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Abstract

We survey recent results on the constructive approximation of the dis-

tribution of the solution of an SDE by probability measures with finite

support, i.e., by quadrature formulas with positive weights summing up

to one. Here we either consider the distribution on the path space or a

marginal distribution on the state space. We provide asymptotic results

on the N -th minimal error of deterministic and randomized algorithms,

which is the smallest error that can be achieved by any such algorithm

not exceeding the cost bound N .

1 Introduction

Consider a stochastic differential equation (SDE)

dX(t) = a(X(t)) dt + b(X(t)) dW (t), t ∈ [0, 1],

driven by a Brownian motion W and, for simplicity, with a deterministic

initial value X(0) = x0. Assuming at least existence of a weak solution

and uniqueness in distribution, we study the constructive approximation

of

• the distribution µ = PX of the solution on the path space X or

• the marginal distribution µ = PX(1) of the solution at time t = 1 on

the state space X

by probability measures µ̂ with finite support. Hence

µ̂ =
n�

i=1

ci · δxi



2 Dereich, Müller-Gronbach, Ritter

with n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn > 0 such that
�n
i=1 ci = 1.

In both cases µ is given only implicitly, which constitutes a major

challenge. Obviously µ̂ yields a quadrature formula
�

X

f dµ̂ =
n�

i=1

ci · f(xi)

for the integral
�
X
f dµ of any µ-integrable function f : X → R.

We study deterministic as well as randomized algorithms in a worst

case analysis with respect to classes of SDEs, i.e., classes of parameters

(x0, a, b). Typically, these classes are defined in terms of smoothness and

degeneracy constraints for the drift coefficient a and the diffusion co-

efficient b, and x0 is assumed to belong to a bounded set in R
d. The

coefficients a and b are accessible only via an oracle that provides func-

tion values or derivative values of these functions at arbitrary points

in R
d, and the real number model is used to define the notions of an

algorithm.

The worst case error e(Ŝ) of an algorithm Ŝ is defined in terms of a

metric on the space of probability measures on X, and we are interested

in algorithms Ŝ with an (almost) optimal relation between e(Ŝ) and

cost(Ŝ), the worst case computational cost. To this end we study the

N -th minimal errors

eranN = inf{e(Ŝ) : Ŝ randomized algorithm with cost(Ŝ) ≤ N}

and

edetN = inf{e(Ŝ) : Ŝ deterministic algorithm with cost(Ŝ) ≤ N}.

Actually we survey asymptotic upper and lower bounds for these quan-

tities as well as algorithms that achieve the upper bounds. The results

and the technique are very different in the cases dim(X) = ∞ and

dim(X) < ∞, i.e., whether we aim at the distribution on the path space

or at a marginal distribution on the state space.

The problem of approximating a probability measure on X by a prob-

ability measure with finite support w.r.t. a Wasserstein metric is called

the quantization problem, see, e.g., [7, 10, 28]. We use this terminology

for a general metric as well, and accordingly construction of quadrature

formulas may also be called constructive quantization.

We briefly outline the content of this survey. In Section 2 we introduce

the basic notions of algorithms, error, and cost for the construction of

quadrature formulas. In Section 3 we study deterministic algorithms

for approximation on the path space, see [5, 6, 18, 19, 24, 29], while
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Section 4 is devoted to the analogous problem on the state space, see

[3, 14, 15, 16, 21, 25]. In Section 5 we analyze randomized algorithms

for marginal distributions on the state space by means of a randomized

quantization technique, see [9].

In the sequel we use an ≈ bn to denote the strong asymptotic equiva-

lence of sequences of positive reals, i.e., limn→∞ an/bn = 1. Furthermore,

an � bn means an ≤ κnn with a constant κ > 0. Finally an � bn is used

to denote the weak asymptotic equivalence, i.e., an � bn and bn � an.

2 Algorithms, Error, and Cost

We informally introduce the notions of deterministic and randomized

algorithms, and we define their cost and their error for approximation of

PX or PX(1) by measures with finite support. Actually, we are interested

in the approximation problem for a whole class of SDEs, which is defined

by constraints on the parameters x0, a and b. We assume that

(x0, a, b) ∈ H = H0 ×H1 ×H2,

where H0 ⊂ R
d and where H1 and H2 are classes of functions R

d → R
d

and R
d → R

d×d, resp., that are at least Lipschitz continuous. Hence

E �X�s∞ < ∞ for every SDE with (x0, a, b) ∈ H and every s ≥ 1.

We take X = C([0, 1],Rd) or X = Lp([0, 1],Rd) for 1 ≤ p < ∞ with

the corresponding norms, if we study approximation of the distribution

on the path space, and we take X = R
d, if we study approximation of

the marginal distribution at t = 1. Finally, we use M(X) to denote the

space of Borel probability measures µ on X such that
�

X

�x�sX dµ(x) < ∞

for every s ≥ 1, and we consider a metric ρ on this space. We study the

mapping

S : H → M(X),

where

S(x0, a, b) = PX or S(x0, a, b) = PX(1).

In the framework of information-based complexity S is the so-called

solution operator, see [33]. Our computational task is to approximate S

by means of algorithms that yield measures in

M0(X) = {µ ∈ M(X) : | supp(µ)| < ∞}.
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In particular, (x0, a, b) ∈ H is the input to any algorithm, but a and b

are accessible only via an oracle that provides function values or deriva-

tive values of these coefficients at arbitrary points in R
d. The output

of an algorithm, assuming termination, is a list c1, x1, . . . , cn, xn, where

c1, . . . , cn are probability weights and x1, . . . , xn are points in X, suitably

coded if dimX = ∞. Computations with real numbers and with elemen-

tary functions like exp and floor are carried out exactly, and an algorithm

has access to a perfect random number generator for the uniform distri-

bution on [0, 1]. For a formal definition of this model of computation we

refer to [26].

Accordingly, to any algorithm we associate a mapping

Ŝ : H × Ω → M0(X)

given by

Ŝ((x0, a, b), ω) =
n�

i=1

ci · δxi
.

Here (Ω,A, Q) is an underlying computational probability space that

carries an independent sequence of random variables, each uniformly

distributed on [0, 1], which is used to model the random number gener-

ator. Moreover, n as well as the ci and xi are random quantities, which

depend on (x0, a, b), too. We put

Ŝ(x0, a, b) = Ŝ((x0, a, b), ·) : Ω → M0(X),

and, in an abuse of notation, we also use Ŝ to denote the randomized

algorithm itself.

The cost of applying Ŝ to (x0, a, b) is a random quantity, which is

denoted by cost(Ŝ, (x0, a, b)). It is given by the sum of the number of

evaluations of a, b, a�, b� etc., the number of arithmetical operations etc.,

and the number of calls of the random number generator that are carried

out by Ŝ for this input. In particular, we have

cost(Ŝ, (x0, a, b)) ≥ 2 · | supp(Ŝ(x0, a, b))| (1)

for all (x0, a, b) ∈ H. The worst case cost of Ŝ on H is defined by

cost(Ŝ) = sup
(x0,a,b)∈H

E(cost(Ŝ, (x0, a, b))),

assuming measurability. Likewise the error of applying Ŝ to (x0, a, b) is

a random quantity, and the worst case error of Ŝ on H w.r.t. the metric
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ρ is defined by

e(Ŝ) = sup
(x0,a,b)∈H

�
E(ρ2(S(x0, a, b), Ŝ(x0, a, b)))

�1/2
,

assuming measurability.

Deterministic algorithms are a particular case of randomized algo-

rithms, namely, Ŝ is not calling the random number generator for any

(x0, a, b) ∈ H, which implies that Ŝ(x0, a, b) is a constant mapping for

every (x0, a, b). In the definition of cost(Ŝ) and e(Ŝ) the expectation may

therefore be dropped.

The key quantities are the N -th minimal errors

eranN = eranN (H,X, ρ)

= inf{e(Ŝ) : Ŝ randomized algorithm with cost(Ŝ) ≤ N}

of randomized algorithms and the N -th minimal errors

edetN = edetN (H,X, ρ)

= inf{e(Ŝ) : Ŝ deterministic algorithm with cost(Ŝ) ≤ N}

of deterministic algorithms. Clearly eranN ≤ edetN .

Concerning the metric ρ on M(X) the following two cases will be

considered in the sequel. Let µ1, µ2 ∈ M(X). The Wasserstein metric

ρ(s) of order 1 ≤ s < ∞ is defined by

ρ(s)(µ1, µ2) = inf
ξ

��

X×X

�x1 − x2�
s
X dξ(x1, x2)

�1/s

,

where the infimum is taken over all Borel probability measures ξ on

X × X with marginals µ1 and µ2, respectively. Furthermore, we study

metrics

ρF (µ1, µ2) = sup
f∈F

�
�
�
�

�

X

f dµ1 −

�

X

f dµ2

�
�
�
�

given in a dual representation in terms of a class F of functions f : X → R

that satisfies

sup
f∈F

sup
x∈X

|f(x) − f(0)|

1 + �x�s
X

< ∞

for some 1 ≤ s < ∞. In particular, ρF is called a metric with ζ-structure,

if all functions f ∈ F are bounded, see [31, p. 72].

Consider F = Lip(1), i.e., F consists of all functions f : X → R with

|f(x1) − f(x2)| ≤ �x1 − x2�X, x1, x2 ∈ X.



6 Dereich, Müller-Gronbach, Ritter

Then, by the Kantorovich-Rubinstein Theorem,

ρLip(1) = ρ(1).

Remark 1 We relate our computational problem to an approximation

theoretical question. For µ ∈ M(X) and n ∈ N let

qn(µ) = qn(µ, ρ) = inf{ρ(µ, µ̂) : µ̂ ∈ M0(X), | supp(µ̂)| ≤ n}.

If ρ = ρ(s) then qn(µ) is called the n-th quantization number of µ,

see [7, 10, 28]. We use this terminology for a general metric ρ, and

accordingly construction of quadrature formulas may also be called con-

structive quantization.

Consider a randomized algorithm Ŝ with cost(Ŝ) ≤ N , let (x0, a, b) ∈

H, and put A = {cost(Ŝ, (x0, a, b)) ≤ 2N}. Clearly, Q(A) ≥ 1/2 and

| supp(Ŝ(x0, a, b))| ≤ N on A due to (1). Therefore

eranN ≥ 1
2 · sup

(x0,a,b)∈H

qN (S(x0, a, b)). (2)

Since the asymptotic behavior of the quantization numbers is known

in many cases, we may obtain lower bounds for the minimal errors in

this way. Note that this argument does not at all exploit the fact that

algorithms only have partial information about a and b in the following

sense. For every algorithm Ŝ the number of evaluations of a or b is

bounded from above by cost(Ŝ, (x0, a, b)), and for a non-trivial class H a

finite number of such evaluations does not suffice to determine S(x0, a, b)

exactly. We refer to [30] for lower bounds based on partial information

about the drift coefficient a.

Remark 2 Consider the marginal case X = R
d and let ρ = ρF . We

compare the construction of quadrature formulas and the actual quadra-

ture problem on F . For the latter task an oracle for f ∈ F is needed,

too, and algorithms yield real numbers as output. The worst case error

of a randomized algorithm S̃ : H × F × Ω → R is defined by

Δ(S̃) = sup
(x0,a,b)∈H,f∈F

�

E
��

X

f dS(x0, a, b) − S̃(x0, a, b, f)
�2

�1/2

,

and the number of evaluations of f has to be added as another term in

the definition of the computational cost. The minimal errors Δran
N and

Δdet
N for the quadrature problem are defined in the canonical way.

Clearly, every algorithm Ŝ for construction of quadrature formulas
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yields an algorithm S̃ for quadrature by

S̃((x0, a, b), f, ω) =

�

X

f dŜ((x0, a, b), ω),

and we have Δ(S̃) ≤ e(Ŝ) as well as cost(Ŝ) ≤ cost(S̃) ≤ 3 cost(Ŝ).

Hence

Δran
3N ≤ eranN and Δdet

3N ≤ edetN .

We stress that the minimal errors Δran
3N and eranN may differ substan-

tially, because of the order of taking suprema over F and expectations.

For instance, let H0 ⊂ R
d be a bounded set, let

H1 = {h ∈ C1(Rd,Rd) : |h(0)|, �∇h�∞ ≤ K}

with K > 0, and let H2 be defined analogously for functions with values

in R
d×d. Moreover, let F = Lip(1). By a well known result, the Monte

Carlo Euler scheme yields

Δran
N � N−1/3,

while

eranN � N−1/d (3)

follows from qn(µ) � n−1/d for every normal distribution µ ∈ S(H) with

full support in R
d, see [10, p. 78] and (2). We therefore conclude that, at

least for d ≥ 4, the construction of quadrature formulas is substantially

harder than quadrature, if randomized algorithms may be used in both

cases.

We do not discuss quadrature problems on the path space here, since

this requires to introduce an appropriate cost model for evaluating func-

tions on infinite dimensional spaces X, see [2, 13].

Remark 3 Precomputing is permitted in our model of computation,

and it is actually used in a number of rather different algorithms for the

construction of quadrature formulas; we refer to the subsequent sections.

Precomputing allows to solve auxiliary problems that do not involve the

parameters x0, a and b of the SDE beforehand. The computational effort

for precomputing is not taken into account by cost(Ŝ).

Remark 4 In this paper we discuss constructive approximation by

probability measures with finite support. More generally, one might ad-

mit signed measures with finite support, which is motivated by, e.g., the

stochastic multi-level construction, or one might omit any constraint,
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which means that Ŝ : H × Ω → M(X). It seems that these variants of

the constructive approximation problem for the distribution of SDEs

have not been studied so far.

3 Quadrature Formulas on the Path Space

We focus on scalar SDEs, i.e., d = 1, and we assume that H0 ⊂ R is a

bounded set and

H1 = H2 = {h ∈ C2(R) : |h(0)|, |h�|, |h��| ≤ K}

with K > 0. Moreover, X = Xp where X∞ = C([0, 1]) and Xp = Lp([0, 1])

for 1 ≤ p < ∞, and ρ = ρ(s) is the Wasserstein metric of order s on

M(Xp) for any 1 ≤ s < ∞.

At first we discuss the quantization problem, see Remark .1. We as-

sume b(x0) �= 0 in order to exclude deterministic equations.

Theorem 5 For every (x0, a, b) ∈ H with b(x0) �= 0 there exists a

constant κ(x0, a, b, p, s) > 0 such that

qn(S(x0, a, b)) ≈ κ(x0, a, b, p, s) · (lnn)−1/2.

In the particular case of a Brownian motion, i.e., for the parameters

(x0, a, b) = (0, 0, 1), this result is due to [4, 17] for p = 2 and to [8]

for general p. For SDEs the result is established in [5, 6]. The structure

of the asymptotic constant κ(x0, a, b, p, s) and its dependence on the

parameters of the SDE is as follows. There exist constants c(p) > 0 such

that

κ(x0, a, b, p, s) = c(p) ·

�

E

�� 1

0

|b(X(t))|2/(1+2/p) dt

�s(1+2/p)/2�1/s

,

where 1/∞ = 0. In particular, c(2) =
√

2/π, while only upper and lower

bounds for c(p) are known in the case p �= 2.

From Theorem .5 we immediately get a lower bound for eranN , see (2),

which turns out to be sharp and attainable already by deterministic

algorithms.

Theorem 6 We have

eranN � edetN � (lnN)−1/2.

The upper bound edetN � (lnN)−1/2 in Theorem .6 is due to [24], and
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we describe the deterministic algorithm that yields this bound in the

case p = s = 2.

Fix (x0, a, b) ∈ H. The construction is motivated by the following two-

level approximation of the solution process X of the corresponding SDE.

For m ∈ N we consider the Milstein scheme Y with step-size 1/m and

with piecewise linear interpolation, and we put tk = k/m. Furthermore,

we consider the Brownian bridges

Bk(t) = W (t) −W (tk) − (t− tk) ·m · (W (tk+1) −W (tk)),

where t ∈ [tk, tk+1]. Note that Y,B0, . . . , Bm are independent. As an ap-

proximation to X we consider Y +Z with the coarse level approximation

Y and with a local refinement

Z(t) =
m−1�

k=0

b(Y (tk)) ·Bk(t) · 1[tk,tk+1](t).

Instead of the Gaussian measures that are involved in Y and Z the

algorithm employs probability measures with finite support.

For the standard normal distribution γ and the Wasserstein metric ρ

of order two on M(R) we have qn(γ, ρ) � n−1, and we take a sequence

of uniform distributions γ̂r ∈ M0(R) with | supp(γ̂r)| = r and

ρ(γ, γ̂r) � r−1.

We refer to [10, Sec. 7.3] for a general account and to [24] for details and

additional requirements concerning γ̂r in the present context.

For the distribution ξ of a Brownian bridge on [0, 1] and the Wasser-

stein metric ρ(2) of order two on M(L2([0, 1])) we have qn(ξ, ρ(2)) ≈√
2/π · (lnn)−1/2, cf. Theorem .5, and we take a sequence of measures

ξ̂n ∈ M0(L2([0, 1])) with | supp(ξ̂n)| = n and

ρ(2)(ξ, ξ̂n) � (lnn)−1/2. (4)

The construction of ξ̂n is based on the Karhunen-Loève expansion of the

Brownian bridge, where the eigenfunctions and eigenvalues are given by

e�(t) =
√

2 sin(�πt) and λ� = (�π)−2, respectively, and on quantization

of normal distributions. In particular, supp(ξ̂n) ⊂ span{e� : � ∈ N}. In

order to achieve

ρ(2)(ξ, ξ̂n) ≈ qn(ξ, ρ(2)) (5)

suitable quantizations of multi-dimensional centered normal distribu-

tions with covariance matrices of diagonal form are used for quanti-

zation of blocks of coefficients of the Karhunen-Loève expansion, and
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this approach involves large scale numerical optimization. Alternatively,

(4) with reasonable good constants can already be achieved by product

quantizers, which merely rely on quantizations of the one-dimensional

standard normal distribution. We refer to [7, 19, 20] for surveys and

recent results and to the web site [27] for downloads. In any case the

construction of suitable measures ξ̂n is a matter of precomputing.

We first explain how to approximate the distribution PY . The stan-

dard normal distribution on R
m, which is the basis for the Milstein

scheme, is replaced by the uniform distribution

γ̂ =
m−1�

k=0

γ̂r.

Note that supp(γ̂) is a non-uniform grid in R
m. For every w ∈ supp(γ̂)

we define a function y(·;w) ∈ C([0, 1]) by y(0;w) = x0 and

y(tk+1;w) = y(tk;w) + 1/m · a(y(tk;w)) + 1/
√
m · b(y(tk;w)) · wk

+ 1/(2m) · (b · b�)(y(tk;w)) · (w2
k − 1)

and by piecewise linear interpolation. This corresponds to the Milstein

scheme with the normalized Brownian increments replaced by the com-

ponents of w, and as an approximation to the distribution PY of the

Milstein scheme we use the uniform distribution

ν̂ =
1

rm

�

w∈supp(γ̂)

δy(·;w)

on a finite set of piecewise linear functions.

Next we turn to the approximation of the distribution PZ . For every

polygon y ∈ supp(ν̂) the distribution of the weighted Brownian bridge

b(y(tk)) · Bk on [tk, tk+1] is approximated by one of the measures ξ̂n,

properly rescaled and shifted. Hereby, the size n of the support is chosen

in such a way that the local regularity of the solution process X is taken

into account. Essentially, we take

n = nk(y) = max
�
�Mηk(y)�, 1

�

with

ηk(y) = |b(y(tk))|/
m−1�

k=0

|b(y(tk))|

for a given M ∈ N, see [24] for technical details. This strategy, which is

crucial for the overall performance of the algorithm, is similar to asymp-

totically optimal step-size control for pathwise approximation of SDEs,
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see [11, 12, 22, 23]. To approximate the joint distribution of the weighted

Brownian bridges b(y(tk)) ·Bk we take the product measure

ξ̂(·, y) =

m−1�

k=0

ξ̂nk(y)

in C([0, 1])m and use the linear mapping ψ(·; y) : supp(ξ̂(·, y)) → C([0, 1])

given by

ψ(z; y)(t) =

m−1�

k=0

b(y(tk)) · zk((t− tk) ·m)/
√
m · 1[tk,tk+1](t).

Choose m = r � (lnM)α for α ∈ ]1/2, 1[, and put N = mm · M . As

an approximation to PY+Z , and thus to PX , we take

ŜN (x0, a, b) =
�

y∈supp(ν̂)

�

z∈supp(ξ̂(·,y))

ξ̂({z}, y)

rm
· δy+ψ(z;y).

Clearly

| supp(ŜN (x0, a, b))| ≤ N,

and ξ̂({z}, y) is the product of certain probability weights of the mea-

sures ξ̂n. The piecewise linear functions y and the functions ψ(z; y),

which consist of trigonometric polynomials on the subintervals [tk, tk+1]

can be coded in a natural way. It turns out that cost(ŜN ) � m ·N and

e(ŜN ) � (lnN)−1/2 � (ln(cost(ŜN ))−1/2. Moreover, if (5) is satisfied

then we even have

ρ(2)(S(x0, a, b), ŜN (x0, a, b)) ≈ κ(x0, a, b, 2, 2) · (lnN)−1/2 (6)

for every (x0, a, b) ∈ H with b(x0) �= 0, i.e., the algorithm ŜN achieves

strong asymptotic optimality for the quantization problem for every such

SDE, see Remark .1 and Theorem .5. We refer to [32] for an efficient

implementation of ŜN and to [24] for the construction of ŜN in the case

p �= 2 or s �= 2.

Remark 7 The algorithm ŜN can be generalized to handle systems

of SDEs, i.e., to the case d > 1, in a straightforward manner. For coarse

level approximation, however, it no longer suffices to approximate Brow-

nian increments, since multiple Itô integrals are needed, too, in the Mil-

stein scheme. For this task there are several methods available, e.g., the

quantization of an approximation to these integrals based on a suit-

ably truncated Karhunen-Loève expansion, see [36], and an empirical
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measure approach, see Section 5, but the analysis of error and cost for

construction of quadrature formulas on the path space seems to be open

for d > 1.

Remark 8 The constructive quantization of diffusion processes was

initiated by [18], where suitable quantizers for the driving Brownian mo-

tion are used as a building block, which is similar to our approach. The

approaches differ, however, with respect to the numerical treatment of

the SDE. A key assumption in [18] is strict positivity of the diffusion

coefficient, which permits to use the Lamperti transform. Along this way

one has to solve n deterministic ODEs, in general, to get an approxima-

tion µ̂n with supp(µ̂n) = n and ρ(2)(PX , µ̂n) � (lnn)−1/2. This work is

extended to systems of of SDEs in [29], where rough path theory is used

to establish convergence rates in p-variation and in the Hölder metric

for ODE-based quantizations. A different approach is developed in [19],

where the mean regularity of stochastic processes is exploited. The con-

struction is based on the expansion of X in terms of the Haar basis, and

on the availability of optimal quantizations of the corresponding coeffi-

cients. It seems that none of these alternative approaches achieves (6)

and that the computational cost has not been analyzed so far. As far as

we understand, these alternative methods do not achieve a cost bound

close to the size of the quantization.

4 Quadrature Formulas on the State Space –

Deterministic Algorithms

We study scalar SDEs, i.e., d = 1, and we assume that H0 ⊂ R is a

bounded set and

H1 = {h ∈ C4(R) : |h(0)|, |h(j)| ≤ K for j = 1, . . . , 4},

H2 = {h ∈ H1 : |h| ≥ ε}

with K > 0 and ε ≥ 0. Thus H1 = H2 if ε = 0, while ε > 0 corresponds

to an additional non-degeneracy constraint on the diffusion coefficient b.

Furthermore, X = R, and we consider the metric ρ = ρF , where

F = {f ∈ C4(R) : |f (j)(x)| ≤ K · (1 + |x|β) for j = 1, . . . , 4}

with β ≥ 0.

In this setting we have the following upper bounds for the minimal

errors of deterministic algorithms, see [25].
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Theorem 9 For every δ > 0

edetN �

�
N−2/3+δ if ε > 0,

N−1/2+δ if ε = 0.

The central idea to obtain these upper bounds is as follows. We ap-

proximate an Euler scheme with step-size 1/m by a Markov chain that

stays on a grid of small size and has a sparse transition matrix in order

to prevent an exponential explosion of the cost. The transition probabil-

ities are chosen in such a way that the central moments of a single Euler

step are close to the corresponding moments of a step of the chain. The

approximation to the distribution PX(1) is then obtained as the distri-

bution of the Markov chain after m steps.

Here we present this construction in the case ε > 1. Fix (x0, a, b) ∈ H,

let δ > 0 and m ∈ N, and define the state space of the Markov chain by

Z = G ∪ {x0}, where

G =
�
i ·m−1/2 : i = −

�
m1/2+δ

�
, . . . ,

�
m1/2+δ

��
.

In order to define the transition probabilities qy,z = qy,z(x0, a, b) for

y, z ∈ Z, we consider an Euler step of length 1/m starting in y ∈ Z, i.e.,

Y y = y + a(y) ·m−1 + b(y) ·m−1/2 · V

with a standard normally distributed random variable V . Let

zy = y + a(y) ·m−1, σy = |b(y)| ·m−1/2

denote the expected value and the standard deviation of Y y and put

z̄y = �zy ·m
1/2� ·m−1/2, σ̄y = �σy ·m

1/2� ·m−1/2,

which will serve as projections of zy and σy onto G, respectively. Essen-

tially, we replace the Euler step by a step from y to at most six possible

positions on G, namely

z̄y, z̄y ± σ̄y, z̄y −m−1/2, z̄y −m−1/2 ± σ̄y. (7)

To be more precise, we distinguish the two cases given by

Z1 =
�
y ∈ Z : z̄y −m−1/2 − σ̄y, z̄y + σ̄y ∈ G}, Z2 = Z \ Z1.

The points y ∈ Z2, where zy is close to the extremal points of G, are

absorbing states, i.e.,

qy,z =

�
1 if z = y,

0 otherwise.
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For y ∈ Z1 the points given by (7) are members of G, and due to

|b(y)| > 1 all of them are different. Put

uy = m1/2 · (z̄y − zy)

as well as

ϑ(1)
y =

σ2
y

2σ̄2
y

+
u2
y − 2uy

6σ̄2
y ·m

, ϑ(2)
y =

σ2
y

2σ̄2
y

+
u2
y − 1

6σ̄2
y ·m

.

Clearly, 0 ≤ uy < 1 and ϑ
(j)
y ≤ 1/2. Moreover, |b(y)| > 1 yields ϑ

(j)
y > 0.

We define

qy,z =






(1 − uy) · (1 − 2ϑ
(1)
y ) if z = z̄y,

(1 − uy) · ϑ
(1)
y if z = z̄y ± σ̄y,

uy · (1 − 2ϑ
(2)
y ) if z = z̄y −m−1/2,

uy · ϑ
(2)
y if z = z̄y −m−1/2 ± σ̄y,

0 otherwise.

Let Q = (qy,z)y,z∈Z denote the resulting transition matrix. We ap-

proximate S(x0, a, b) by the discrete distribution

Ŝm(x0, a, b) =
�

z∈Z

(e ·Qm)z · δz, (8)

where e = (ez)z∈Z is given by ex0
= 1 and ez = 0 for z �= x0.

Consider a random variable Ỹ y that models a single step of the Markov

chain with transition matrix Q and starting at y ∈ Z, i.e., P (Ỹ y = z) =

qy,z for every z ∈ Z. We then have

|E(Y y − zy)
p − E(Ỹ y − zy)

p| ≤ c · (1 + |y|p+1/δ) ·m−2

for every p ∈ N, where the constant c > 0 only depends on K, δ, p, and

this estimate is a key property to obtain e(Ŝm) � m−1. Moreover, we

have cost(Ŝm) � m3/2+δ, which results from the number of arithmetical

operations that are used to compute to the matrix-vector product e·Qm.

Remark 10 We consider, more generally, the case of d-dimensional

systems of SDEs with coefficients that satisfy a smoothness constraint

of degree r ∈ N. Fix K > 0. For β ≥ 0 we use F β to denote the class of

functions f : Rd → R that have continuous partial derivatives f (α) with

|f (α)(x)| ≤ K · (1 + |x|β)

for every x ∈ R
d and every α ∈ N

d
0 with 1 ≤

�d
i=1 αi ≤ r. We take

X = R
d, and we consider the metric ρF with F = F β .
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Assume that H0 ⊂ R
d is bounded,

H1 = {h ∈ Cr(Rd,Rd) : |h(0)| ≤ K, h1, . . . , hd ∈ F 0} (9)

and H2 is defined analogously to H1 for functions h : Rd → R
d×d with

the additional uniform ellipticity constraint that |y�h(x)| ≥ ε · |y| for all

x, y ∈ R
d.

Assume r ≥ 4. We conjecture that a construction, similar to the

Markov chain for d = 1, leads to upper bounds

edetN �

�
N−(r−2)/(d+2)+δ if ε > 0,

N−(r−2)/(2d+2)+δ if ε = 0
(10)

for the minimal errors of deterministic algorithms for every δ > 0. Note

that (10) holds true for d = 1 and r = 4 due to Theorem .9.

Alternatively, the connection between SDEs and initial value problems

for the associated parabolic PDEs could be employed, and numerical

methods for PDEs could be used to construct deterministic quadrature

formulas on the state space. It would be interesting to investigate the

potential of finite difference methods for the latter problem.

We turn to lower bounds for the minimal errors via quantization num-

bers, which hold for randomized algorithms, too. Consider a probability

measure µ ∈ M(Rd) with a continuous Lebesgue density that satisfies

suitable decay properties. Then

qn(µ, ρF ) � n−r/d (11)

follows from results on weighted approximation and integration in [34,

35]. In particular, (11) holds for any non-degenerate d-dimensional nor-

mal distribution µ ∈ S(H), which implies

eranN � N−r/d (12)

due to (2).

Specifically, for r = 4 and d = 1 we get a lower bound of order four

in (12), which differs substantially from the upper bounds of order 2/3

or 1/2 in Theorem .9. It would be interesting to know whether the fact

that any algorithm only has partial information about a and b can be

used to improve the lower bound, cf. Remark .1.

Remark 11 Quadrature formulas on the Wiener space, which are

based on paths of bounded variation and are exact for iterated integrals

up to a fixed degree m, are introduced in [14, 15] and further developed

in [3, 21]. The construction of such formulas is a matter of precomputing.
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For d-dimensional systems of SDEs with smooth coefficients a and b an

approximation to the marginal distribution PX(1) of the solution X is

obtained by iteratively solving a collection of ODEs on k non-equidistant

time intervals. The error is defined in terms of metrics ρF with different

spaces F . For F = Lip(1) an error bound of order k−(m−1)/2 is achieved.

However, the number of ODEs to be solved grows polynomially in k. To

cope with this difficulty a recombination technique has been introduced

in [16].

Remark 12 Let us compare the results from Section 3 (for s = 1)

and 4. In both cases we assume a finite degree of smoothness for the

coefficients of the SDE and for the elements in F , together with some

boundedness or growth constraints. For the problem on the path space

we merely achieve a logarithmic convergence of the minimal errors, and

the computational cost of the almost optimal algorithm ŜN presented

in Section 3 is only slightly larger than | supp(ŜN (x0, a, b))|. Further-

more, supp(ŜN (x0, a, b)) strongly depends on the SDE, i.e., on x0, a,

and b. For the marginal distribution problem we have a polynomial rate

of convergence, and the computational cost of the corresponding algo-

rithm Ŝm is substantially larger than | supp(Ŝm(x0, a, b))|. Furthermore,

supp(Ŝm(x0, a, b)) is essentially a grid that does not depend on the SDE.

5 Quadrature Formulas on the State Space –

Randomized Algorithms

In this section we consider systems of SDEs, and we employ random

quantization techniques for the marginal distributions PX(1) to obtain

randomized algorithms for the construction of quadrature formulas on

the state space.

We first present a general result on quantization by empirical mea-

sures. For a probability measure µ on X = R
d and n ∈ N we use µ̂n

to denote the empirical measure that is induced by a sequence of n

independent random variables Y1, . . . , Yn with PY1 = µ, i.e.,

µ̂n =
1

n

n�

i=1

δYi
.

The following upper bound for the average Wasserstein distance of µ

and µ̂n is due to [9].
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Theorem 13 Let 1 ≤ s < d/2 and q > ds/(d − s). There exists a

constant κ(d, s, q) > 0 such that

�
E
��

ρ(s)(µ, µ̂n)
�s�

�1/s

≤ κ(d, s, q) ·

��

Rd

|x|q dµ(x)

�1/q

· n−1/d

for any probability measure µ on R
d and all n ∈ N.

Note that the bound stated in Theorem .13 allows to control the ap-

proximation error in terms of moments of the probability measure µ.

Results of this type are commonly referred to as Pierce type estimates

in quantization.

We add that the n-th quantization numbers satisfy

qn(µ, ρ(s)) � n−1/d (13)

if µ has a finite moment of order s+δ for some δ > 0 and a nonvanishing

absolute continuous part w.r.t. the Lebesgue measure on R
d. See [10,

Thm. 6.2] for further details and for results on the strong asymptotic

behavior of qn(µ, ρ(s)), too.

In the sequel we consider systems of SDEs with the same constraints

as in Remark .2. Thus H0 ⊂ R
d is a bounded set,

H1 = {h ∈ C1(Rd,Rd) : |h(0)|, �∇h�∞ ≤ K}

with K > 0, and H2 is defined analogously for functions with values in

R
d×d. Moreover, X = R

d, and we consider the Wasserstein metric ρ(s)

of order 1 ≤ s < d/2 on M(X).

Theorem 14 For d ≥ 5 we have

N−1/d � eranN � N−1/(d+2).

The lower bound in this result is a consequence of (2) and (13), and

in fact it holds for every d ∈ N and s ≥ 1.

Note that Theorem .13 is not directly applicable to derive an up-

per bound for the minimal error eranN , since one cannot sample from

the marginal distribution PX(1) in general. More precisely, there is no

randomized algorithm A : H × Ω → R
d, which uses partial information

about a and b, such that the distribution of A((x0, a, b), ·) coincides with

PX(1) for every (x0, a, b) ∈ H.

We show that the upper bound in Theorem .14 is obtained by the

empirical measure based on the Euler scheme. Let m,n ∈ N, and let
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V1, . . . , Vm denote an independent sequence of standard normally dis-

tributed d-dimensional random vectors. Fix (x0, a, b) ∈ H. Put Y (0) = x0

and

Y (k+1) = Y (k) + a(Y (k)) ·m−1 + b(Y (k)) ·m−1/2 · Z(k)

for k = 0, . . . ,m − 1, and take n independent copies Y
(m)
1 , . . . , Y

(m)
n of

Y (m). We define

Ŝm,n((x0, a, b), ω) =
1

n

n�

i=1

δ
Y

(m)
i

(ω)
.

We briefly analyze the error and the cost of Ŝm,n. Fix (x0, a, b) ∈ H,

and put µ(m) = PY (m) and µ̂
(m)
n = Ŝm,n(x0, a, b). Then

�
E
��

ρ(s)(S(x0, a, b), Ŝm,n(x0, a, b))
�2
��1/2

≤ ρ(s)(PX(1), PY (m)) +
�
E
��

ρ(s)(µ(m), µ̂(m)
n )

�2
��1/2

.

Put s∗ = max(s, 2) and apply Theorem .13 with any q > ds∗/(d − s∗)

to obtain
�
E
��

ρ(s)(PY (m) , µ̂m,n)
�2
��1/2

≤ κ1 · n
−1/d

for every m ∈ N, with a constant κ1 > 0 that only depends on d, s, x0,K.

Similarly, we have

ρ(s)(PX(1), PY (m)) ≤ E(|X(1) − Y (m)|s)1/s ≤ κ2 ·m−1/2, (14)

for every m ∈ N, with a constant κ2 > 0 that only depends on d, s, x0,K.

Hence

e(Ŝn,m) � m−1/2 + n−1/d.

Clearly,

cost(Ŝm,n) ≤ κ · d2 · n ·m

with a constant κ > 0. Choose m � n2/d to obtain the estimate in

Theorem .14.

We add that the upper bound in Theorem .14 is valid for d ≥ 3, if the

worst case error e(Ŝ) of an algorithm Ŝ is defined in terms of moments

of order one rather than two.

Remark 15 Under stronger assumptions on the parameters of the

SDE, i.e., for smaller classes H, improved upper bounds should hold

for eranN .
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In [1] the Euler scheme is studied for SDEs with C∞-coefficients that

have bounded partial derivatives of any order and satisfy a nondegen-

eracy condition. For every bounded measurable function f : R
d → R

an upper bound of order 1/m is obtained for the so-called weak error�
�
�
Rd f dPX(1) −

�
Rd f dPY (m)

�
�. A careful adaptation of [1] should there-

fore lead to an upper bound of order m−1 in (14) and, consequently, to

an upper bound of order 1/N1/(d+1) in Theorem .14 in the case s = 1

for an appropriate class H.

An alternative approach is to employ Itô-Taylor schemes of higher

order instead of the Euler scheme, which leads to faster convergence in

(14) under appropriate assumptions on H1 and H2. Actually, for each

δ > 0 one can determine classes of coefficients such that an upper bound

of order 1/N1/d−δ is valid in Theorem .14. However, this approach makes

use of iterated integrals, and the effort for precomputation may therefore

be prohibitively large if δ is small.
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[106] A. Hinrichs, E. Novak, and H. Woźniakowski. Discontinuous information in the
worst case and randomized settings. Preprint 106, DFG-SPP 1324, September
2011.

[107] M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient
Analysis of High Dimensional Data in Tensor Formats. Preprint 107, DFG-SPP
1324, September 2011.

[108] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider. Optimization Problems
in Contracted Tensor Networks. Preprint 108, DFG-SPP 1324, October 2011.

[109] S. Dereich, T. Müller-Gronbach, and K. Ritter. On the Complexity of Computing
Quadrature Formulas for SDEs. Preprint 109, DFG-SPP 1324, October 2011.


