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Mod�elisation Math�ematique et Analyse Num�erique

THE CONTINUOUS COUPLED CLUSTER FORMULATION FOR THE

ELECTRONIC SCHR�ODINGER EQUATION �

Thorsten Rohwedder1

Abstract. Nowadays, the Coupled Cluster (CC) method is the probably most widely used high

precision method for the solution of the main equation of electronic structure calculation, the

stationary electronic Schr�odinger equation. Traditionally, the equations of CC are formulated

as a nonlinear approximation of a Galerkin solution of the electronic Schr�odinger equation, i.e.

within a given discrete subspace. Unfortunately, this concept prohibits the direct application of

concepts of nonlinear numerical analysis to obtain e.g. existence and uniqueness results, quasi-

optimality estimates, or results on the convergence of discrete solutions to the full solution. Here,

this shortcoming is approached by showing that the original, continuous electronic Schr�odinger

equation can under suitable assumptions be formulated equivalently as a root equation for an

in�nite-dimensional nonlinear Coupled Cluster operator, discretizations of which then lead to

the canonical projected CC equations. As the main step, continuity properties of the cluster

operator T and its adjoint as mappings on the antisymmetric energy space H1 are established.

1991 Mathematics Subject Classi�cation. 65Z05, 81-08, 70-08.

The dates will be set by the publisher.

1. Introduction

The Coupled Cluster (CC) approach was derived around 1960 in the �eld of atomic

physics [17,18,33,55], and later introduced in the context of quantum chemistry (see [16]).

It is today the probably most widely applied tool in the calculation of ground state

solutions of the stationary N -electron Schr�odinger equation when high-accuracy results

Keywords and phrases: Quantum chemistry, electronic Schr�odinger equation, Coupled Cluster method,

numerical analysis, nonlinear operator equation
� This work has been supported by the DFG SPP programs 1145 and 1324.
1 Sekretariat MA 5-3

Institut f�ur Mathematik

TU Berlin

Stra�e des 17. Juni 136

10623 Berlin, Germany
c EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

are demanded. In the variant of the CCSD(T) method [44], which can be applied to small

to medium-sized molecules with reasonable computational e�ort, CC often provides results

which are within the error bars of corresponding practical experiments [38]. CCSD(T) is

therefore often referred to as the \golden standard of quantum chemistry".

The ground state problem for the electronic Schr�odinger equation, for the numerical

treatment of which the CC method is used, governs the physical behaviour of N electrons

in the Coulomb �eld of a �xed set of nuclei, see [28, 52, 57] for some main results. To

admit for a sensible discretization and a mathematically sound algorithmic treatment, it

is in the context of numerical analysis best phrased as a weak operator eigenproblem for

an eigenfunction 	 describing the electronic ground state [57], i.e. \Find 	 2 H
1 and

E 2 R such that

h�; H	i = Eh�; 	i for all � 2 H1; (1.1)

and such that E is the lowest eigenvalue of H." In this, the solution space H1 is a

suitable energy (Sobolev) space consisting of antisymmetric functions, and the operator

H : H1 ! H
�1 is the weak N -electron Hamiltonian, mapping to the dual space of H1 (see

Sec.2). To treat the Schr�odinger equation (1.1) in the way the CC method is canonically

used (see e.g. the quantum chemical standard work [26]), three steps are taken:

(a) Galerkin discretization of (1.1): Restriction to a discrete subspace H1
d gives a (usually

extremely high-dimensional) discrete eigenvalue problem for a function 	d 2 H1
d,

h�d; H	di = Edh�d; 	di for all �d 2 H1
d: (1.2)

By quantum chemists, 	d is called the \full Con�guration Interaction (full CI) solution"

of the discrete system (1.2).

(b) In a second step, the full-CI equation is equivalently re-parametrized by an exponential

ansatz as follows: From a preliminary Hartree-Fock calculation (see e.g. [26]), one has an

often rather good rank-1-approximation 	0 to the sought solution 	d at hand. 	d is then

written as a so-called excitation of the reference solution 	0,

	d = (I + S)	0;

in which S is the so-called cluster operator of 	d that maps the reference 	0 to the sought

correction 	� = 	d � 	0 (see Sec. 2 for the exact de�nition). 	0 �xed, solution of (1.2)



TITLE WILL BE SET BY THE PUBLISHER 3

is thus equivalent to the computation of a cluster operator S such that

h�d; H(I + S)	0i = Edh�d; (I + S)	0i for all �d 2 H1
d: (1.3)

By standard matrix algebra (see e.g. [50, 55]), every cluster operator of the form I + S

can also be expressed as the exponential of a cluster operator T , so that (1.3) can in a

second step be rephrased as determination of T such that

h�d; He
T	0i = Edh�d; e

T	di for all �d 2 H1
d; (1.4)

or alternatively, because e�T is invertible, as the solution of

h�d; e
�THeT	0i = Edh�d; 	0i for all �d 2 H1

d: (1.5)

for T . These are the nonlinear \full-CC" equations (1.5) which are equivalent to the

\full-CI"-formulation (1.2) on the space H1
d, and which de�ne a nonlinear root equation

for a coe�cient vector of so-called cluster amplitudes (t�)�2I determining T . In contrast

to the terms occurring in (1.4), (1.5) can be evaluated exactly [20,26,46] and is therefore

the formulation almost exclusively used in practice.

(c) In a �nal step, only certain of the amplitudes t� determining T are used in the

calculation. This corresponds to a further reduction of the test space H1
d to a subspace

H
1
D, usually pushing practically relevant problems into the range of computability. The

result is a reduced set of CC equations

h�D; e
�THeT	0i = EDh�D; 	0i for all �D 2 H1

D: (1.6)

The selection criteria for basis functions included in the calculation normally base on the

so-called \excitation level" of the basis functions, leading then e.g. to the often used

Coupled Cluster Singles Doubles (CCSD) equations. In practice, the resulting equations

are then evaluated with the aid of the Second Quantization formalism (see [20] for a

comprehensible treatment) and then usually solved by Newton-type methods [26], often

enhanced by the DIIS acceleration method [47].

In contrast to (1.5), the equations (1.6) are no longer equivalent to the CI (Galerkin)

discretization of (1.1) on H1
D, but preferrable over the CI method due to various favourable

properties: The CC method enjoys a wide range of applicability in a black-box style

and converges quickly and systematically to the full-CI energy limit Ed when applied

to relatively well-behaved systems as typically C-H-chains, rings, alcohols, cetones and
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aminoacids are. It also usually outperforms the correspondingly truncated CI method,

see e.g. [19,31]. As another important feature truncated CC has, in contrast to truncated

CI methods, the property of being size-consistent [4, 6, 40], making CC the tool of choice

when describing reaction mechanisms. For a review on Coupled Cluster theory, the reader

is referred to [5,34] and the abundance of references given therein, as well as to the article

[10] for a broader scope on the applications in physics; for some recent developments,

see [7, 14,32,39] as well as the references given in Section 2.

In spite of the CC method's practical utility and popularity, theoretical results from

the mathematical point of view are rather scarce. Only recently a �rst approach has

been undertaken in [50], where the approximation properties of the truncation step from

the discrete full-CI equations (1.3) to the projected Coupled Cluster equation (1.6) was

analyzed. Thus, the problems associated with the direct re-formulation of the original,

in�nite-dimensional problem (1.1) as an in�nite-dimensional nonlinear Coupled Cluster

method approached in this work are circumvented; the ipside of this proceeding is that

the results do not allow for direct estimates with respect to the true solution 	 2 H1, and

convergence to 	 can only be proved under certain uniformity assumptions for the discrete

equations. Also, the approach a priori excludes the analysis of methods where the size of

the underlying one-particle basis is varied. The latter are of interest in the context of error

estimation though, especially in view of the fact that convergence of di�erent CC models

towards the limit within the full CI-space usually is rather fast, while the convergence of

the full-CI solutions 	d 2 H1
d to the continuous limit 	 2 H1 is often rather slow with

respect to the size of the underlying one-particle basis set. As a �rst step, the goal of

this work is to show that under suitable assumptions, the electronic Schr�odinger equation

(1.1) can in a mathematically rigorous fashion be equivalently re-formulated as Coupled

Cluster equations in a coe�cient space reecting the continuous space H1. The resulting

method will be termed \the continuous Coupled Cluster method", consisting in �nding a

suitably de�ned cluster operator T such that

h�; e�THeT	0i = E�h�;	0i for all � 2 H1: (1.7)

The step of globalizing the canonical CC formulation of the CI problem (1.2) to a con-

tinuous CC formulation of the original problem (1.1) consists in three steps, that will be

taken care of in the following Sections 2 to 4:
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(i) The formalism of cluster operators, de�ned by their action on a �xed tensor basis

set, has to be adapted to the in�nite dimensional space appropriately. The analysis of

�nite-dimensional CC theory uses the existence of a suitable one-particle operator F , for

instance a Fock or Kohn-Sham operator, that admits for an N -dimensional invariant sub-

space (N being the number of electrons), a basis of which is used to de�ne the reference

	0 and the cluster operators. In Section 2, we introduce an according assumption, which

may loosely be described as the existence of a Fock-style one-particle operator having a

ground state. In many cases, this assumption is ful�lled by according continuous Fock

or Kohn-Sham operators. As well, it covers many of the more sophisticated CC methods

used in practice. We also briey review the necessary parts of the ample mathemati-

cal background that underlies the electronic Schr�odinger equation [27, 45, 54, 57] and its

formulation in terms of cluster operators in the energy space H1.

(ii) The critical point in the formulation of (1.7) is from the point of view of functional

analysis that the cluster operators T as well as their L2-adjoints T
y now have to be

bounded mappings on the energy space, T : H1 ! H
1, to make the continuous method

well-de�ned. To verify this property, there are to our knowledge no suitable concepts

available in the literature so far. The idea of the present proof given in Section 3 is mainly

based on the above mentioned existence of a suitable reference ground state, together with

the nilpotency properties of annihilation and creation operators which allows to reduce

the analysis to �nite-dimensional `p-estimates [50] with the constants depending only on

the number N of electrons.

(iii) These properties once veri�ed, application of well-known Banach algebra theory

can be used to supply the remaining ingredients for formulation of the continuous CC

equations and the continuous CC function f ; this step is taken in Section 4.

In a follow-up publication [48], we will then harvest the continuous CC formulation to

directly derive from it existence and uniqueness results for the continuous and discrete

equations and to obtain quasi-optimality estimates and error estimators for the energies

calculated by CC. The analysis will also underpin the importance of particular contants

(as the quality of the reference determinant 	0 and spectral gaps of the Hamiltonian) for

the practical convergence behaviour of the Coupled Cluster method.
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2. A setting for the continuous CC equations

This section, building up the necessary theoretical background for the continuous CC

equations, starts by reformulating the electronic Schr�odinger equation (1.1) in its inter-

mediate normalization formulation that is commonly used in post-Hartree-Fock calcula-

tions and sometimes termed the complete Con�guration Interaction formulation (as in

contrast to the discrete full CI-formulation (1.2)) in the context of quantum chemistry.

The main assumption, which may loosely be described as the existence of a Fock-style

one-particle operator having a ground state, is �xed in Assumption 2.1; we then de�ne

cluster operators in Section 2.2.

2.1. The complete-CI formulation of the electronic Schr�odinger equation.

The solution space H1 on which the N -particle electronic Schr�odinger equation is for-

mulated combines two requirements on the solution 	, namely that it be contained in

the Sobolev space [49] H1
�
(R3 � f�1

2
g)N) of �nite kinetic energy, and that it be subject

to the Pauli principle, according to which the wave function has to be antisymmetric

(i.e. sign-changing) under every permutation of two non-identical particle coordinates

(xi; si); (xj; sj) 2 R
3 � f�1

2
g. Denoting the subspace of antisymmetric functions con-

tained in L2((R3 � f�1
2
g)N) by L2, the solution space is given by

H
1 := L

2 \H1
�
(R3 � f�1

2
g)Ng): (2.1)

On this space, we are looking for solutions of the electronic Schr�odinger equation. Its

weak formulation, a convenient starting point for numerical treatment, is formulated in

terms of the bounded, coercive [57] bilinear form h : H1 � H1 ! R on the energy space

H
1, induced by the strong Hamiltonian Ĥ : H2 ! L

2 [27, 45, 52,56],

h(	;	0) := hr	;r	0i + h	; � NX
i=1

NX
j=1
j 6=i

1

jxi � xjj �
NX
i=1

MX
k=1

Zk

jxi �Rkj
�
	0i: (2.2)

In this h�; �i denotes the usual L2((R3 � f�1
2
g)N)-inner product, the velocity operator r

acts on every spatial component of a wave function �, and the constants Zk 2 N, Rk 2 R3

are the charges and positions of the �xed nuclei. The solutions of the weak eigenvalue

equation

h(	; �) = Eh	; �i in H
�1; (2.3)



TITLE WILL BE SET BY THE PUBLISHER 7

correspond to the eigenfunctions of the classical, unbounded Hamiltonian bH : H2 ! L
2

[57]. By standard functional analysis, (2.3) can be restated as operator eigenvalue equation

for a weak Hamiltonian H : H1 ! H
�1,

hH	; �i := h(	; �) = Eh	; �i in H
�1;

leading to the equation (1.1) formulated at the beginning of this work.

Using linearity, (1.1) can be replaced by a globalized Fourier ansatz, i.e. testing the

functional (2.2) with all elements 	� of a basis of the space H1. Given a complete one-

particle basis

B := f P j P 2 Ig

of the one-electron state space

H1 := H1(R3 � f�1

2
g)

indexed by ordered an set I, a Slater basis of the antisymmetric space H1 is given by

B := f	� j � 2Mg; 	� :=
N̂

i=1

�Pi := Q(
N
i=1�Pi)

where Q : L2((R3 � f�1
2
g)N) ! L

2 is the antisymmetrization mapping, de�ned by its

action on functions 	 = 	((x1; s1); : : : ; (xN ; sN)) via

Q	 =
1p
N !

X
�2S(N)

(�1)sgn(�)	((x�(1); s�(1)); : : : ; (x�(N); s�(N))); (2.4)

with the sum running over the permutational group S(N) on N elements operating on

the indices of 	, and where M consists of ordered multi-indices,

M = f(P1; : : : ; PN) j Pi 2 I; P1 < : : : < PNg:

In the discretized (\projected") Coupled Cluster method (1.5) in its simplest form, a �nite

one-particle basis set Bd is provided by d eigenfunctions of the converged discrete Fock

operator FHF;d obtained from a preliminary Hartree-Fock calculation, leading to simpler

equations and also facilitating the numerical analysis performed in [50]. In the present

in�nite dimensional setting, the continuous Fock operator FHF : H1 ! H�1 does not allow

for a complete eigensystem anymore, so that the analysis from [50] and the formulation of
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the Coupled Cluster method do not extend straight-forwardly to the continuous setting.

Instead, we we will base our analysis on the following assumption.

Assumption 2.1. A subset

Bocc := f�I1 ; : : : ; �INg � B

of N basis functions from B is a basis of an N-dimensional invariant subspace of a

linear symmetric operator F : H1 ! H�1; this operator F is spectrally equivalent to the

canonical H1-inner product h�; ��i1, i.e. there are ;� > 0 such that

 h'; 'i1 � hF'; 'i � � h'; 'i1 for all ' 2 H1(R3 � f�1

2
g):

Remarks on the assumption. Assumption (2.1) can be shown to be ful�lled by the

shifted in�nite dimensional Fock operator FHF and an according invariant subspace be-

longing to N lowest eigenvalues of FHF in many practically relevant cases [36, 37], for

instance for neutral and positively charged molecules. Under similar assumptions, it has

recently been proven for certain Kohn-Sham type operators used in density functional

theory [1].1 Also, any set of N eigenfunctions spanning an invariant subspace SN of a

discrete Fock operator Fd can be complemented by a basis of S?N to ful�l the assumption.

This also covers many of the more sophisticated CC schemes which are not directly based

on canonical orbitals (i.e. eigenfunctions of the Fock operator) anymore, but use certain

localization criteria to rotate the occupied orbitals (to e.g. Foster-Boys-type orbitals [11],

Pipek-Mazay-type orbitals [43] or enveloped localized orbitals [3]), use non-orthogonal

bases for the complement BnBocc (e.g. the projected atomic orbitals (PAOs) in the

LCCSD approach [25,51]), or enhance the virtual space obtained from Hartree-Fock cal-

culations by specialized basis functions taking the numerically hazardous electron-electron

cusp [24, 29] into account (as e.g. the recent powerful r1;2- and f1;2- methods [30]). Nev-

ertheless, all of these schemes maintain the orthogonality between Bocc and BnBocc and

are therefore covered by the analysis in this publication.

In the language of quantum chemistry, the basis functions �P 2 B are termed spin orbitals.

A spin orbital �I from Bocc is commonly called occupied orbital, and this situation will

1That the Fock operator FHF is bounded below and can thus be shifted to a positive operator is a

consequence of the Hardy inequality [56, 57] and is essentially the same as for the weak Hamiltonian

H given in [57]. The same result holds if for the Kohn-Sham operator if the exchange term maps

H
1(R3)! L

2(R3) boundedly.
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be abbreviated by I 2 occ. A function �A 2 BnBocc is called virtual orbital, denoted by

A 2 virt. It is also a notational convention that in summations etc., occupied orbitals

are labeled by letters I; J;K; : : : 2 occ, virtual orbitals by letters A;B;C; : : : 2 virt, and

unspeci�ed orbitals by letters P;Q;R; : : : 2 I. The requirement that F has an invariant

N -dimensional subspace translates in this language as

hF�I ; �Ai = h�I ; �Ai = 0 for all I 2 occ; A 2 virt: (2.5)

The ansatzes of (single-reference) Con�guration Interaction and Coupled Cluster theory

are perturbational in the sense that they assume the existence of a preliminarily calculated

reference determinant. This reects in the second, mild assumption.

Assumption 2.2. The reference Slater determinant

	0 :=
N̂

i=1

�Ii ; (2.6)

approximates the sought eigenfunction 	 to some extent. In particular, the nonorthogo-

nality assumption

h	;	0i 6= 0

holds.

In practice, this reference mostly is given by the Hartree-Fock solution [15, 26] of the

system . Such reference 	0 given, equation (1.1) can now be formulated in terms of the

CI ansatz: \Find 	 = 	0 +	� 2 H1 such that

hH(	0 +	�);	�i = Eh	0 +	�;	�i for all 	� 2 B; where 	�?	0:
00 (2.7)

In this, the correction 	� is orthogonal to the reference in the L2-inner product, so that

the intermediate normalization condition

h	;	0i = 1 (2.8)

is ful�lled, and also orthogonal (due to (2.5)) in the inner product induced by the lifted

Fock operator

FN : H1 ! H
�1; FN =

NX
i=1

Fi; Fi = I 
 : : :
 I| {z }
i�1 times


F 
 I 
 : : :
 I| {z }
d�i times

: (2.9)
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The inner product induced by FN is equivalent to that on H1 [46] and will be denoted by

h�; ��iF ; the corresponding norm is abbreviated by jj � jjF .
Equation (2.7) will now be reformulated in terms of the cluster operators introduced below

to derive the CC method.

2.2. Annihilation and creation operators, excitation operators.

Various methods in quantum chemistry, including the Coupled Cluster method, are for-

mulated in terms of annihilation and creation operators borrowed the formalism of Second

Quantization [8]. Any linear operator on F, in particular the electronic Hamiltonian and

the cluster operators of CC theory, may be written as a sum of polynomials in creation

and annihilation operators ayI ; aI [13]. To de�ne these operators, we will in this paragraph

have to utilize the antisymmetric, real valued space L2 = L
2
N for a varying number N of

electrons. Therefore, the spaces, operators etc. under consideration will be equipped with

an index N indicating the number of particles where needed. Because notations used are

intuitive and only needed in this part, they will not be introduced at all length. From the

next paragraph on, the particle number N will be �xed again; consequently, the indices

will be omitted again. The (fermion) Fock space [23] is de�ned as

F :=
1M

N=0

L
2
N ;

where
L

denotes the direct orthogonal sum of the Hilbert spaces L2
N . By writing N -

electron state vectors 	N 2 L2
N as (�k;N	N)k2N = (0; 0; : : : ; 0;	N ; 0; : : :); we may embed

L
2
N in F for any N . Note that the case N = 0 is also included in the above de�nition of

the space F. For this case, L2
0 is (by de�nition of the tensor product) the underlying �eld

of the complex numbers. This is a one-dimensional vector space, thus containing up to

a phase factor only normalized vector called the vacuum state ji. This state is in some

sense the starting point for the formalism of second quantization, as any state vector may

be created from it by the use of the creation operators introduced in the following.

Annihilation and creation operators. Motivated by the theory developed below, our

de�nition of creation and annihilation operators acting on F also allows for non-orthogonal

basis sets and functions f not contained in the basis B.
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De�nition 2.3. For 1 � N 2 N, f 2 L2(R3 � f�1
2
g) and 	� 2 BN , we use the mapping

QN+1 : L
2
�
(R3 � f�1

2
gN+1

�! L
2
N+1 from (2.4) to de�ne

ayf;N	� := QN+1

�
f 
	�

�
: (2.10)

The linear continuation of the above operator to linear combinations is obviously L2-

bounded, and by closing the operator in L2
N , we obtain a linear map

ayf;N : L2
N ! L

2
N+1:

For N = 0, we let ayf;0ji = f 2 L2
1. The creation operator or creator of f is now de�ned

on all of F by

ayf : F! F; ayf :=
1M

N=0

ayf;N : (2.11)

In particular, if f = �P from the �xed basis set B, we will denote ayP := ay�P for conve-

nience.

The annihilation operator or annihilator af : F ! F of f is the adjoint of the creation

operator ayf : F! F of f . The annihilator of a basis function �P 2 B is denoted by aP .

�

Note that because the creation operator ayf is closed, the adjoint of the adjoint of ayf is

ayf , so that the adjoint of the annihilator af is indeed ayf , as indicated by the notation.

Later on, we will need the properties of the annihilation and creation operators compiled

in the following lemma. The proofs are generalized from according statements for the

�nite-dimensional case [26,53] straightforwardly, so they are omitted here.

Lemma 2.4. (Properties of the creation and annihilation operators)

(i) For f 2 spanf�P1 ; : : : �PNg, we have

ayf
� N̂

n=1

�
Pn

�
= 0;

and for f =2 spanf�P1 ; : : : �PNg,

af
� N̂

n=1

�
Pn

�
= 0;

where 0 is the zero vector 0 2 F (not to be confused with the vacuum state).
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(ii) The action of af on an N-electron elementary tensor 	 = 
N
i=1�Pi is given by

~af	 :=
NX
n=1

(�1)n�1hf; �
Pn
i Q

��
n�1
i=1 �Pi

�
 �
N
i=n+1 �Pi

��
: (2.12)

(iii) In particular, there holds for 	� = 
N
i=1�Pi 2 B and Pi 2 fP1; : : : ; PNg that

aPi
� N̂

n=1

�
Pn

�
= (�1)i�1Q

��
i�1
n=1 �Pn

�
 �
N
n=i+1 �Pn

�� 2 BN�1;

so that aPi \annihilates" the basis function �Pi and adds a corresponding sign.

(iv) Using the anticommutator [A;B]+ = AB + BA, there hold the anticommutator

relations

[af ; ag]+ = 0; [ayf ; a
y
g]+ = 0;

and if f; g 2 L2(R3 � f�1
2
g) are orthogonal,

[af ; a
y
g]+ = [ayf ; ag]+ = 0:

If B is an orthogonal one-electron basis,

[aP ; a
y
Q]+ = [ayP ; aQ]+ = �P;Q

for all P;Q 2 I, where �P;Q = 1 only if P = Q and �P;Q = 0 otherwise. Further-

more, all creation and annihilation operators are nilpotent,

afaf = ayfa
y
f = 0: (2.13)

Excitation operators and excitation ranks. The annihilation and creation operoators

are in particular the building blocks of excitation operators, which themselves contitute

the cluster operators used in quantum chemistry: For any selection

I1 < : : : < Ir 2 occ; A1 < : : : < Ar 2 virt

of indices, r � N , we de�ne a corresponding excitation operator

XA1;:::;Ar
I1;:::;Ir

= ayA1
: : : ayAraI1 : : : aIr : (2.14)

XA1;:::;Ar
I1;:::;Ir

maps the reference determinant 	0 2 B to a Slater determinant 	� 2 Bk by

replacing the occupied orbitals I1; : : : ; Ir contained in �0 by the virtual orbitals A1; : : : ; Ar.
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Thus, we have a one-to-one correspondence between the basis functions 	�; � 2M�, and

the excitation operators XA1;:::;Ar
I1;:::;Ir

: Because both notations will be convenient in some

situations, we will identify the index sets and therefore write

	� = 	A1;:::;Ar
I1;:::;Ir

:= XA1;:::;Ar
I1;:::;Ir

	0;

also, we will sometimes denote the excitation operator taking 	0 to 	� by X�:

Note also that by Lemma 2.4,(XA1;:::;Ar
I1;:::;Ir

)y = ayI1 : : : a
y
Ir
aA1 : : : aAr , so that

(XA1;:::;Ar
I1;:::;Ir

)y XA1;:::;Ar
I1;:::;Ir

	0 = (XA1;:::;Ar
I1;:::;Ir

)y 	A1;:::;Ar
I1;:::;Ir

= 	0; (2.15)

and the adjoints of excitation operators are therefore sometimes termed decitation oper-

ators.

The number r = r(XA1;:::;Ar
I1;:::;Ir

) � N of annihilators (resp. creators) contained in XA1;:::;Ar
I1;:::;Ir

is called the (excitation) rank of XA1;:::;Ar
I1;:::;Ir

; further, we will call 	� = 	A1;:::;Ar
I1;:::;Ir

an r�fold
excited determinant or determinant of excitation rank r, and r(�) := r(X�) the excitation

rank of the index �.

For two determinants 	;	s of excitation ranks r(�) 6= r(�), we note that due to (2.5)

h	�;	�i = h	�;	�iF = 0: (2.16)

We introduce some conventions which will be useful in the following.

De�nition 2.5.

(i) For �0 := (I1; : : : ; IN) the index belonging to the reference determinant and the

multiindex set M indexing B, we de�ne M� =Mnf�0g.
(ii) I� P 2 fI1; : : : ; Ir; A1; : : : ; Arg we say that P is contained in �, P 2 � in short.

For �0, we de�ne that P =2 �0 for all P 2 I.
(iii) For two multi-indices �; � 2 M, we write � � � i� for all indices P 2 I, P 2 �

implies P 2 �.
(iv) Obviously, for each pair � � � 2 M, there is exactly one multi-index � � � 2 M

determined by the condition that P 2 � i� P 2 �; P =2 �, and we will denote the

relation between these indices by � = �� �, � = � 	 �.

Additionally, we de�ne for the situations where �;	 is not de�ned by the above

that � � � = �1 if fP jP 2 �g \ fP jP 2 �g 6= ;, and � 	 � = �1 for the case

� 6� �.
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(v) Finally, we declare for convenience that X�0 = I, de�ne that for coe�cients turn-

ing up in summations etc. c�1; t�1; : : : = 0, and also let 	�1 = 0; X�1 = 0.

It follows from the anticommutator relations 2.4(iv) that all operators contained in any

excitation operators anticommute. Therefore, X��� also de�nes an excitation operator

and there holds the important commutation relation

X�X� = X��� = X��� = X�X�

for any excitation operators. An analogous statement holds for products of decitation

operators Xy
�X

y
� = Xy

���: Also,

Xy
�X� = X�	�; X�	� = 	���; X

y
�	� = 	�	�: (2.17)

3. Cluster operators and their continuity properties

Every intermediately normed function 	 = 	0 +	� 2 L2 can be expanded in the tensor

basis B as

	 = 	0 +	� = 	0 +
X
�2M�

t�X�	0 =: (I + T	�)	0 (3.1)

of at most N -fold excitations X�	0 of the reference determinant 	0 2 B. The operator
T	� introduced in the above is called the cluster operator of 	 2 L2.

In the �nite dimensional setting, cluster operators are automaticly continuous, implying

that cluster mapping t 7! eT (t) is well-de�ned and continuous. From this property, accord-

ing properties of the CC function can then be derived, cf. [50]. Because the Hamiltonian bH
maps H1 ! H

�1, the continuous formulation of the Coupled Cluster depends on accord-

ing continuity properties of the in�nite dimensional cluster operator and its adjoint. The

following theorem formulates this result, which is fundamental for the continuous formu-

lation of the Coupled Cluster equations. We will afterwards comment on the di�culties

that have to be overcome in the proof, and then prove Theorem 3.1.

Theorem 3.1. (L2-/H1-continuity of the cluster operator and its adjoint)

For any 	� =
P

�2M� t�	�, the cluster operator T = T	� and its L2-adjoint T y = T y	�

map L2 ! L
2 boundedly; there holds

kTkL2!L2 = kT ykL2!L2 � k	�kL2 : (3.2)
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If 	� 2 H1, T and T y also map H1 ! H
1 boundedly, and

kTkH1!H1 � k	�kH1 ; kT ykH1!H1 � k	�kH1 : (3.3)

Using the below Lemma 3.2, the proof for (3.2) is essentially identical to the proof for

the discrete (\projected") setting analysed in [50]. In contrast to this, and although the

relation (3.1) between a function 	 and its cluster operator is bluntly simple, the the H1-

continuity (3.3) of T and T y is considerably harder to verify: The operator T is easily seen

to be non-compact in general, and to the authors knowledge, there are no investigations

of the analytical properties of cluster operators available in the literature, except for the

�nite-dimensional case of CC analyzed in [50]. A direct transfer of the approaches taken

there fails due to various technical obstacles arising in the continuous case: The operator

F : H1(R3)! H�1(R3) ful�lling (2.5), for instance the Fock operator of the system, does

not have to admit a complete eigensystem anymore; also, it was used in [50] that the

discretized Hamiltonian boundedly maps to `2 for each Galerkin discretisation, so that

for analysis of the discrete Coupled Cluster equations, the need to show the continuity

of the adjoint T y as mapping H1 ! H
1 could be avoided. This is not the case any more

in the continuous setting. Note also that the continuity of T : H1 ! H
1 only implies

the continuity of its H1-adjoint T y;H
1
: H�1 ! H

�1, but not the H1-continuity of the

restriction of the L2-adjoint T
y : L2 ! L2 to H

1.

Our proof given here starts by showing that we can without loss of generality suppose

that the spin basis B that determines 	� and T is L2-orthonormal in Lemma 3.2. We will

then provide an expression for the H1-equivalent F -norm of functions as induced by the

operator FN from (2.9), Lemma 3.4. To show that images of T and T y are bounded in

this norm, we then prove an appropriate extension of an estimate from [50], based on the

nilpotency property of annihilation and creation operators in Lemma 3.5; this estimate

will then apply to prove the H1-continuity of the operators T and T y.

Lemma 3.2. (Reduction to orthonormal basis sets)

Let ~B := f~�I j I 2 occg [ f~�A j A 2 virtg be an L2-orthonormal basis for which there

holds

spanf~�I jI 2 occg = spanf�I jI 2 occg; spanf~�AjA 2 virtg = spanf�AjA 2 virtg;

and denote by ~	� the elements of the tensor basis constructed from ~B and by ~X�; � 2M�;

the excitation operators constructed from the creators and annihilators belonging to the

basis functions from ~B.
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(i) There holds spanf	�j� 2M�g = spanf~	�j� 2M�g.
(ii) For the cluster operator T =

P
�2M� t�X� belonging to

	� =
X
�2M�

t�	� =
X
�2M�

~t� ~	� 2 spanf	�j� 2M�g;

there also holds T =
P

�2M�
~t� ~X�:

Proof. First of all, (2.16) gives that h	0;	�i = 0 and (2.5) implies that h~	0;	�i = 0 for

all � 2 M�, implying spanf�0g = spanf~�0g and thus, with (2.16), spanf	�j� 2 M�g =
spanf~	�j� 2 M�g. Let us denote by ~aP ; ~a

y
P the annihilator/creator of ~�P , respectively.

Again using (2.5), we can expand

�I =
X
J2occ

cJI ~�J ; �A =
X
B2virt

cBA ~�B; aI =
X
J2occ

cJI ~aJ ; ayA =
X
B2virt

cBA~a
y
B;

where we inserted the expansions for �I , �A into the representations (2.10) and (2.12) for

the creation and annihilation operators. Thus, for suitable coe�cients d�
0

� , �; �
0 2M�,

T =
X
�2M�

t�X� =
X
�2M�

t�
� X
�02M�

rk(�0)=rk(�)

d�
0

�

�
~X� =

X
�02M�

� X
�2M�

rk(�0)=rk(�)

t�d
�0

�

�
~X�0 : (3.4)

Because X
�2M�

~t� ~X�	0 = 	� = T	0 =
X

�02M�

(
X
�2M�

rk(�0)=rk(�)

t�d
�0

� ) ~X�0	0;

the coe�cients to the very left and the very right coincide, so (ii) follows from (3.4).

�

We will now of course use Lemma 3.2 and assume that B is orthonormal. To prove the

continuity of T : H1 ! H
1, we now equip H1 with the equivalent norm induced by the

mapping FN , see Assumption 2.1. We will then expand T	 in suitable orthonormal bases

(Lemma 3.4) and estimate the occurring terms by the below Lemma 3.5. We start by

introducing some short-hand notations for occurring terms.

Notations 3.3. (Notations used in the proof of Theorem 3.1)

(i) By standard Hilbert space theory, we can choose an F -orthonormal one-particle

basis

B := f�P j P 2 Ig (3.5)
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for which

spanf�I j I 2 occg = spanf�I j I 2 occg:
(ii) The index � 2 M� belonging to a onefold excitation operators XA

I ; I 2 occ; A 2
virt; will be denoted as � =

�
I
A

�
:

(iii) For an index I 2 occ, let jIj label its position p 2 f1; : : : ; Ng in the reference

determinant (2.6), and denote �I := (�1)jIj:
(iv) For � 2M, we denote

�� :=
1

r(�)� 1
: (3.6)

(v) Finally, for each � 2M, we de�ne a corresponding mapping � : occ! I: If I =2 �
(i.e. if the occupied orbital �I is \not excited by X�"), we let �(I) = I; if I 2 �,

we have in equation (2.14) that I = Is for some s 2 f1; : : : ; rg, and Is de�nes by
the ordering on I a unique virtual index As ( to which the orbital �I is \excited

by X�"), for which we then de�ne �(I) = As.

The following lemma provides a working expression for the F -norm of a wave function 	.

Lemma 3.4. (F -norm of antisymmetric functions)

For any 	 =
P

�2M d�	� 2 H1, there holds

k	k2F =
X
J2occ

X
�2M

�� X
I2occ
I =2�

�I d� h�I ; �JiF
��2

+
X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�Id��(AI)
h�A; �BiF

��2: (3.7)

Proof. We will show that for any i 2 f1; : : : ; Ng, there holds

k	k2Fi =
1

N

� X
J2occ
�2M

�� X
I2occ
I =2�

�I d� h�I ; �JiF
��2 +X

B2virt
�2M

��
�� X
I2occ
A2virt

�Id��(AI)
h�A; �BiF

��2�: (3.8)

By de�nition of F = FN , we have k	k2F =
PN

i=1 k	k2Fi for any 	 2 H1, and the lemma is

then proven. To make notations not more complicated than necessary, we suppose i = 1

without loss of generality. We de�ne an orthonormal basis with respect to the F1-inner

product: Let us denote by M � IN�1 the set of ordered indices of length N � 1, and
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denote for � 2 M by �� the (N � 1)-electron Slater determinant formed from the one-

particle basis functions from B as determined by �. Using �P as de�ned in (3.5), the

set

B := f	P� := �P 
 �� j P 2 J ; � 2M g

is an F1-orthonormal system. We can write every basis function 	� 2 B as

	� =
1

N !

X
�2S(N)

(�1)j�j ���(1) 
 : : :
 ���(N)
=

1

N

X
I2occ

�I ��(I) 
 ��I ; (3.9)

where ��I is the Slater determinant from B obtained from 	� by removing the function

��(I): Therefore, H
1 is contained in the F1-span of B, and we can calculate the F1-norm

of any 	 2 H1 by expanding 	 in the basis B. To do so, we decompose for �xed I 2 occ

the set M into indices belonging to excitation operators that do not/do contain the

annihilator for I,

X
�2M

d� (��(I) 
 ��I ) =
X
�2M
I =2�

d� (�I 
 ��I ) +
X
�2M
I =2�

��
X
A2virt

d��(AI)
(�A 
 ��I ):

Note that in the second term, there are r(�) + 1 combinations of indices �;
�
A
I

�
that give

rise to the same summand indexed by �� �A
I

�
, causing the factor ��: Inserting (3.9) into

	 =
P

�2M d�	�, interchanging sums and then using the above decomposition gives

	 =
1

N

X
I2occ

�I
X
�2M
I =2�

�
d� (��(I) 
 ��I ) + ��

X
A2virt

d��(AI)
(�A 
 ��I )

�
: (3.10)

Let I 2 occ and � = (I�1 ; : : : ; I�m ; A�1 ; : : : ; A�N�1�m
) 2 M be �xed. Then � de�nes a

unique excitation operator �I 2M by de�ning occ(�I) = occnfI; I�1 ; : : : ; I�mg, virt(�I) =
fA�1 ; : : : ; A�N�1�m

g. The relation (�; �I) de�nes a bijection between the set M and the

setf� 2MjI =2 �g. If we let �I�;� = 1 if �I = � and zero elsewise, testing (3.10) with 	P�

yields

h	;	P�i = 1

N

X
I2occ

�I
X
�2M
I =2�

�
d� h�I ; �P iF �I�;� + ��

X
A2virt

d��(IA)
h�A; �P iF �I�;�

�
:
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Therefore, we get

k	k2F1 =
1

N

X
P2J

X
�2M

�� X
I2occ

�I
X
�2M
I =2�

�
d� h�I ; �P iF �I�;� + ��

X
A2virt

d��(IA)
h�A; �P iF �I�;�

���2

=
1

N

X
P2J

X
�2M

�� X
I2occ
I =2�

�I

�
d�h�I ; �P iF + ��

X
A2virt

d��(IA)
h�A; �P iF

���2:
Using that d��(IA)

= 0 if I 2 � and the orthogonality condition (2.5), one obtains the

desired expression (3.8), implying (3.7).

�

The �rst estimate in next lemma was already proven in [50], where it was central to the

analysis for the projected CC equations the discrete setting. We re-formulate it here with

an improved constant and derive from it the estimate (3.12), which will be useful to show

continuity of T y.

Lemma 3.5. (Estimate for the proof of Theorem 3.1)

For any sequences (d�)�2M; (e�)�2M 2 `2(M); there holdsX
�2M

�� X
�2M

d�e�	�
��2 � CN k(d�)�2Mk2`2(M) k(e�)�2Mk2`2(M) (3.11)

and also X
�2M

�� X
�2M

d�e���
��2 � CN k(d�)�2Mk2`2(M) k(e�)�2Mk2`2(M): (3.12)

Proof. We start by estimating the number of indices � for which � � � holds for a �xed

index � (and thus for the number of indices � for which �	� gives a nonzero contribution):
By de�nition, � � � i� virt(�) � virt (�) and occ(�) � occ (�), so the number of possible

indices � � � for which �� has excitation rank s is given by
�
r
s

��
N

(N�s)�(N�r)

�
=
�
r
s

��
N
r�s

�
;

where r denotes the excitation rank of �� : Summing up over all ranks s � r gives

X
0�s�r

�
r

s

��
N

r � s

�
=

�
N + r

r

�
�
�
2N

N

�
=: CN

by Vandermonde's identity and a (sharp) worst-case estimate. Now, we can estimate the

left hand of (3.11) by noting that for every �xed �, the sum over � contains at most CN
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non-null summands; thus

X
�2M

�� X
�2M

d�e�	�
��2 � CN

X
�2M

X
�2M

��d�j2je�	���2 � CN

X
�2M

��d�j2 X
�2M

je�
��2;

giving (3.11).

To prove (3.12), we note that (3.11) means that for (d�)�2M 2 `2(M); the mapping

M : (f�)�2M 7! � X
�2M

f�d�	�
�
�2M

is a continuous mapping `2(M) ! `2(M) with continuity constant kMk � C
1
2

Nkd�k`2 .
We compute the adjoint of M : Because there holds for (e�)� 2 `2(M) that



M(f�)�2M; (e�)�2Mi =

X
�2M

X
�2M

f�d�	�e� = h(f�)�2M; (
X
�2M

d�	�e�)�2Mi

and for �xed � 2M that

X
�2M

d�	�e� =
X

���2M

d�	�e� =
X
�2M

d�e���;

M y is given by

M y : (e�)�2M 7! � X
�2M

d�e���
�
�2M

:

M y is also continuous with kM yk = kMk � C
1
2

Nk(d�)�2Mk`2 , and writing this out gives

(3.12).

�

Proof of Theorem 3.1: Using the estimate (3.11), the proof of the L2-continuity of T is

completely analogous to the proof of [50], Lemma 4.13, for the discrete case. We therefore

leave it out for sake of brevity. To show that T continuously maps H1 ! H
1, we denote

	 =
X
�2M

c�	�; 	
� =

X
�2M�

t�	�; T	 =
X
�2M�

d�	� =
X
�2M

X
�2M�

t�c�X���	0:
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We now compute the F -norm for T	 according to Lemma 3.4: For � 2 M; A 2 virt,

there holds

d� =
X
�2M

X
�2M�

t�c�����;� =
X
�2M�

t�c�	�;

X
I2occ

d��(AI)
=

X
I2occ

X
�2M

X
�2M�

�
t��(AI)

c�����;� + t�c��(AI)
�
����;�

=
X
I2occ
I =2�

X
�2M�

t��(AI)
c�	� + t�	�c��(AI)

:

Thus, inserting this in (3.7),

kT	k2F =
X
J2occ

X
�2M

�� X
I2occ
I =2�

�I
X
�2M�

t�c�	� h�I ; �JiF
��2 (3.13)

+
X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�I
X
�2M�

�
t��(AI)

c�	� + t�	�c��(AI)
�h�A; �BiF ��2:

Denoting the summand in line (3.13) with (I) and the one in the line below with (II), we

can use the estimate (3.11) to obtain for (I) that

(I) �
X
J2occ

X
�2M

� X
I2occ
I =2�

�� X
�2M�

t�c�	� h�I ; �JiF
���2

� N � � X
I2occ

X
J2occ

��h�I ; �JiF ��2� X
�2M

�� X
�2M�

t�c�	�
��2

� NCN

� X
I2occ

k�Ik2F
� kt�k2`2(M) kc�k2`2(M)

. k	�k � k	k;

while for (II),

(II) � 2
X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�I
X
�2M�

t��(AI)
c�	�h�A; �BiF

��2 (3.14)

+ 2
X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�I
X
�2M�

t�	�c��(AI)
h�A; �BiF

��2: (3.15)
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To estimate the summand in line (3.14), we use that for � � �, �� � ��, and apply (3.11)

afterwards to obtainX
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�I
X
�2M�

t��(AI)
c�	�h�A; �BiF

��2
�

X
B2virt

X
�2M

�� X
�2M�

�
��
X
I2occ

X
A2virt

�I t��(AI)
h�A; �BiF

�
c�	�

��2
.

� X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�It��(AI)
h�A; �BiF

��2� � k(c�)�2Mk`2(M)

� k	�kF � k	k

by comparison with the expression for the F -norm of 	�, while the same proceeding with

the summand in line (3.15) gives the other way around

2
X
B2virt

X
�2M

��
�� X
I2occ

X
A2virt

�I
X
�2M�

t�	�c��(AI)
h�A; �BiF

��2 . k	�k � k	kF :

Thus altogether, kT	kF . k	�kF � k	kF , and observing kT	0k = k	�k �nishes the �rst
part of the proof. It remains to show the H1-continuity of T y, for which the proof is

analogous to that for T , with the estimate (3.12) entering instead of (3.11); we therefore

only sketch the proceeding. Again, the representation (3.7) is used to compute kT y	kF .
Denoting

T y	 =
X
�2M

d�	� =
X
�2M�

X
�2M

t�c�X�	�	0;

the coe�cients dn are this time for �xed I 2 I, � 2M, I =2 � given by

d� =
X
�2M�

t�c���; d��(AI)
=

X
�2M�

t�c����(AI)
:

Inserting this in (3.7) for kT y	kF gives two terms, which can be estimated analogously

to the above, only that ���� � (N + 1)�� enters instead of �� � �� . We then obtain

kT y	kF . k	�k � k	k + k	�k � k	kF . k	�k � k	kF ;

and thus the upper bound for the H1-norm of T y.
�

Note that the F -norm of 	� does not enter the above estimate for T y = T y	� . Therefore,

the H1-norm of T y is not uniformly bounded from below by the H1-norm of 	� because

we can choose a sequence 	�
n for which k	�

nkF = 1 but k	�
nk ! 0; there then holds
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kT y	�nkF=k	�
nkF � k	�

nk=k	�kF ! 0:

Corollary 3.6. (Continuity of T : H�1 ! H
�1)

Each cluster operator T = T	�, 	� 2 H
1, can be extended to a continuous operator

T : H�1 ! H
�1. In particular, each excitation operator X� can be continuously extended

to an operator H�1 ! H
�1 , and there holds T =

P
�2M� c�X� in H�1:

Proof. Because T y is bounded on H1, its adjoint ~T : H�1 ! H
�1 is also continuous with

k ~TkH�1!H�1 = kT ykH1!H1 , and for every F (�) 2 (L2)0 � H
�1 (which we can write as h	; �i

with 	 2 L2), there holds

~TF := F (T y�) = h	; T y�i = hT	; �i;

so that ~T de�nes a continuous extension of T (which we also denoted as T above). The-

orem 3.1 in particular implies that X� : H�1 ! H
�1 is continuous and well-de�ned, and

T and
P

�2M� c�X� coincide on the dense subset L2, so T =
P

�2M� c�X� also follows.

�

4. The continuous Coupled Cluster equations

We now de�ne the continuous version of the Coupled Cluster equations as the main result,

Theorem 4.4. The eigenvalue equation (1.1) can be rewritten in terms of the cluster

operator T as the problem of �nding a coe�cient vector t� = (t�)�2`2(M) 2 `2(M�) such

that for T =
P

�2M� t�X� there holds 	� := T	0 2 H1 and

h	�; (H � E�) (I + T )	0i = 0 for all 	� 2 B:

The solution of (1.1) is then given by 	 = 	0+	�. Note that in the above, only coe�cient

vectors t� = (t�)�2M� are admitted for which the corresponding function 	� is contained

in H1. This is reected by restricing the set of admissible coe�cients from `2(M�) in the

following way.

De�nition 4.1. (The H1-coe�cient space V)

Let h�; ��iF̂ : (spanf	0g)?�(spanf	0g)? ! R denote an inner product which on (spanf	0g)?
induces a norm equivalent to the H1-norm. We de�ne a subspace V � `2(M�) by

V := ft 2 `2(M�) j ktkV <1 g :
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where

ht; siV := h
X
�2M�

t�	�;
X
�2M�

s�	�i2F̂ ; ktkV := ht; ti1=2
V
: (4.1)

�

The above de�nition of V is independent of the particular choice of the norm k � kF̂ .
Denoting as T (t) the cluster operator de�ned by t and 	(t) := T (t)	0, there holds

ktkV � k	(t)kH1 ; (4.2)

in particular, t 2 V i� 	�(t) 2 H1 \ (spanf	0g)?; so (V; h�; ��iV) is complete and thus

is a Hilbert space. For practical purposes, the Fock or Kohn-Sham operator F , shifted

by the sum �0 of the N eigenvalues belonging to the subspace spanned by the occupied

orbitals, can be used if F ful�ls a spinwise HOMO-LUMO condition: F̂ = F � �0I is

then positive de�nite on on (spanf	0g)?, see [46] for the proof. Also note that although

this mapping is particularly convenient to handle if B is an eigenbasis of the operator F ,

so that F is diagonal in this basis, evaluation of F in a non-orthogonal, non-eigenbasis

may also be performed within reasonable complexity if F is a one-particle operator like

FHF or FKS.

The continuity properties of the cluster operators imply continuity of the linear mappings

relating a vector t 2 V with an according cluster operator:

Corollary 4.2. The linear mappings

t 7! T (t) =
X
�2M�

t�X�; t 7! T y(t) =
X
�2M�

t�X
y
�

are bounded linear mappings (V; k � kV) ! (B(H1); k � kH1!H1):

To formulate the CC equations, we need one more lemma justifying the exponential

parametrisation; it is the continuous version of [50], Lemma 4.2, and Theorem 4.3.

Lemma 4.3. (Properties of the exponential function on the algebra of cluster operators)

The set L := ft0I + T (t) j t0 2 R; t 2 Vg is a closed commutative subalgebra of B(H1),

containing zero as the only non-invertible element. The exponential function exp(X) =PN
i=0X

i=i! is a local C1-di�eomorphism mapping onto Lnf0g. In particular, exp is a

bijection between the sets

T = fT (t) j t 2 Vg and I + T = fI + T (t) j t 2 Vg:
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The lemma also holds if H1 is replaced by H�1 in the above, or if V is replaced by a

subspace Vd � V.

Proof. Taking Theorem 3.1 into account, the proof for the properties of L is identical with

that from [50], Lemma 4.2, and Theorem 4.3. Because L is a commutative subalgebra

of H1 resp. H�1, the exponential function is a local C1-di�eomorphism on Lnf0g, see
e.g. [49]. The series terminates at i = N because any product of more than N excitation

operators contains more than N annihilators for the N occupied orbitals and thus has to

vanish, see Lemma 2.4(iv). exp maps T to I+T by de�nition, and on I+T , its inverse is
given by the (terminating) logarithmic series log(X) =

PN
i=1(�1)i�1(X � I)i=i (see [50]),

which obviously maps to T , so the lemma is proven.

�

We can now show that under the assumptions from Section 2, the exact (weak) eigen-

problem (1.1) is equivalent to the continuous Coupled Cluster equations formulated in

the following theorem.

Theorem 4.4. (The continuous Coupled Cluster equations)

An intermediately normed function 	 2 H
1 (cf. (2.8)) together with a corresponding

eigenvalue E� 2 R solves the (weak, CI) eigenproblem

h	�; (H � E�)	i = 0; for all � 2M (4.3)

if and only if 	 = eT	0 for some cluster operator T =
P

�2M� t�X� for which

kt�kV <1, and which ful�ls the (continuous) unlinked Coupled Cluster equations

h	�; (H � E�)eT	0i = 0; for all � 2M; (4.4)

or equivalently, the (continuous) linked Coupled Cluster equations,

E� = h	0; He
T	0i; h	�; e

�THeT	0i = 0; for all � 2M�; (4.5)

that is, if t� := (t�)�2M� 2 V is a root of the (continuous) Coupled Cluster function

f : V ! V
0; f(t) :=

�h	�; e
�THeT	0 i

�
�2M� : (4.6)

mapping V to its dual V0 and depending continuously on t 2 V.
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Note that the above equivalence of linked and unlinked formulation does not need to hold

anymore if in a discretised setting, based on certain selection criteria, only some of the

amplitudes of the discretised basis are used for a computation. In this case, eT
y

is not

necessarily surjective anymore; to guarantee this, the set of selected amplitudes has to

be excitation complete, which is for instance the case for canonical models like CCSD,

CCSDT etc., see [50] for details.

Proof. Using Theorem 3.1, 	 2 H1 solves the set of equations (4.3) i� there is a continuous

cluster operator S : H1 ! H
1 such that 	 = (I + S)	0 and

h	�; (H � E�)(I + S)	0i = 0 for all � 2M: (4.7)

By Lemma 4.3, there is a unique cluster operator T such that I + S = eT , so that (4.7)

is equivalent to �nding T : H1 ! H
1 such that

h	�; (H � E�)eT	0i = 0; for all � 2M; (4.8)

or in other words, 0 = (H � E�)eT	0 2 H
�1. By Theorem 3.1, the L2-adjoint T

y of

T is continuous as mapping H1 ! H
1; therefore, eT

y

is a continuous invertible mapping

H
1 ! H

1, and (4.8) is equivalent to

he�T y	; (H � E�)eT	0i = 0; for all 	 2 H1:

Due to the continuity of the adjoint mapping A 7! Ay, we have

he�T y	; (H � E�)eT	0i = h	; (e�T y)y(H � E�)eT	0i = h	; e�T (H � E�)eT	0i

with the exponential e�T of �T taken in H�1. To show the continuity properties of the

CC function, let us denote by h�; ��i`2 the usual `2(M�
k)-inner product. Then, for s; t 2 V,

we obtain with the boundedness of the Hamiltonian [57], Theorem 3.1, Corollary 4.2 and

Lemma 4.3 that

hf(t); si`2 =
X
�2M�

hs�	�; e
�THeT	0 i � kT (s)	0kH1ke�THeT	0kH�1 � C(t)kskV;

where the constant C(t) depends on the V-norm of t, so that hf(t); �i`2 de�nes a continuous
functional on V.

�
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5. Concluding remarks

By the virtue of Theorem 4.4, we have obtained the continuous Coupled Cluster equations

(4.4), (4.5), which are (assuming a suitable one-particle operator F exists and up to the

very mild restrictions of intermediate normalization) equivalent to the original operator

eigenvalue problem (1.1), the electronic Schr�odinger equation: Exact eigenvectors of the

eigenproblem for the Hamiltonian correspond to the solutions of the root equation for the

CC function (4.6), which in the continuous context de�nes a nonlinear operator between

the coe�cient space V and its dual space. The CC equations (1.5) for a �xed basis

set, normally used as starting point in quantum chemistry, can now be interpreted as a

Galerkin discretisation of the root equation for the CC function. In the same vein, in�nite

dimensional generalizations of e.g. multicon�gurational CC [9, 41, 42], time-dependent

CC [2,35] and of related approaches like the Jastrow ansatz [12,21,22] are desirable { also

in these contexts, the traditional discrete approaches may be embedded into a functional

analytic background, and new results in the theoretical investigation of these equations

may be obtained hereby. Unfortunately, such generalizations usually cannot reuse many

of the means utilized in the present approach for CC; rather, the speci�c characteristics

of the respective mostly highly developed methods will have to be respected to obtain

similar results; for instance, one would have to deal with the ambiguities arising in the

de�nition of occupied and virtual space in the de�nition of multicon�gurational CC.

For the Coupled Cluster method, we are now in a position to treat the CC function in

the formalism of nonlinear operator analysis: In a forthcoming paper [48] we will prove

a local strong monotonicity for the CC function, and derive existence and uniqueness

results, results concerning quasi-optimality and some results concerning error estimation.
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Correction. Preprint 26, DFG-SPP 1324, August 2009.
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