.g., [7, (16.10.3.2)], but one fist has to verify that the Lie group action is
proper, which is trivial here). The intuitive idea behind the claim is that the orbits
My completely fill out 4. By putting for fixed U* a submanifold Ny« of codimension
dim My~ through U* and transversal to My, we can define Ry« by the property
Ry-(V) = 6y (A(V)) € Ny-. This is illustrated in Figure 2.1. For the most obvious
choice Ny» = U* + Wy-, where Wy is any complementary linear space to T My-
(see for instance (4.1)), the existence of such a function A(V) for V in a neighborhood
of U* can be easily obtained from the implicit function theorem.

Alternatively, taking Proposition 2.4 for granted, it follows from standard theo-
rems (e.g. [7, (16.8.8)]) that a neighborhood O(U*) of U* in Ny. = U* + Wy- is
diffeomorphic to a neighborhood O(X) of X* = 7(U*) in 7, via the mapping 7|x. .
One then can define Rys = (7|pq,.) ' o7 on O(U*). Note that Ry~ then will be a
local normalization operator for all V € T|X/1” (O(X)). These V are the unique inter-
section points of U* + Wy« with orbits close to U*. Conversely, one can show that

!Denoting the inverse operations of the left and right unfolding by superscipts —L and —R
respectively, it holds AU; B = {A[(UFB)~L]E}~ R,
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Fi1a. 2.1. The local normalization operator Ry~

for any X* = 7(U*) € Ty and X close enough to X*, the corresponding neighborhood
O(X) contains X*. In this way one can at least construct a local normalization oper-
ator for some U* € My~ without exactly knowing U*, which might be the unknown
solution of a minimization problem as discussed later.

Finding an explicit instance of a “self consistent” local normalization operator,
which does not depend on a certain U*, is a nontrivial task. Usually, one uses (2.11)
to choose a representation which satisfies

(uhH'of =1, (2.14)

which implies (U=*)TU<! = 0. If U € U, then such a representation is unique up to
scaling by orthogonal matrices. We call a TT <, representation satisfying (2.14) left
orthonormal.

The successive SVD algorithm of Oseledets [30], which decomposes a tensor of
TT rank r into the TT format produces a certain normal form which is also used in
the quantum physics community [39, 38]. This representation can be characterized
by the property that the columns of U=? consist of left singular vectors of the ith
unfolding X() = USiU2"+1 | that is,

U=t = 5V,
such that
X = usixy; (2.15)

is an SVD with singular values arranged in descending order. We call such a represen-
tation left normal. In the case that all unfoldings X(¥) have rank r; and the nonzero
singular vectors are mutually distinct (have multiplicity one), the left normal form of
a TT<, tensor is unique up to scaling by orthogonal diagonal matrices (distributions
of signs). We will call tensors with this property non-degenerate.

As shown in [22], a left normal representation satisifies the two gauge conditions

(UNT07 =1, Ui, Zia(Uf,)" = 2 (2.16)

On the other hand, if X is non-degenerate, a solution of (2.16) also is unique up
to scaling by orthogonal diagonal matrices, which shows that (2.16) is equivalent

to (2.15).



CONVERGENCE OF TT-ALS FOR CONVEX OPTIMIZATION 9

We can define a so called left normalization operator
Rp:U—-U,

which scales a TT<, representation U into the left normal form, using for instance
the successive SVD algorithm. The properties of this operator then depend on the
concrete choice of the SVD solver, which might not be known in practice when a black
box SVD is applied.

PROPOSITION 2.8. Assume that

(i) Ry is smooth in a neighborhood of its fized points,

(ii) left normal representations are fized points of Ry,.
Then Ry, is a local normalization operator in the neighborhood of left normal repre-
sentations U € U, if X = 7(U) is non-degenerate.

Proof. Since, in the case of non-degeneracy, the left normal TT decomposition is
unique up to scaling by orthogonal diagonal matrices, which form a discrete group,
the fixed points of R|aq,, are isolated points of its range. The assertion then follows
from property (i) above. O

Similar statements can be made for the analogously defined right orthonormal
and right normal representations.

3. The local convergence of the alternating linear scheme. In this section
we present an abstract alternating optimization scheme which involves rescalings dur-
ing the iteration process. First, local convergence of a particular fixed point version of
this algorithm (using local normalization) can be proved under the assumption that
the Hessian of the loss function j to be defined below (see (3.2)) is positive definite
at the solution modulo the null space caused by the nonuniquenes(2.11) of the TT <,
representation. Since we will see that convergence in the sense of orbits is not affected
when the iterates are moved on their orbits during the iteration, we then deduce a
convergence result for the general version of the algorithm, and, as a special case, for
the alternating linear scheme introduced in [20]. We also give a short treatise on ALS
for nonconvex functionals and on its application to reconstruction problems. The
discussion of the positive definiteness assumption is postponed to the next section.

3.1. Alternating optimization and scaling. Let
J: R’n1><’rL2><---><nd —)R

be a strictly convex C2-functional to be minimized. Due to the high-dimensionality
of the domain R™*"2%"X"d _the task is restricted to the set of TT <, decomposable
tensors:

J(X) = min, X € T,. (3.1)
In the parametrized version, let
j=Jor:U — R: Uw J(7(U)), (3.2)
then we seek for a solution of
j(U) = (U4, Uq,...,Uy) = min. (3.3)

A prominent example is the problem of finding a best approximation of a tensor Y by
a TT<, decomposable tensor in the Frobenius (Euclidian) norm, such that the task
becomes ||Y — 7(U)||% = min.
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Obviously, if X* = 7(U*) is a local minimum (3.1) (local in 7<.), then U* has
to be a local minimum of j in U. The converse is at least true if U* € ¢. Namely,
since submersions are open maps, it follows from Proposition 2.4 that X* is a local
minimum of J in 7;. Since this set is open in 7=, (for 7<; is closed for every T <r),
X* is also a local minimum in 7<,.

Our results will only hold for (local) solutions U* € U of (3.3), that is, for (local)
solutions X* € 7.. We assume such solutions to exist. In particular, I shall not be
empty.

Note that j is constant on orbits My C U, which has the following consequence.

PROPOSITION 3.1. Let U* € U be a local minimizer of j. Then every U* € My-
is also a local minimizer.

Proof. Assume this is not true for some U*. Then there exists a sequence (V)n
converging to U* = fy-(A) such that j(V,) > j(U*) for all n. By the continuity
of 8, the sequence V,, = 6y, (A™!) converges to U* and satisifies j(V,) = iV >
§(U*) = j(U*). This contradicts the local optimality of U*. O

In light of this observation, we will call My a local solution orbit of (3.3). The
alternating optimization approach to find a representant of My consists in iterating
the cycle

U§"+1) = argmin j(V;, Ugn), ey U;")),

Vi
U™ = argmin j(UMY v, Ul . U,
Ve (3.4)

Ufin_’_l) = argmin j(Ug"_H), e ny;l), V).
Vg

In the case of best approximation (in the Frobenius norm) this method is called al-
ternating least squares (ALS), since every micro-step in (3.4) is a linear least squares
problem then. More generally, this type of method (more precisely its gradient ver-
sion) is referred to as nonlinear block Gauss-Seidel, SOR or relaxation method [3, 29,
33]. In fact, it locally equals the linear Gauss-Seidel iteration applied to the Hessian
7" (U*) up to second order terms.

For computational and also, as we will see later, for analytical reasons, it can be
useful to rescale the iterates during the process. Given sequences of scaling operators
R, R, ... R of the form
R”(U) = 6y (A" (1),

2

the algorithm we now analyze is displayed as Algorithm 1. The ALS used in [20] is a
symmetric extension of this and will be discussed in Section 3.3.

To study Algorithm 1 in a precise mathematical framework, we shall first convince
ourselves that every ALS micro-step of (3.4) has a unique solution if the current micro-
iterate is in U, that is, satisfies the full rank condition (2.9).

ProposSITION 3.2. Let U € U. Then fori=1,2,...,d the linear maps

PU,i: Rri-1XmiXTi _y RM1XM2X X Nd V,— T(Ul, A ,U,-,l,V,-,UHl, ceey Ud)
are injective and the operators

S,‘Z U-U: U (Ul,...,Ui,l,argmin J(PU,,‘(V,‘)),UH,l,...,Ud)
V;



CONVERGENCE OF TT-ALS FOR CONVEX OPTIMIZATION 11

Algorithm 1 TT-ALS with rescaling
Require: U
forn=0,1,2,... do
for:=1,2,...,d do
1. Perform one ALS micro-step:
ot = argmin ooty v, o) o),
S, (™) = i et oL o).
2. Rescale TT representation:
Ut = R (s,(U™M)).
end for
end for

are well-defined and smooth on U.
Proof. By (2.4) and (2.7), the i-th canonical unfolding of X = Py ;(V;) reads

X = (1,, @ USITY)vEiuzitt,

Since the matrices (I, ® USi"!) and UZ**! are of full column and row rank, respec-
tively, and since unfoldings are isomorphisms, the injectivity of Py ; follows. Conse-
quently, the assumed strict convexity and smoothness of J implies that the mapping
V; — J(Py,(V;)) is strictly convex and hence possesses a unique global minimizer
which depends smoothly on U. Hence the S; are well-defined and smooth. O

Assuming for the moment that the iteration process does not leave U at any stage,
we may write Algorithm 1 as

UCH) = (R 0S40 R, 0 Sy_y 00 RM 0 5,)(UM). (3:5)

A crucial observation is that the true object of interest, the sequence of the TT tensors
T(U(")), does not depend on the choice of the scaling operations RZ(.n). For illustration,
let us recall the rank-one case. If a* is a unique minimizer of a — J(a®b® ¢) for fixed
b,c, then B~1y"1a* is the unique minimizer of a — J(a ® b ® c). Hence one ends
up with equivalent representations a* ® b® c and 31y la* ® b ® yc. Interestingly,
this generalizes to TT tensors.

PROPOSITION 3.3. Let U € U and assume S;(U) € U. Then equivalent TT
representations U e My are mapped to equivalent representations Sz(ﬁ) € Mg, (1),
that is,

Si(Muy) € Mg, (u)-
Proof. The main argument is that the linear operators Py; and Py , have the
same range [20, Lemma 3.2], and that J, by virtue of its strict convexity, has a unique

minimizer X on that space. Hence, denoting by V; and \71 the minimizers of Jo Py ;
and J o Py ,, respectively, it holds

T(S,(U)) = PUJ‘(VZ‘) = X = Pﬁﬂ(vl) = T(Sz(ﬂ))

The assertion follows from Proposition 2.5 in the form of (2.12). O
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The preceeding proposition identifies Algorithm 1 as an algorithm on the manifold
Te of tensors of fixed TT rank. The value for the convergence analysis lies in the
possibility to restrict the attention to particular choices of scaling strategies which
are easy to investigate. Using this idea, we first can prove that U1 in (3.5) is
uniquely defined.

LEMMA 3.4. Let U* € U be a local solution of minimization problem (3.3). Then
Muy- possesses an open neighborhood O C U in which the composed operator

R;")OSdOR((ﬁ)lOSd,lou-ORg")oslz(9—)0 (3.6)

is well-defined for all sequences of scaling operators (R(-n)

;). Hence, the result of one
full step of Algorithm 1 is uniquely defined if the current iterate U™ is in O. The
next iterate is given by (3.5).

Every U* € My- isa fized point of every S;. Consequently, it holds

(RY 0S40 R 084 100 R{” 0 $1)(U*) = (R o RY”; o 0 R{™)(TY).

Proof. We first show the second part. As we have seen in the proof of Proposi-
tion 3.2, the S;(U*) are constructed by replacing U} with the unique global minimum
of the strictly convex functional V; — J o Py- ;. Since by assumption U} has to be a
local minimum of this function, it is already the global one. Due to Proposition 3.1,
this argument works for all U* € My-..

Set O4 = U. Since U is open and U* is a fixed point of the continuous map Sy 1,
there exists an open neighborhood O;_; of U* such that S;_1(04-1) C O4. Hence
S4q 0 S4q_1 is defined on Oy4_;. By induction, we find a neighborhood O; of U* such
that

S4084-10-++08;
is defined on O; and even, by Proposition 3.3, on
0 :=6(04,6),

which is a neighborhood of My-. Proposition 3.3 also proves that operator (3.6) is
well-defined on O for any choice of scaling operators R™. O

1

3.2. Main assumption and convergence results. Formally, Algorithm 1 is
an algorithm in the parameter space U and produces a sequence (U(™) C U/ if the
starting point is close enough to a local solution U* € U of the minimization prob-
lem (3.3). The standard approach to prove local convergence U™ - U* would be
a contraction argument. But since we made no assumptions on the scaling opera-
tors RE") so far, no point of the solution orbit My- has to be a fixed point of the
iteration at all. On the other hand, we initially started with the minimization prob-
lem (3.1) on the set 7<,. In practice, we are thus only interested in the convergence
7(UM) — 7(U*). According to Proposition 3.3 the latter sequence is independent of
the scaling operators Rl(." . Our trick is now to use a scaling strategy that enables us
to use fixed-point arguments in the parameter space.

As a particular instance of (3.5), we investigate the iteration

Ut = (Ry- 0 S)(UM), (3.7)
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where Ry« is a local normalization operator as described in Proposition 2.7 and
S:= SdoSd,l o---051

is the “pure” ALS operator. By Lemma 3.4, Ry~ o S is well-defined and smooth in a
neighborhood of U*. Note that every point in My~ is a fixed-point of S, but only U*
is a fixed point of Ry-~, at least locally. Hence U* is the only fixed point of Ry~ oS
in My~ in a neighborhood of itself.

If j would be a quadractic form, then the alternating optimization given by oper-
ator S is just the standard block Gauss-Seidel iteration applied to the Hessian matrix
7"(U*) of j at the minimizer U*. If j is arbitrary, then this is at least asymptoti-
cally true (Lemma 3.6 below). Since j is constant on the orbit My, the null space
of j”(U*) at least contains the (27;11 r?)-dimensional tangent space TMy-. Thus,
as known from theory, elements in TMy- will not be damped by the Gauss-Seidel
method. As we will see later, this drawback is compensated by the local normalization
operator Ry-. What we need to assume for our convergence proof is that j”(U*) is
positive definite in all other directions. Such an assumption is natural and in line
with usual results concerning the convergence of the nonlinear SOR, if one takes the
scaling indeterminacy in our setting into account.

MAIN ASSUMPTION. At the local minimizer U*, the Hessian j'(U*) is of full
possible rank,

d d—1
rank j"(U*) = Zri,lniri - 72 thatis, kerj"(U*) =TMy-. (MA)

i=1 i=1

We should make clear that the particular choice of U* has no qualitative influence.
In accordance to our viewpoint of the ALS algorithm as an ,,iteration of orbits”,
assumption (MA) is in fact an assumption on the whole solution orbit My-.

PROPOSITION 3.5. Let My- C U be a local solution orbit. If (MA) holds for
U* € Muy-, then it holds for all U* € My-..

Proof. Let U* = 65-1(U*) for some A € G.2 Then for all H € i we have

§(0* + H) = j(0a1 (U* + 6a(H)) = j(U* + 62 (H)),

where we used that j is constant on orbits. Taking into account that j(U*) = j(U*)
and j'(U*) = 5/(U*) = 0, the above relation implies

3"(0)[H, H] = j"(U")[0a(H), 0 (H)).

Now note that 6, is an isomorphism from U onto itself (with inverse #5-1). Hence
§"(0*) and j(U*) are of same rank. [0

We now present the convergence analysis of Algorithm 1 under assumption (MA).
The validity of this assumption will be discussed in the next section.

LEMMA 3.6. Let U* € U be a local minimum of (3.3) for which main assump-
tion (MA) holds. Partition j"'(U*) = L+ D + U according to the block variables U;
into lower block triangular, block diagonal and upper block triangular matrices L, D
and U, respectively. Then D is positive definite and it holds

S'(U*) = —(D+ L) 'U.

2In this proof we use the shorthand 8 for the map U s 4(U, A).
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Proof. Clearly, j”(U*) is positive semidefinite. Using the full rank proper-
ties (2.9) of U*, it is easily verified from (2.13), that vectors of the form H =
(0,...,0,H;,0,...,0) do not belong to TMy+ unless H; = 0. It follows from (MA)
that D is positive definite, and hence D + L invertible. A nice calculation of S’'(U*)
which leads to the asserted formula can be found in 3, Lemma 2]. O

In the following, we denote by

H|z = (j"(U")[H,H])/?

the energy seminorm of j”(U*). Let further || - || denote a norm on /. If main
assumption (MA) holds, then

€[, = (I - Ry. (U")H| + [H|p

also defines a norm, for if |H|g = 0, then H € ker j”/(U*) = TMy-, and since Ry- is
constant on a neighborhood of U* in TMy-, ||(I — Ry. (U*))H|| = ||H|| = 0 implies
H=0.

THEOREM 3.7. Let U* € U be a local minimum of (3.3) for which main assump-
tion (MA) holds. Then the iteration (3.7) is locally g-linearly convergent to U* in the
norm || - ||« at an asymptotic rate of at least ¢ = |S'(U*)|g < 1. That is, for every
€ > 0 there exists a neighborhood OF CU of U* such that

0"~ T, < (g + €)[U7 - T

for all n, if UO s in (O
Proof. Since R%;. = Ry- in a neighborhood of U*, it holds

(I - Rig.(U")) Ry, (U*) = 0.

Further, for sufficiently small H € U, we have j(U* + H) = j(Ry-(U* + H)), which
together with j'(U*) = j'(Ruy+(U*)) = 0 shows

3"(U")[H, H] = j"(U")[Ry. (U")H, Ry. (U")H],
that is,
|Ry. (U)|g = 1.
Consequently, we can estimate
[(Ry- o S)'(UMH]|. = ||Ry. (U")S'(U")H]|. < [S'(U")|sH|p < [S"(U")|el[H]|..

By the previous Lemma 3.6, S'(U*) is the error iteration matrix of the linear block
Gauss-Seidel method applied to j”(U*) and is known to be a contraction in the energy
seminorm, that is, |S'(U*)|g < 1, see [23, Eq. (9)] or [28, Theorem 3.2]. The theorem
is thus a consequence of the contraction principle. O

Generic estimates for ¢ = |S'(U*)|g are given in [41].

We can now give two equivalent convergence statements for arbitrary scalings.

COROLLARY 3.8. Let My~ C U be a local solution orbit of (3.3) for which the
main assumption (MA) holds.> Then the sequence (Mym)) of orbits produced by

3This phrase makes sense by Proposition 3.5.
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Algorithm 1 is locally r-lineary convergent to My~ at an asymptotic rate of at least
g = |S"(U%)|g < 1. That is, for every e > O there exists a neighborhood O, C U of
My« such that

lim sup {/dist(Muy+, Mym)) < q+¢,
n—oo
if UO s in O.. (The distance is measured in any norm ||-| onU.)

Proof. Since it is independent from the choice of norm, the assertion follows im-
mediately from Theorem 3.7 and Proposition 3.3 by choosing a suitable neighborhood
0! of any U* € My~ and setting O, := 6(0?,G). O

COROLLARY 3.9. Let X* = 7(U*) be a local solution of (3.1) with full TT rank
r, that is, U* € U. Assume main assumption (MA) holds for X*.> Then the sequence
(X(")) of TT tensors produced by Algorithm 1 is locally r-lineary convergent to X* at
an asymptotic rate of at least ¢ = |S'(U*)|g < 1. That is, for every € > 0 there exists
a neighborhood X, C T<, of X* such that

limsup {/[|X* — 7(UM)|| < g +e,
n—0o0
if X0 = 7(U©) is in X, (with || - || an arbitrary norm on R™*m2XXna ).
Proof. This follows from Theorem 3.7 and Proposition 3.3 by choosing a suitable
neighborhood O} of any U* € My- and a constant C. > 0 such that

[7(U") = 7(U)|| < Cc[|U" - U,

for all U € OZ. Then, by Proposition 2.4, X, := 7(0O%) is a neighborhood of X* in 7
for which the assertion holds. Since 7. is open in 7=, X, is also a neighborhood in
T<.. O

3.3. Convergence of ALS from [20]. The alternating linear scheme (also
ALS) as introduced in [20] is a symmetric extension of Algorithm 1. The algorithm
is described in Algorithm 2.

As one can see, the components U; are first optimized from left to right and then
backwards. After each micro-step the representation is changed according to a QR
decomposition of the unfolding. Shifting of R and R” was noted for convenience of the
reader and has not to be implemented, since the affected component will be updated
in the next micro-step anyway. After the first inner loop, the representation is left
orthonormal, and after a full loop right orthonormal. The details of the algorithm are
described in [20].

The convergence analysis of Algorithm 2 proceeds by the same lines as for Al-
gorithm 1. It can be shown that it is well defined in a neighborhood of a full rank
solution orbit My~ C U. More precisely, let S, = S denote the left to right ALS
operator from above, and Sg = Sy 0 S45_1 0---0S; the right to left operator. Then
Algorithm 2 produces the same orbits as

Ry-0Spo St
(where formally U, and U; are updated twice in a row). The local behaviour is
governed by the spectral properties of the matrix (Sg o Sg) (U*) = SR(U*)S,(U*),
which is the error iteration matrix of the symmetric linear block Gauss-Seidel iter-

ation. In the same way as S7(U*), matrix Si(U*) is a contraction in the energy
seminorm [28, Theorem 3.2], and hence

|(Sr ©S1)' (U")|g < |Sp(U)|e - [S1(U")|e < 1.
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Algorithm 2 Alternating linear scheme?
Require: U
forn=0,1,2,... do
fori=1,2,...,d—1do
1. Perform one ALS micro-step:
ot = argmin JOC o v, ol o),

—1 i1
2. Make a (tall) QR decomposition:

(T")E = QR.
3. Keep @, shift R to the right:
ot @t Ul « Ul
end for
fori=d,d—1,...,2do

1. Perform one ALS micro-step:
U = argmin O, L, T, v, ulttY oty
A\

2. Make a (tall) QR decomposition:

(UF)HT = QR.

7

3. Keep Q7, shift R to the left:
o @T)F, T TR

end for
end for

We conclude the following.

THEOREM 3.10. The convergence results of Theorem 3.7 and Corollaries 3.8, 3.9
hold for the ALS Algorithm 2 from [20], with the convergence rate replaced by q =
|(Sr©5L)'(U")|e.

3.4. Decomposition of tensors with known rank. If in the case of least
squares approximation, the rank of the approximand Y matches that of the used TT
manifold, the ALS from Algorithms 1 and 2 usually returns a TT decomposition of
Y after one run over all components, see [20] for numerics. As a generalization of [20,
Lemma 4.2], we prove that this holds independent of the scaling and of orthogonality
of the components.

PROPOSITION 3.11. Assume Y = 7(V) € R™m*n2XXna hag TT-rank r. Then
Algorithm 1 applied to

1
jiU—->R: U 5|\Y77(U)||iﬂ

finishes with a TT decomposition Y = 7(UWM) after one loop over i = 1,2,...,d, if
the starting point U©) is in

V={UelU|rank(VE (UE )T)=r; fori=1,2,...,d—1}.

This set is open and dense in U. The complement U \ V has measure zero.
Proof. Let Y = 7(V) be a left orthonormal TT <, decomposition (see (2.14)).

We set (UM)<0 = V=0 = 1 and assume (UM)<"1 = V<i~1 for some 1 < i < d.

4See footnote 1 on page 7 for notation.
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Using (2.4) and (2.7), it holds for the i-th micro-step

(UME = argmin  ||(I,, ® VS H)[VEVZHL - 7. (U©)21)
ZERTi—1mi X7

= argmin |[VEVZT— Z.(UO)=iH b,
ZERTi—1mi XTi

where we used that (I,,, ® V=i~1) has orthonormal columns (see (2.7)). Hence,

(UME = via
with® A = VZiH1((U©)>iH+1)i Tt is easy to deduce from (2.8), that, by the choice
of U matrix V=>i+1((U©)>+1)T and with that matrix A are invertible. In con-
sideration of Proposition 3.3 we can assume A = I, (for ¢ = d this necessarily holds)
and proceed by induction.

For completeness we prove the assertions on V. While it is obvious that V is open,
we could not find a reference for I \ V having measure zero. We therefore deduce
it from the following lemma by choosing, for each i, E = ker Vﬁu and s =r =1
therein. 0

LEMMA 3.12. Let 1 < s <r <mn and E be an (n — r)-dimensional subspace of
R". Consider the set Qs = {A € R"*° | rank A = s, ran AN E = {0}}. Then the
complement Q¢ has (Borel) measure zero in R™*5.

Proof. We proceed by induction over s. For s = 1 the assertion is clear. Assume
it holds for some s < r. Then, Q¢ x R”, interpreted as subset of R”*(**1) is a null
set by Fubini’s theorem. It hence suffices to show that Q§,; N (2, x R™) has (Borel)
measure zero in R?*(5t1) But this follows again from Fubini’s theorem, since for
each A, € Q, the cut

{aeR"|[A; a]€Qi 1} ={aceR"|acrani, ®E}

is a (Borel) null set in R™ (because dim(ran A; @ E) < n). O

3.5. Non-convex functionals. The strict convexity of the functional J was
needed in Proposition 3.2 to guarantee the unique solvability of the optimization
steps (3.4). On the other hand, we have seen in the proof of Lemma 3.6, that the main
assumption (MA) implies the positive definiteness of the block diagonal of j"(U*).
This is then true for all U in a suitable neighborhood of My-. Hence, if j = Jo 7
would be a quadratic form, the unique solvability of the micro least squares problems
could be locally guaranteed by (MA). This observation opens the door to an extension
of Algorithm 1 to nonconvex functionals, in which at each micro step of (3.4), the
functional

1 -1

in,i(Vi) = ji(U™)V, + 3Ji (U™)[Vy, Vi

is minimized instead of j, where U™ = (Ugn_‘_l), e, Uz(-n_:l), Ugn), e U((in)) denotes
the current micro iterate, j; the i-th partial derivative of j and j;’ the i-th diagonal
block of the Hessian. Minimizing ¢,, ; is nothing else than taking one Newton step to

solve

oot v, o, o) = o,

5By Mt = MT(MM7T)~"! we denote the (right) pseudo inverse of a matrix M with full row rank.
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for V;, starting from U™, This kind of procedure is called approximate nonlinear
relaxation in [33] and Gauss-Seidel-Newton method in [29].

By the above considerations, a corresponding iteration operator S can be defined
in a neighborhood of My, given of course that assumption (MA) is satisfied. It is
then again true that S”(U*) is the error iteration matrix of the linear block Gauss-
Seidel method for j"'(U*), see the proof of [29, Theorem 10.3.3]. Note that the claim
of Proposition 3.3 is not true anymore. If we hence restrict ourselves to rescaling
iterates only after one complete loop by a local normalization operator Ry, that is,
consider the iteration

U = (Ry. 0 §)(UM),

then we can immediately conclude that the iterates will converge linearly to U*,
provided that the starting point is close enough to U* and assumption (MA) holds.

For the practical aspects concerning the choice of local normalization operators
we refer to Section 2.4 again.

4. Estimates for the Hessian and discussion of the main assumption.
The main assumption (MA) entering the proof of convergence in Theorem 3.7, is that
the Hessian j(U*) is of full possible rank dim#/ — E?;ll r?, meaning that j”(U*) is
positive definite on any complementary subspace of T My-«. The problem in showing
that (MA) holds is that the convexity of the functional J is not necessarily inherited
by the functional j defined on the parameter space, even if the redundancy on T My-
is factorized out. The properties of j rather depend both on the functional under con-
sideration and on the properties of the manifold 7<, used; therefore, condition (MA)
is usually not trivial to verify. For the case of approximation in the Tucker format,
necessary conditions have recently been given in [8]. For the canonical format see [36].
We will give two sufficient conditions for the TT-case in this section: one simple, more
generic result for convex functionals, and one more elaborate result for the concrete
example of least-squares approximation problems, where a condition on the singular
values of the tensor to be approximated guarantees that (MA) holds. To verify (MA),
we will in both cases use the following equivalent criterion, based on the idea of the
introduction of gauge conditions for the parameter space already used in [19]. Recall
the left unfoldings defined in (2.6).

CRITERION FOR (MA). For U = (U1, Ua,...,Uy) € U, define

Wy :={W = (W,Wy,...,.Wg) el | ( WHTUF =0 fori=1,2,...,d—1}, (4.1)

the so-called gauge space at U. This is a subspace of dimension dim U- Zf;ll r? of
the component space U. Therefore, if

7"(U*)is positive definite on Wy, (4.2)

then (MA) is fulfilled. In fact, it holds U = TMuy- ® Wy- so that (4.2) and (MA)
are equivalent.

One could use any other space complementary to My, but the above choice
of Wy« will turn out to be useful. Since j = J o 7, we have to show that

3"(U")[W, W] = J"(r(U"))[r' (U)W, 7' (U")W] + J' (r(U")) (=" (U")[W, W])
(4.3)
is positive for all nonzero W € Wy-. We will assume that the first summand of the
right side is always positive. Since 7/(U*) maps Wy~ onto the tangent space of T,
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at 7(U*) (Proposition 2.4), this means that J'" is positive definite on that tangent
space — a natural condition and for instance always satisfied for the case of best
approximation. However, this condition is not sufficient, one also has to control the
second term.

4.1. A generic condition for positive definiteness. The following result
shows that at least for local minimizers U* € U of j, which are sufficiently close to
the unique minimizer Y of J on R™ *"2* " *"d aggumption (MA) can be expected to
hold. For this, it is necessary that the approximation manifold 7; is good enough, that
is, close enough to Y. As before, we denote by || - || arbitrary norms on R™1*"m2% x4
and R™i-1 XM X7

THEOREM 4.1. Let Y be the unique minimum of the strict convexr functional
J on (Rrrxn2xoxna 41 |). Assume that J"(Y) is positive definite. Then for every
U* € U, there exists a A > 0 (depending on J and U*) such that if Y is close enough
to 7(U*),

Y —r(U)[ < A,

then the following holds:
(i) Assumption (MA) is satisfied for j"(U*).
(ii) If U* solves j'(U*) = 0, there is an open neighbourhood O of T(U*) such
that 7(U*) is the unique minimizer of J on O N T<;.
Proof. Let || - || also denote the norm on I. First, by assumption, there is an
a > 0 with

7" (Y)[W, W]|| > a| W]
Second, on some fixed ball of radius € around X, J' is Lipschitz continuous, so that
[7'(X) = J'(r(U)Il < BIX — 7(U7)]|

for some B > 0 and all X in that ball. Further, it is not difficult to show that 7/(U*)
is injective on Wy« (cf. Proposition 2.4). Hence there exists v > 0 with

7' (U)W > +||W]|
for all W € Wy~. Finally, we have
7" (U)W, W]|| < §||WIJ

for some § > 0. Now if |[Y — 7(U*)|| < A = min{‘%?,e}, then we can estimate (4.3)
as follows:

§(U) W, W] > [ (U)W — [l7'(r(U*)) = J'(Y)] (U)W, W]|
> (ary - BOA) WP > 0

for all W € Wy, where we used J'(Y) = 0. By (4.2), this shows (i).

In particular, U* is the unique solution of j'(U) = 0 on some neighborhood of
U* in U* + Wy-«. We again have to refer to Proposition 2.4 which implies that 7 is
a diffeomorphism between such a neighborhood and a neighborhood of 7(U*) in 7.
Hence 7(U*) is the unique minimizer of J in a neighborhood of itself in 7. Since this
set is open in T<;, (ii) follows. O
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4.2. A positive definiteness result for least squares approximation. In
the previous theorem, A depended on J, but also on the constants 7, bounding the
derivatives of 7 at U*. It is natural to ask whether the condition on the latter also can
be replaced by conditions on the minimizer Y. In the case of least-square approxima-
tion, the answer is positive in certain cases: We can impose an (unfortunately rather
pessimistic) separation condition on the singular values of the unfoldings of the tensor
Y to be approximated. The exact statement is subject of the next theorem in this
section. We will now consequently use the notation ||A||r and (4, B) = tr(ATB) for
the Frobenius (Euclidian) norm and inner product, and ||A]|s for the spectral norm
of matrices.

THEOREM 4.2. Letr = (r1,7y...,74-1) be fized, and let Y € Rm1*nzxxnd
be such that for each of its unfoldings Y® defined in (2.4), the ri-th singular value
(3)

;= oy; is well separated from the next lower eigenvalue o; := 0,(;)“, so that

(d* l)gl < 0;.

Let Y, denote the (unique) best rank-r; approzimation of Y. Then, if a TT tensor
X* = 7(U*) € T, fulfills

o; — (d—1)g;

*\ (1 <&
1Yy, = (X*)D |y =: 8 < ; : (4.4)
for alli=1,2,...,d — 1, the Hessian j"(U*) of the functional
. 1 2
i(U) = SIIY = 7(U)l[% (4.5)

at U* is positive definite on W+ and hence (MA) holds.
Before we approach the proof, we highlight the following special cases.

1. For reconstruction problems, in which the rank of the tensor Y to be approx-
imated is known to equal r, we have g; = 0; therefore, j(U*) is positive definite for
all U* with 7(U*) = Y. This can also be seen from (4.3), since the second term van-
ishes in that case. However, recall from Proposition 3.11 that Algorithm 1 is usually
finite and exact in that case.

2. For the matrix case d = 2, the gap condition reads ¢,/a; < 1, which is
equivalent to the uniqueness of a best rank-r; approximation Y,, = (Uj})L(U3)E.
It is not too difficult to see that this condition is also neccessary for (MA) to hold.
Namely, if it is not satisfied, we can find a curve on the level set of best approximations
which cannot be obtained by transformations (U})FA~1A(U3)E.

The proof of Theorem 4.2 is is a bit more involved. The technical details are
provided Lemma 4.3. We will make heavy use of the matrices

US = [Uy(21)Us(2) - .. Ui(x;)] € Rmmeemixr
and
U= = [Ui(2:)Ui1(2it1) - .- Ug(zg)] € RV-1XMini41md
introduced in (2.2) and (2.3), and additionally define similar matrices by letting

USH{V,) o= [Uy(21)Us(2) ... Vi(a;) ... Ug(x;)] € RMmzemexrs
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for V; € Rmi-1*mi*7i That is, US!(V}) is obtained by replacing in US? the compo-
nent U; by V;. In the same way, we define

UZH(V;) = [Ui(z:) Ui (mig1) - Vi(e;) - Ua(g)] € RT-1XMinis1omnd,

The reason for this notation is that 7(U) and its derivatives may be expressed in a
short, versatile way: Using the mapping

ten: R("l---"i)x(ni+l---"d) _y RP1Xn2X-Xna

that takes an unfolding of a tensor to the tensor itself, we have the identities

7(U) = ten(U={(U;)U=") = ten(U="1UZ¥(Uy))

fori=1,2,...,d, as well as the representations
d d
T(U)[W] =) 7(Uy,...,Wi,...,Ug) = Y ten(USUZH(W,)) (4.6)
i=1 i=1
and

d d
(U)W, W] =2 7(Uy,..., Wi, , W, Uy)

i=1 j>i
d d

=23 Y ten (Uﬁi(wi)UZi“(Wj)).
i=1 j>i

The derivatives of 7 will be estimated based on the following lemma.

LEMMA 4.3. Let U = (Uy, Us,...,Uy) €U be a left orthonormal T'T component
vector, that is, (UR)TUL = I,, fori = 1,2,...,d — 1., see (2.14). Further, let
W e Wy.

(i) For1<j<i<d there holds

(U=HTUS =L, [US(Wi)llr = [Willr, (4.8)
(ii) Fori # j the matrices US"1UZH(W,) and USI~1UZ4(W;) are orthogonal

with respect to the Frobenius inner product.
(iii) It holds

d
I (UYW([F =D 1[0 (W)l (4.9)

(iv) Let X = 7(U). Denote by v;,T'; the smallest resp. largest singular value of
the unfolding X9, Then for 1 < j <i < d the estimate

Yil[Willp < [[UZH(W))||p = [[UZ(W,)||p < T;||Wil|p (4.10)

holds.

Proof. The first statement in (i) follows immediately from the left orthonormality
of the component functions and (2.7). For the second, we observe that US*(W;) =
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USi—1R(W,) with the right-unfolding defined in (2.2), by which we obtain using the
previous result that

(US/(W,), US/(W))) = (U="H)TUSTWE WE) = [Wlp = [Wilp.
For j < i,
U (W))|lr = [UH(W))||r
again holds as a consequence of left orthonormality, which one can use to sum up the

components left of W; to obtain the above identiy. To show (ii), let j < 4, then it
follows from (i) and (2.7) that

(U=I71U29(W5), USTTU=H(W))) = (U=(W)), U= (W)

is zero, since (WF)" U} = 0. Now (iii) follows from (i),(ii) and (4.6). Finally, we see
that

x () — g<igzit!
is a full rank decomposition with U<! being orthogonal by (a). Thus, the singular

values of UZ**1 coincide with those of X (9. Using that UZ*(W;) = UZ'WE, the
inequality

RIWE|F < ((U=)TU=HIWE W) < TFW

shows (iv), since the middle term equals ||[UZ*H"WF||%. O

We are now in the position to give the proof of Theorem 4.2.

Proof of Theorem 4.2. We will write U instead of U* and X = 7(U) for brevity.
At first, we note that by Proposition 3.5, the condition (MA) transfers from any U € U
to its orbit My. It therefore suffices to verify the condition (4.2) for left orthonormal
U € U (Also note that (4.4) is a condition on the orbit of U). Let therefore W € Wy
be nonzero. Differentiating j given by (4.5) we obtain

7"(U) W, W] = (r'(U)W, 7' (U)W) + (Y — U, 7""(U)[W, W]). (4.11)

We start by estimating the second term on the right hand side. We denote the
i-th unfolding of Y — X by Z(). Using the expression (4.7), we have

d d
(29, 7" (U)W, W])| <237 37 (29, US(W) U1 (W),

=1 j>i
Utilising a singular value decomposition Z*) = P;%;Q; and the estimate ||AB||p <
[|All2]|B||F, we have for each term from this sum
(29, USH(W) U= (W)))| = [(Qi(U=(W;)T, 57 PTUS (W)
<NQi(U=H (W) TI£ISillz - | P US (W)l

= 1Sl UHH (W) | £ I Wl e,
(4.12)
where we also used (4.8) in the last line. The singular values o contained in X; are
bounded by

o <|ZON: = I1YD — Yl + 1Y, — XDp < g; + 6.
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Additionally, let again +; denote the smallest singular value of X ("), then, since 7; is
the smallest singular value of Y,,, it holds that |&; — ;| < |[|[Y,, — X®||5 = §;, see [21,
Eq. (3.5.32)]. Hence, by (4.10),

[Willr <2 HIUZH(W))|[r < (7 = 6:) U (W) ||
Inserting these relations into (4.12), the assumption on §; implies
(Z0, USH (W) UZHH(W,) < (g; 4 6:) (@ — 6:) [ UZH(W)|[#][UZ (W)

1 ; ,
< 1 [T (W) [T (W)

for each i, so that we find

d d

O)W, W] < 220 30 S U (W) ][0 (W) .

i=1 j>i

Now, taking (4.9) into account, we can bound (4.11) from below by

d
J" (U)W, W] > Y [[U7H(W))|F ~ ZZ [O=H(W)llF[T= (W)l

i=1 i=1 j>i
d

which completes the proof. O

X (= wal- - 102 (W))l) >0,

VM=

5. Conclusions and perspectives. We have shown local linear convergence of
the alternating linear scheme for the T'T format, supplementing the linear conver-
gence behaviour of TT-ALS as observed in practice [20] by an according theoretical
analysis. The proof bases on the convergence of the nonlinear Gauss-Seidel method,
and shows that convergence does not depend on a specific component realization
U = (U, Ugy,...,Uy) of a tensor 7(U), but rather on the orbits My of equivalent
TT representations. As detailed in Section 3.3, an important consequence is that the
proof therefore also holds for the ALS-QR algorithm as proposed in [20]. There, a QR
orthogonalization step is performed after each component optimization step each to
keep the resulting equations for the components U; well-conditioned, and we found
this step to be an essential ingredient in view of the practical applicability of the ALS
algorithm.

Our general idea of proof as pursued in this work extends to the Tucker format
and, more generally, to those tensor networks [13] for which the redundancy of the
respective parametrization can be characterized explicitly as exemplified in this work
for the TT format. Also, it should be investigated, if on the basis of our present
proof convergence of the promising DMRG algorithm [40, 38, 34], used for eigenvalue
computations in quantum physics and investigated lately under the acronym MALS
for more general optimization tasks in [20], also may be verified.

The major task that remains in the TT case as well as in others is probably to
verify the main assumption, i.e. the rank condition (MA) on the Hessian j" of the
composed functional j = Jo7. For the TT case, we showed here that this assumption
holds true for two interesting special cases, but finding generic conditions under which
the assumption holds appears to be a rather nontrivial task. Note that the condition
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(MA) also is on the very basis of proofs of convergence for many other algorithms
that are or might be used in tensor optimization, examples including for instance
the nonlinear (parallelizable) Jacobi method for the treatment of optimization tasks,
or various variants of Newton’s method applied to the gauge space characterized in

[19]

(see also [8] for an analogous approach for the Tucker format). As well, (MA)

implies positive answers to important theoretical questions as existence of local best
approximations on manifolds, local uniqueness of solutions of more global convex
optimization tasks etc. Therefore, further necessary or sufficient conditions giving a
characterization of cases where (MA) holds are strongly desirable.
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