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A LOCAL REFINEMENT STRATEGY FOR CONSTRUCTIVE
QUANTIZATION OF SCALAR SDEs

THOMAS MÜLLER-GRONBACH AND KLAUS RITTER

Abstract. We present a fully constructive method for quantization of the solution

X of a scalar SDE in the path space Lp[0, 1] or C[0, 1]. The construction relies on

a refinement strategy, which takes into account the local regularity of X and uses

Brownian motion (bridge) quantization as a building block. Our algorithm is easy

to implement, its computational cost is close to the size of the quantization, and it

achieves strong asymptotic optimality provided this property holds for the Brownian

motion (bridge) quantization.

1. Introduction

Consider a random element X with values in a separable Banach space B. The quan-
tization problem for X consists in approximation of X by B-valued random elements

X̃ with finite range ran(X̃), where X and X̃ are defined on the same probability space.

For any such X̃ the error of order s ∈ [1,∞[ is defined by

e(s)(X, X̃,B) =
(
E‖X − X̃‖sB

)1/s
,

and X̃ is called an N -quantization of X if | ran(X̃)| ≤ N . The N -th quantization error

e
(s)
N (X,B) = inf{e(s)(X, X̃,B) : | ran(X̃)| ≤ N}

of order s is the minimal error that can be achieved by any N -quantization of X. For
solving this minimization problem it suffices to consider N -quantizations of the form

X̃ = T (X), where T : B → B is measurable with | ran(T )| ≤ N . Any such mapping T
is called an N -quantizer. We refer to the monograph [7] and to the survey [19].
In an asymptotic analysis of the quantization problem one wants to determine the

sharp rate of convergence of e
(s)
N (X,B) and to construct a sequence of N -quantizations

X̃N such that

lim sup
N→∞

e(s)(X, X̃N ,B)

e
(s)
N (X,B)

≤ δ
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for a given δ ≥ 1. Ideally, δ = 1, and in this case the sequence of quantizers is called
strongly asymptotically optimal.
The present paper is devoted to the construction problem for X being the solution

process of a scalar autonomous stochastic differential equation (SDE), and we consider
the spaces Bp = Lp[0, 1] with 1 ≤ p < ∞ and B∞ = C[0, 1]. The sharp asymptotics
of the corresponding N -th quantization errors is determined in [2, 3], and the first ap-
proach to constructive quantization is due to [12] with subsequent work in [13, 20]. Note
that the distribution of X on Bp is typically only given implicitly, which constitutes a
major challenge for the construction task.
In this paper we present a fully constructive method for quantization of SDEs that

employs results and techniques for strong approximation of SDEs. At first we apply
a coarse level quantization that is based on the Milstein scheme and on quantization
of the one-dimensional standard normal distribution. Secondly, we construct a local
refinement in the path space, which takes into account the local regularity of X. This
step is crucial for the overall performance of the quantization, and the refinement
strategy is similar to asymptotically optimal step-size control for strong approximation

of SDEs, see [8, 9] and [15, 16]. The construction uses a sequence of quantizations W̃N

of a Brownian motionW (or Brownian bridge) as a building block, see [1, 5, 11] as well
as the surveys [4, 19] and the web site [18] for downloads.
Altogether we achieve

lim sup
N→∞

e(s)(X, X̃N ,Bp)

e
(s)
N (X,Bp)

≤ lim sup
N→∞

e(s)(W, W̃N ,Bp)

e
(s)
N (W,Bp)

with s = p in the case p < ∞ and 1 ≤ s < ∞ for p = ∞, see Theorems 1 and 2. In

particular, we obtain strong asymptotic optimality for the quantizations X̃N of X, i.e.,

lim
N→∞

e(s)(X, X̃N ,Bp)

e
(s)
N (X,Bp)

= 1,

provided that this property holds for the quantizations W̃N of W . We stress that
these results hold uniformly over all scalar autonomous SDEs, whose coefficients satisfy
standard smoothness assumptions, and that the computational cost is close to the size
of the quantization. Our construction can be extended to systems of SDEs, and we
expect the same asymptotic results to hold in this case, too.
We briefly describe the content of the paper. In Section 2 we present the construction

and the results for our quantization method. We first study quantization of marginal
distributions of X in Section 2.1, and we then treat quantization in Lp[0, 1] and C[0, 1]
in Sections 2.2 and 2.3. Section 2 concludes with a discussion and an example. Proofs
are postponed to Section 3.
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2. Constructions and Results

We consider a scalar autonomous SDE

(1)
dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1],

X(0) = x0

with deterministic initial value x0 and scalar driving Brownian motion W . We assume
that the drift and diffusion coefficients a and b have the following properties. Both, a
and b are differentiable. Moreover, there exists a constant K > 0 such that f = a and
f = b satisfy

sup
x∈R

|f ′(x)| ≤ K

and
|f ′(x)− f ′(y)| ≤ K · |x− y|

for all x, y ∈ R.
The quantization of the solution X of the SDE (1) will be done in two steps. At

first we consider a uniform time-discretization and we construct a quantization of the
corresponding marginal distribution. Secondly, we construct a local refinement in the
path space, which takes into account the local regularity of X. Actually, the second
step turns out to be crucial for the overall performance of the quantization, and we
will use different refinement strategies for quantization in Lp[0, 1] with 1 ≤ p <∞ and
for quantization in C[0, 1].
Throughout the paper we use c to denote unspecified positive constants that may

only depend on the parameters x0, a(0), b(0), and K from equation (1) as well as
on the moment parameters p, q, r, s ≥ 1. The value of c may be different at every
occurrence. Moreover, ln denotes the natural logarithm, and we use use ≈ to denote
the strong asymptotic equivalence of sequences of positive reals, i.e., an ≈ bn means
limn→∞ an/bn = 1.

2.1. Quantization of marginal distributions. Consider an equidistant discretiza-
tion

(2) t` = `/m, ` = 0, . . . ,m,

of [0, 1]. We construct a sufficiently good quantization of (X(t1), . . . , X(tm)) in a simple
way. To this end we employ a product quantizer for the random vector Y = (Y1, . . . , Ym)
of normalized increments

(3) Y` = m1/2 · (W (t`)−W (t`−1))

of the Brownian motion W as well as the Milstein scheme.
Let q ≥ 1. For quantization of the increments we take a sequence of n-quantizers

T
(q)
n : R → R, and we put

Z̃(q)
n = T (q)

n (Z)
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with Z ∼ N(0, 1). We assume that

(A1) E(Z̃
(q)
n ) = 0 for every n ∈ N,

(A2) supn∈NE|Z̃
(q)
n |r <∞ for every r ≥ 1,

(A3) e(q)(Z, Z̃
(q)
n ,R) ≤ c · n−1 for every n ∈ N.

See Section 3.1 for a construction.
The Milstein scheme X̂m for approximation of X at the discretization (2) is given

by X̂m(t0) = x0 and

X̂m(t`) = X̂m(t`−1) + a(X̂m(t`−1)) ·m−1 + b(X̂m(t`−1)) ·m−1/2 · Y`
+ 1/2 · (b · b′)(X̂m(t`−1)) ·m−1 ·

(
Y 2
` − 1

)
for ` = 1, . . . ,m. Replacing the increments Y` by their n-quantizations

(4) Ỹ
(q)
`,n = T (q)

n (Y`)

we get an nm-quantization of (X(t1), . . . , X(tm)) via X̃
(q)
m,n(t0) = x0 and

X̃(q)
m,n(t`) = X̃(q)

m,n(t`−1) + a(X̃(q)
m,n(t`−1)) ·m−1 + b(X̃(q)

m,n(t`−1)) ·m−1/2 · Ỹ (q)
`,n(5)

+ 1/2 · (b · b′)(X̃(q)
m,n(t`−1)) ·m−1 ·

(
(Ỹ

(q)
`,n )

2 − 1
)

for ` = 1, . . . ,m.

Proposition 1. For all m,n ∈ N

E
(

max
`=1,...,m

|X(t`)− X̃(q)
m,n(t`)|q

)
≤ c · (m−1 + n−1)q.

Remark 1. We recall a main result on quantization in finite-dimensional spaces. Sup-
pose that a random vector Z takes values in the space B = Rm. Then, under mild
assumptions on the distribution PZ of Z,

(6) e
(q)
N (Z,Rm) ≈ c1 ·N−1/m

with a constant c1 > 0 that depends on the dimension m, the underlying norm, the
moment parameter q, and on the distribution PZ . See [7, Thm. 6.2]. In particular, this
result is valid for Z being normally distributed, so that we require optimality, up to a
constant, in assumption (A3).
Proposition 1 yields an upper bound for the quantization errors of marginal distribu-

tions on the spaces B = Rm, equipped with the supremum norm, which simultaneously
holds in every dimension m. More precisely, put Zm = (X(t1), . . . , X(tm)), and choose
nN = blnNc as well as mN = blnN/ ln lnNc to conclude that

e
(q)
N (ZmN

,RmN ) ≤ c · ln lnN/ lnN.
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Consider suitable subsequences and use projections onto the corresponding coordinates
to derive

sup
m∈N

e
(q)
N (Zm,Rm) ≤ c · ln lnN/ lnN.

The corresponding quantizations are obtained in a fully constructive way for distribu-
tions that are only given implicitly via the SDE. Note that an upper bound of any
polynomial order fails to hold, since

sup
N,m∈N

(
N ε · e(q)N (Zm,Rm)

)
= ∞

for every ε > 0, see (6). Moreover,

sup
m∈N

e
(q)
N (Zm,Rm) ≥ c · (lnN)−1/2,

see Section 2.4 below. We add that constructive quantization of a fixed marginal dis-
tribution is studied in [17].

As a basic ingredient for quantization on the path space we extend X̃
(q)
m,n to a C[0, 1]-

valued random element by piecewise linear interpolation, i.e., we define

X̃(q)
m,n(t) = (t− t`−1) ·m · X̃(q)

m,n(t`) + (t` − t) ·m · X̃(q)
m,n(t`−1)

for t ∈ [t`−1, t`].

2.2. Quantization in Lp[0, 1]. Throughout this section we consider the Banach space
B = Lp = Lp[0, 1] with 1 ≤ p < ∞, and we employ a sequence of k-quantizers
Sk : Lp → Lp for a Brownian bridge B on [0, 1].
Let m ∈ N. For the discretization (2) with step-size 1/m and Y` given by (3) we

define

(7) B`(t) = W (t)−W (t`−1)− (t− t`−1) ·m1/2 · Y`,

where t ∈ [t`−1, t`] and ` = 1, . . . ,m. The processes B` = (B`(t))t∈[t`−1,t`] form indepen-
dent Brownian bridges on the corresponding subintervals, and B` will be considered
as a random element with values in Lp[t`−1, t`]. In order to obtain a sequence of k-

quantizations B̃`,k of B` we use the bijection ψ : Lp[t`−1, t`] → Lp[0, 1] given by

ψh(t) = m1/2 · h(t`−1 +m−1 · t), t ∈ [0, 1],

and we define

(8) B̃`,k = ψ−1(Sk(ψ(B`))).

We combine these quantizations of Brownian bridges with the marginal quantization
according to Section 2.1 in order to get a quantization of X, which roughly is of size N
for a given N ∈ N. The construction properly takes into account the local regularity
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of X, which is given by the local Hölder constant |b(X(t))| of X in mean-square sense.
Let q ≥ 1 and n ∈ N. Put

b̃` = b̃
(q)
`,m,n = b(X̃(q)

m,n(t`)),

where (X̃
(q)
m,n(t0), . . . , X̃

(q)
m,n(tm)) denotes the n

m quantization defined by (5). We define
the random variables η` by

η` = η
(p,q)
`,m,n = max

(
|̃b`−1|2p/(p+2)∑m−1
j=0 |̃bj|2p/(p+2)

,
1

m · lnm

)
if maxj=0,...,m−1 |̃bj| > 0, and η` = 1/m otherwise.
For each Brownian bridge B` we choose k in (8) dependent on N and η` by taking

(9) K`,N = K
(p,q)
`,m,n,N = dNη`e,

and we define a quantization X̃
(p,q)
m,n,N of X by

X̃
(p,q)
m,n,N(t) = X̃(q)

m,n(t) + b̃
(q)
`−1,m,n · B̃`,K`,N

(t)

for t ∈ [t`−1, t`]. It is easy to see that

(10) ran(X̃
(p,q)
m,n,N) ≤ (e · n)m ·N1+1/ lnm.

Finally, we choose a sequence of integers mN ∈ N such that

(11) lim
N→∞

mN · lnmN

lnN
= 0 and lim

N→∞

m2
N

lnN
= ∞,

e.g., mN = (lnN)2/3, and we consider the sequence of quantizations

X̃
(p,q)
N = X̃

(p,q)
mN ,mN ,N

of X.
The asymptotic behavior of the corresponding errors of order p for quantization in

Lp[0, 1] depends on the SDE via the constant

(12) C(p) =

(
E

(∫ 1

0

|b(X(t))|2p/(p+2) dt

)(p+2)/2)1/p

and on the k-quantizers Sk for the Brownian bridge B on [0, 1] via

κ(p) = lim sup
k→∞

(
(ln k)1/2 · e(p)(B, Sk(B), Lp)

)
.

Theorem 1. Let q ≥ min{r ∈ 2N : r ≥ p}. Then

lim sup
N→∞

(
(lnN)−1 · ln | ran(X̃(p,q)

N )|
)
≤ 1

and
lim sup
N→∞

(
(lnN)1/2 · e(p)(X, X̃(p,q)

N , Lp)
)
≤ κ(p) · C(p).
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2.3. Quantization in C[0, 1]. Throughout this section we consider the Banach space
B = C = C[0, 1] equipped with the supremum norm, and we employ a sequence of
N -quantizers SN : C → C for a Brownian motion on [0, 1].
Let m ∈ N, consider the equidistant discretization (2) with step-size 1/m, and recall

the definition (7) of the independent Brownian bridges B1, . . . , Bm on the corresponding
subintervals. For technical reasons we do not apply quantization to these processes
separately, which would lead to a product quantization as it was used in the Lp-case.
Instead we provide a quantization, as a whole, of a weighted combination Bγ of the
Brownian bridges, given by

(13) B(γ)(t) = γ` ·B`(t)

for t ∈ [t`−1, t`]. At first we consider deterministic weights γ ∈ Rm \ {0} that satisfy

(14)
m∑
`=1

γ2` = m.

Instead of the normalized increments Y1, . . . , Ym of the driving Brownian motion, we
consider an independent sequence of standard normally distributed random variables
Z1, . . . , Zm that is independent of W . Put W ∗

0 = 0 and W ∗
` = m−1/2 ·

∑`
j=1 Zj for

` = 1, . . . ,m, and define a Brownian motion W ∗ on [0, 1] by

W ∗(t) = B`(t) + (t` − t) ·m ·W ∗
`−1 + (t− t`−1) ·m ·W ∗

`

for t ∈ [t`−1, t`]. We introduce a new time discretization by s0 = 0 and

s` =
1

m
·
∑̀
j=1

γ2j

for ` = 1, . . . ,m. The corresponding piecewise linear time transformation τ on [0, 1] is
given by

τ(s) = t`−1 + (s− s`−1)/γ
2
`

for s ∈ [s`−1, s`]. We obtain a Brownian motion W (γ) on [0, 1] by

W (γ)(s) =
`−1∑
j=1

γj · (W ∗(τ(sj))−W ∗(τ(sj−1))) + γ` · (W ∗(τ(s))−W ∗(τ(s`−1)))

for s ∈ [s`−1, s`]. The Brownian bridges of W (γ) on the subintervals [s`−1, s`] coincide
with the weighted Brownian bridges of W on the subintervals [t`−1, t`], up to the time
transformation τ , i.e.,

(15) B(γ)(t) = W (γ)(τ−1(t))− (t` − t) ·m ·W (γ)(s`−1)− (t− t`−1) ·m ·W (γ)(s`)
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for t ∈ [t`−1, t`]. Moreover, W (γ) is independent of (Y1, . . . , Ym), and we have

W (γ)(s`) = m−1/2 ·
∑̀
j=1

γj · Zj

Let N,n ∈ N and q ≥ 1. We use

W̃ (γ,q)
m,n (s`) = m−1/2 ·

∑̀
j=1

γj · Z̃(q)
j,n

with

Z̃
(q)
j,n = T (q)

n (Zj)

to obtain a quantization of W (γ) at the discrete points s`, and we define a quantization

B̃
(γ,q)
m,n,N of B(γ) by

(16) B̃
(γ,q)
m,n,N(t) = SN(W

(γ))(τ−1(t))−(t`−t) ·m ·W̃ (γ,q)
m,n (s`−1)−(t−t`−1) ·m ·W̃ (γ,q)

m,n (s`)

for t ∈ [t`−1, t`]. Put

bm(x) = sgn(b(x)) ·max(|b(x)|,m−1)

for x ∈ R. Similar to the case of Lp-quantization we adjust the weights γ` in (16) to
the local Hölder constant |b(X(t))| by taking the random weights

Γ` = Γ
(q)
`,m,n = bm

(
X̃(q)

m,n(t`−1)
)
·
(

1

m

m−1∑
j=0

b2m
(
X̃(q)

m,n(tj)
))−1/2

.

We define a quantization X̃
(q)
m,n,N of X by

X̃
(q)
m,n,N(t) = X̃(q)

m,n(t) +

(
1

m

m−1∑
j=0

b2m
(
X̃(q)

m,n(tj)
))1/2

· B̃(Γ,q)
m,n,N(t)

for t ∈ [t`−1, t`]. Since
∣∣ran(B̃(γ,q)

m,n,N

)∣∣ ≤ nm ·N for every weight γ, we obtain

(17)
∣∣ran(X̃(q)

m,n,N

)∣∣ ≤ n2m ·N.

Finally, we choose a sequence of integers mN ∈ N such that

(18) lim
N→∞

mN · lnmN

lnN
= 0 and lim

N→∞

(mN/ lnmN)
2

lnN
= ∞,

e.g., mN = (lnN)2/3, and we consider the sequence of quantizations

X̃
(q)
N = X̃

(q)
mN ,mN ,N

of X.
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The asymptotic behavior of the corresponding errors of order s for quantization in
C[0, 1] depends on the SDE via the constant

(19) C(∞,s) =

(
E

(∫ 1

0

|b(X(t))|2 dt
)s/2)1/s

and on the N -quantizers SN for a Brownian motion on [0, 1] via

κ(∞,s) = lim sup
N→∞

(
(lnN)1/2 · e(s)(W,SN(W ), C)

)
.

Theorem 2. Let q ≥ min{r ∈ 2N : r ≥ s}. Then

lim sup
N→∞

(
(lnN)−1 · ln | ran(X̃(q)

N )|
)
≤ 1

and

lim sup
N→∞

(
(lnN)1/2 · e(s)(X, X̃(q)

N , C)
)
≤ κ(∞,s) · C(∞,s).

2.4. Discussion. Quantization of Gaussian processes is intensively studied in the lit-
erature, see, e.g., [19] for a survey of results and applications in computational finance.
In particular, for the Brownian motion W and for the Brownian bridge B on [0, 1]
the following is known. Let Bp = Lp for p < ∞ and Bp = C for p = ∞. For every

1 ≤ p ≤ ∞ there exists a constant κ
(p)
∗ such that the N -th quantization errors of every

order 1 ≤ s <∞ satisfy

e
(s)
N (W,Bp) ≈ e

(s)
N (B,Bp) ≈ κ(p)∗ · (lnN)−1/2.

See [1, 11] for the case p = 2 and [5] for the general case. Moreover, κ
(2)
∗ =

√
2/π, while

only upper and lower bounds for κ
(p)
∗ are known in the case p 6= 2.

Due to [2, 3] the N -th quantization errors of order s for W and for the solution X
of the SDE (1) are related by

e
(s)
N (X,Bp) ≈ C(p,s) · e(s)N (W,Bp),

where in particular C(p.p) = C(p) is given by (12) for p <∞ and C(∞,s) is given by (19).
Therefore

e
(s)
N (X,Bp) ≈ κ(p)∗ · C(p,s) · (lnN)−1/2.

This means the following for the conclusions from Theorem 1, where we consider the
case s = p <∞. If the sequence of quantizations Sk(B) of B is strongly asymptotically

optimal, i.e., if e(p)(B, Sk(B), Lp) ≈ e
(p)
k (B,Lp), then the sequence of quantizations

X̃
(p,q)
N of X is strongly asymptotically optimal, too, i.e.,

e(p)(X, X̃
(p,q)
N , Lp) ≈ e

(p)
N (X,Lp).
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Analogously, weak asymptotic optimality for quantization of the Brownian bridge, i.e.,
κ(p) <∞, leads to weak asymptotic optimality for quantization of X with

lim sup
N→∞

e(p)(X, X̃
(p,q)
N , Lp)

e
(p)
N (X,Lp)

≤ κ(p)

κ
(p)
∗
.

We stress that the deviation κ(p)/κ
(p)
∗ from strong asymptotic optimality does not

depend on the underlying SDE. Likewise we obtain strong asymptotic optimality or

weak asymptotic optimality with a deviation κ(∞,s)/κ
(∞,s)
∗ in the case p = ∞ and

1 ≤ s <∞ according to Theorem 2.
For constructive approaches to quantization of stochastic processes we again refer

to [19] as a survey. Most of the results deal with Gaussian processes and p = 2, too,
and in this case the constructions are based on the Karhunen-Loève expansion and on
quantization of normal distributions. In order to achieve strong asymptotic optimality
suitable quantizations of multi-dimensional centered normal distributions with covari-
ance matrices of diagonal form are used for quantization of blocks of coefficients of the
Karhunen-Loève expansion, and this approach involves large scale numerical optimiza-

tion. Alternatively, constants κ(p)/κ
(p)
∗ close to one can already be achieved by product

quantizers, which merely rely on quantizations of the one-dimensional standard normal
distribution.
Specifically, for the Brownian bridge B the eigenfunctions and eigenvalues in the

Karhunen-Loève expansion are given by ek(t) =
√
2 sin(kπt) and λk = (kπ)−2, and we

refer to [14, 19] for constructions of quantizers as well as for numerical optimization
approaches.
Constructive quantization of diffusion processes was initiated in [12], where suitable

quantizers for the driving Brownian motion are used as a building block, which is
similar to our approach. The approaches differ, however, with respect to the numerical
treatment of the SDE. A key assumption in [12] is strict positivity of the diffusion
coefficient, which permits to use the Lamperti transform. Along this way one has to
solve N deterministic ODEs, in general, to get an N -point quantization of X, which is
weakly asymptotically optimal. This work is extended to systems of of SDEs in [20],
where rough path theory is used to establish convergence rates in p-variation and in
the Hölder metric for ODE-based quantizations.
A different approach is developed in [13], where the mean regularity of stochastic

processes is exploited. In particular, they obtain weakly asymptotically optimal quan-
tizations for possibly degenerate systems of SDEs. The construction is based on the
expansion of X in terms of the Haar basis, and on the availability of optimal quanti-
zations of the corresponding coefficients.
Our approach relies on results and techniques for asymptotically optimal step-size

control for SDEs, see [8, 9] and [15, 16]. The construction is easily implemented, it
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provides an explicit control on the asymptotic constants of the quantization error, and
the overall computational cost is close to the size of the quantization. Our construction
can be extended to systems of SDEs, and using sufficiently good quantizations of Lévy
areas as a building block for the Milstein scheme we expect the same asymptotic results
to hold. For the latter quantization problem we refer to [6], where a probabilistic method
for quantization of implicitly given distributions is introduced.

2.5. Example. Our method is efficiently implemented in [21] for L2-quantization of
general scalar equations. The implementation is based on the sequence of product quan-
tizers for the Brownian bridge that are provided in [18], together with their probability
weights.
Here we consider a square-root diffusion

dX(t) = α(µ−X(t)) dt+ σ
√
X(t) dW (t),

although the smoothness assumptions imposed in our analysis are not met. The process
X is used, e.g., to model the squared volatility in the Heston model. Specifically we
take the parameters

α = 1.0, µ = 0.02, σ = 0.2, X(0) = 0.04,

which means that we are at the critical value for positivity. We construct both, the
paths and the probability weights, of a quantization in L2, which is of a small size for
the purpose of illustration.
For the quantization of a marginal distribution we choose

q = 2, m = 3, n = 2,

and the 8 different paths of the coarse level quantization X̃
(2)
3,2 are shown in Figure 1. In

general, the probability weight of a coarse level path is the product of the corresponding

weights of the quantizations Ỹ
(2)
`,n , see (4). For n = 2 the latter weights are 1/2, so that

the weight of each coarse level path is 1/8 in our example. We add that the transition
densities are known explicitly for the square-root diffusion, and quantizations thereof
could be used instead of employing the Milstein scheme and N(0, 1)-quantizations.

The local refinement of a coarse level path is controlled by its values X̃(t`) = X̃
(2)
3,2 (t`)

at the grid points t0, . . . , tm−1 via the quantities b̃` = b̃
(2)
`,m,n and η` = η

(2,2)
`,m,n for

` = 0, . . . ,m − 1. See Table 1 for the numerical values in our example. For the lo-
cal refinement we choose

N = 16,

which determines the size K`,N = K
(2,2)
`,m,n,N of the quantizations of the Brownian bridges

on the subinterval [t`−1, t`] via (9). See Table 2 for the resulting values in our example.
The product quantizers used for the Brownian bridge are based on truncated Kar-

hunen-Loéve expansions of the Brownian bridge and thus yield finite superpositions of
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Figure 1. Coarse level quantization X̃
(2)
3,2

X̃(1/3) X̃(2/3) b̃0 b̃1 b̃2 η0 η1 η2

0.0615 0.0824 0.04 0.0496 0.0574 0.303 0.337 0.391
0.0615 0.0154 0.04 0.0496 0.0249 0.349 0.433 0.303
0.0076 0.0247 0.04 0.0174 0.0314 0.451 0.303 0.354
0.0076 0.0012 0.04 0.0174 0.0069 0.622 0.303 0.303

Table 1. Local regularity in the coarse level quantization

X̃(1/3) X̃(2/3) K1,16 K2,16 K3,16

0.0615 0.0824 3 3 3
0.0615 0.0154 3 4 3
0.0076 0.0247 4 3 3
0.0076 0.0012 6 3 3

Table 2. Quantization size of the Brownian bridges

the functions ek(t) =
√
2 sin(kπt) on each subinterval. Actually, in the example only

the first few quantizers are used. Figure 2 shows the resulting paths of the overall quan-

tization X̃
(2)
3,2,16 corresponding to the four cases from Table 2. The respective numbers

of paths are given by 54, 72, 72, and 108, leading to a total of 306 trajectories. For
the quantization size K`,16 = 3, 4 only multiples of e1 are used, while e1 and e2 are
employed in the case K1,16 = 6.
In general, a collection of fine level paths corresponds to every coarse level path, and

the coarse level probability weight is distributed to the fine level paths proportional to
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Figure 2. Overall quantization X̃
(2)
3,2,16

the product of the probability weights of the quantizations of the Brownian bridges. In
our example, there are 14 different weights ranging from the minimum value 0.001233
for 32 paths to the maximum value 0.012125 for 2 paths, and the corresponding proba-
bility weights for the Brownian bridge quantizations on the successive subintervals are
given by 0.135, 0.27, 0.27 and 0.459, 0.459, 0.459, respectively. The paths with minimal
and maximal weight are shown in Figure 3.

3. Proofs

3.1. Quantization of a standard normal distribution. In dimension one a general
construction of asymptotically optimal quantizers is known, which is presented here in
the particular case Z ∼ N(0, 1). Let zn,i denote the (2i − 1)/(2n)-quantile of PZ , and
put

vn,i = (q + 1)1/2 · zn,i
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Figure 3. Minimum (solid) and maximum (dashed) weight paths

for i = 1, . . . , n. Furthermore, let

un,i = 1/2 · (vn,i + vn,i+1)

for i = 1, . . . , n− 1, and put un,0 = −∞ and un,n = ∞. The sequence of n-quantizers

T (q)
n =

n∑
i=1

vn,i · 1]un,i−1,un,i]

then satisfies

e(q)(Z, T (q)
n (Z),R) ≈ e(q)n (Z) ≈ c1 · n−1

with a constant c1 that only depends on q, see [7, Sec. 7.3]. Clearly (A3) is valid for

this sequence of quantizers, and (A1) holds by symmetry of T
(q)
n .

We present a proof of property (A2). Let ϕ denote the density function of N(0, 1),
and let n ∈ N with n ≥ 2. Then

(zn,n − zn,n−1) · ϕ(zn,n) ≤
∫ zn,n

zn,n−1

ϕ(x) dx =
1

n
= 2 ·

∫ ∞

zn,n

ϕ(x) dx ≤ 2

zn,n
· ϕ(zn,n).

Hence

(20) max
i=2,...,n

(vn,i − vn,i−1) ≤ (q + 1)1/2 · (zn,n − zn,n−1) ≤ c

and

(21) vn,n = (q + 1)1/2 · zn,n ≤ c · (lnn)1/2.

Let r ≥ 1 and Z ∼ N(0, 1). By definition of the quantizers T
(q)
n we have

E|T (q)
n (Z)|r =

n∑
i=1

|vn,i|r ·
∫ un,i

un,i−1

ϕ(x) dx.
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Assume that i ∈ {2, . . . , n− 1}. Then

|vn,i|r ≤ c · (|un,i−1|r + |vn,i − vn,i−1|r) ≤ c · (|un,i−1|r + 1)

due to (20), and consequently,

|vn,i|r ·
∫ un,i

un,i−1

ϕ(x) dx ≤ c ·
∫ un,i

un,i−1

(|x|r + 1) · ϕ(x) dx.

Next, let i ∈ {1, n}. Use (21) and observe vn,n−1 > zn,n−1 to obtain

|vn,i|r ·
∫ un,i

un,i−1

ϕ(x) dx ≤ |vn,n|r ·
∫ ∞

vn,n−1

ϕ(x) dx ≤ c · (lnn)r/2 · n−1 ≤ c.

Hence

E|T (q)
n (Y )|r ≤ c ·

(
1 +

∫ ∞

−∞
(|x|r + 1) · ϕ(x) dx

)
≤ c,

which completes the proof of property (A2).

3.2. Properties of the Milstein scheme. Let X̂m = (X̂m(t))t∈[0,1] denote the time-
continuous Milstein scheme that is based on the discretization (2) with step-size 1/m,

i.e., X̂m(t0) = x0 and

X̂m(t) = X̂m(t`−1) + a(X̂m(t`−1)) · (t− t`−1) + b(X̂m(t`−1)) · (W (t)−W (t`−1))

+ 1/2 · (b · b′)(X̂m(t`−1)) ·
(
(W (t)−W (t`−1))

2 − (t− t`−1)
)

for t ∈ [t`−1, t`]. The following facts are well known under stronger assumptions on the
drift and diffusion coefficients than those formulated in Section 1. See, e.g., [10].

Lemma 1. Let r ≥ 1. Then, for every m ∈ N,

E
(
sup
t∈[0,1]

|X̂m(t)|r
)
≤ c

as well as

E
(
sup
t∈[0,1]

|X(t)− X̂m(t)|r
)
≤ c ·m−r.

Proof. Put

A =
m∑
`=1

a(X̂m(t`−1)) · 1]t`−1,t`]

and

B =
m∑
`=1

(
b(X̂m(t`−1)) + (b · b′)(X̂m(t`−1)) · (W −W (t`−1))

)
· 1]t`−1,t`].

Then

X̂m(t) =

∫ t

0

A(s) ds+

∫ t

0

B(s) dW (s).
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We define

X̂∗
m(t) = sup

s∈[0,t]
|X̂m(s)|.

Suppose that t ∈ [t`−1, t`]. Then, due to the properties of a and b,

E|A(t)|r ≤ c · E(1 + |X̂m(t`−1)|)r ≤ c ·
(
1 + E|X̂∗

m(t)|r
)

and

E|B(t)|r ≤ c · E
(
(1 + |X̂m(t`−1)|) · (1 + |W (t)−W (t`−1)|)

)r
= c · E(1 + |X̂m(t`−1)|)r · E(1 + |W (t)−W (t`−1)|)r

≤ c ·
(
1 + E|X̂∗

m(t)|r
)
.

In particular,

E|X̂m(t`)|r ≤ c ·
(
1 + E|X̂m(t`−1)|r

)
,

which implies max`=1,...,mE|X̂m(t`)|r <∞, and hereby

sup
t∈[0,1]

(E|A(s)|r + E|B(s)|r) <∞.

Moreover,

E|X̂∗
m(t)|r ≤ c ·

∫ t

0

(E|A(s)|r + E|B(s)|r) ds ≤ c ·
(
1 +

∫ t

0

E|X̂∗
m(s)|r ds

)
.

Now, apply Gronwall’s inequality to obtain the first statement in the lemma.
For the proof of the second statement we define

C =
m∑
`=1

(a′ · b)(X̂m(t`−1)) · (W −W (t`−1)) · 1]t`−1,t`],

and we put

∆1 = a ◦X − A− C, ∆2 = b ◦X −B

as well as

∆ = X − X̂m.

Then

∆(t) =

∫ t

0

C(s) ds+

∫ t

0

∆1(s) ds+

∫ t

0

∆2(s) dW (s).

Suppose that t ∈ ]t`−1, t`]. By the properties of a and b we obtain

|X̂m(t)− X̂m(t`−1)|

≤ c · (1 + |X̂m(t`−1)|) ·
(
m−1 + |W (t)−W (t`−1)|+ |W (t)−W (t`−1)|2

)
≤ c · (1 + |X̂m(t`−1)|) · (m−1/2 +m1/2 · |W (t)−W (t`−1)|2)
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and

|X̂m(t)− X̂m(t`−1)− b(X̂m(t`−1)) · (W (t)−W (t`−1))|

≤ c · (1 + |X̂m(t`−1)|) · (m−1 + |W (t)−W (t`−1)|2).

Hence

|∆2(t)| ≤ |b(X(t))− b(X̂m(t))|

+ |b(X̂m(t))− b(X̂m(t`−1))− b′(X̂m(t`−1)) · (X̂m(t)− X̂m(t`−1))|

+
∣∣b′(X̂m(t`−1)) ·

(
X̂m(t)− X̂m(t`−1)− b(X̂m(t`−1)) · (W (t)−W (t`−1))

)∣∣
≤ c ·

(
|∆(t)|+ (1 + |X̂m(t`−1)|2) · (m−1 +m · |W (t)−W (t`−1)|4)

)
,

and the same estimate holds for |∆1(t)|, too.
Using the first statement in the lemma we conclude that

E|∆1(t)|r + E|∆2(t)|r ≤ c ·
(
E|∆(t)|r +m−r

)
,

and, consequently, we have

(22) E

(
sup
s∈[0,t]

∣∣∣∣∫ s

0

∆1(u) du+

∫ s

0

∆2(u) dW (u)

∣∣∣∣r) ≤ c ·
(∫ t

0

E|∆(s)|r ds+ ·m−r

)
.

Next, put

V (t) =

∫ t

0

C(s) ds,

and note that (V (t))t∈[0,1] is a continuous martingale. Hence

(23) E
(
sup
t∈[0,1]

|V (t)|r
)
≤ c · E|V (tm)|r.

In order to estimate E|V (tm)|r we assume r ∈ 2N, and we put

U` =

∫ t`+1

t`

(W (t)−W (t`)) dt.

Then

|V (t`+1)|r =
r∑

j=0

(
r

j

)
· (V (t`))

r−j ·
(
(a′ · b)(X̂m(t`)

)j · U j
` .

Clearly

E(U j
` ) ≤ c ·m−3j/2

if j is even, and E(U j
` ) = 0 otherwise. Hence, by the independence of (V (t`), X̂m(t`))

and U`,

E
(
(V (t`))

r−1 · (a′ · b)(X̂m(t`)) · U`

)
= 0,
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and∣∣E((V (t`))
r−j ·

(
(a′ · b)(X̂m(t`)

)j · U j
`

)∣∣ ≤ c · E
(
|V (t`)|r−j · (1 + |X̂m(t`)|)j

)
·m−(j+1)

for j ∈ {2, . . . , r}. Using the first statement in the lemma, we thus obtain

E|V (t`+1)|r ≤ E|V (t`)|r + c ·m−1 · E(|V (t`)|+m−1 · (1 + |X̂m(t`)|))r

≤ E|V (t`)|r · (1 + c ·m−1) + c ·m−(r+1),

so that

(24) E|V (tm)|r ≤ c ·m−r

follows from Gronwall’s inequality.
Now, combine (23) with (24), and observe (22) to derive

E
(
sup
s∈[0,t]

|∆(t)|r
)
≤ c ·

(
m−r +

∫ t

0

E
(
sup

u∈[0,s]
|∆(u)|r

)
ds

)
,

which yields the second statement in the lemma due to Gronwall’s inequality. �

3.3. Proof of Proposition 1. First, we provide a moment bound for the quantization

(X̃
(q)
m,n(t1), . . . , X̃

(q)
m,n(tm)), see (5).

Lemma 2. Let q, r ≥ 1. Then, for all m,n ∈ N,

E
(
max

`=0,...,m
|X̃(q)

m,n(t`)|r
)
≤ c.

Proof. In the following we write X̃` and Ỹ` for X̃
(q)
m,n(t`) and Ỹ

(q)
`,n , respectively. Moreover,

we put

α̃` = a(X̃`), β̃` = b(X̃`), γ̃` = 1/2 · (b · b′)(X̃`),

as well as

ϑ̃` = m−1 ·
(
α̃` + γ̃` · (E(Ỹ 2

`+1)− 1)
)

and

ξ̃` = β̃` ·m−1/2 · Ỹ`+1 +m−1 · γ̃` · (Ỹ 2
`+1 − E(Ỹ 2

`+1)).

Then

X̃` = Ũ` + Ṽ`,

where

Ũ` = x0 +
`−1∑
j=0

ϑ̃j, Ṽ` =
`−1∑
j=0

ξ̃j.

Put

Ũ∗
` = max

j=0,...,`
|U`|, Ṽ ∗

` = max
j=0,...,`

|V`|,
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and use the properties of a and b as well as (A2) to derive

|ϑ̃`| ≤ c ·m−1 · (1 + |X̃`|) · (E(Ỹ 2
`+1) + 1) ≤ c ·m−1 · (1 + |Ũ`|+ Ṽ ∗

` ).

Hence

|Ũ`+1| ≤ |Ũ`| · (1 + c ·m−1) + c ·m−1 · (1 + Ṽ ∗
` ),

and

(25) Ũ∗
` ≤ c · (1 + Ṽ ∗

` )

follows from Gronwall’s inequality.
Let F` denote the σ-algebra that is generated by {W (s) : s ≤ t`}. Use (A1) to

conclude that (Ṽ`)`=0,...,m is a martingale w.r.t. (F`)`=0,...,m, which implies

(26) E(Ṽ ∗
` )

r ≤ c · E|Ṽ`|r.

In view of (25) it therefore remains to show that

(27) E|Ṽm|r ≤ c.

Assume r ∈ 2N without loss of generality. Then

|Ṽ`+1|r =
r∑

j=0

(
r

j

)
· Ṽ r−j

` · ξ̃j` .

Clearly,

E(Ṽ r−1
` · ξ̃`) = 0.

Next, let j ∈ {2, . . . , r}. Then

|ξ̃`|j ≤ c ·
(
m−1/2 · (1 + |X̃`|) · (1 + E|Ỹ`+1|2 + |Ỹ`+1|2)

)j
≤ c ·m−1 · (1 + |X̃`|)j · (1 + E|Ỹ`+1|2j + |Ỹ`+1|2j),

and consequently, by (A2) and the independence of (Ṽ`, X̃`) and Ỹ`+1,∣∣E(Ṽ r−j
` · ξ̃j` )

∣∣ ≤ c ·m−1 · E
(
|Ṽ`|r−j · (1 + |X̃`|)j

)
.

Use (25) and (26) to conclude that

E|Ṽ`+1|r ≤ E|Ṽ`|r + c ·m−1 · E(|Ṽ`|+ 1 + |X̃`|)r

≤ E|Ṽ`|r + c ·m−1 · (E|Ṽ`|r + 1 + E(Ṽ ∗
` )

r)

≤ E|Ṽ`|r · (1 + c ·m−1) + c ·m−1,

and apply Gronwall’s inequality to obtain (27). �

Next, we compare X̃
(q)
m,n(t`) with the Milstein approximation X̂m(t`).
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Lemma 3. Assume that q ∈ 2N. Then, for all m,n ∈ N,

E
(
max

`=1,...,m
|X̂m(t`)− X̃(q)

m,n(t`)|q
)
≤ c · (m−1 + n−1)q.

Proof. Recall the definition of X̃`, Ỹ`, α̃`, β̃`, and γ̃` from the proof of Lemma 2.

Similarly, we write X̂` for X̂m(t`), and we put

α̂` = a(X̂`), β̂` = b(X̂`), γ̂` = 1/2 · (b · b′)(X̂`),

as well as

ϑ` = (α̂` − α̃`) ·m−1 + γ̃` · (1− E(Ỹ 2
`+1)) ·m−1

and

ξ` = (β̂` · Y`+1 − β̃` · Ỹ`+1) ·m−1/2 + (γ̂` · (Y 2
`+1 − 1)− γ̃` · (Ỹ 2

`+1 − E(Ỹ 2
`+1))) ·m−1.

Then

X̂` − X̃` = U` + V`,

where

U` =
`−1∑
j=0

ϑj, V` =
`−1∑
j=0

ξj.

Put

U∗
` = max

j=1,...,`
|U`|, V ∗

` = max
j=1,...,`

|V`|, X̂∗
` = max

j=0,...,`
|X̂`|, X̃∗

` = max
j=0,...,`

|X̃`|.

Due to (A2) and (A3) we have

(28) |1− E(Ỹ 2
`+1)| = |E(Y 2

`+1 − Ỹ 2
`+1)| ≤ c · n−1.

Hence

|ϑ`| ≤ c ·m−1 ·
(
|X̂` − X̃`|+ (1 + |X̃`|) · n−1

)
,

which yields

|U`+1| ≤ |U`| · (1 + c ·m−1) + c ·m−1 ·
(
V ∗
` + (1 + X̃∗

` ) · n−1
)
,

and therefore

(29) U∗
` ≤ c ·

(
V ∗
` + (1 + X̃∗

` ) · n−1
)

follows from Lemma 2 and Gronwall’s inequality.
We derive

(30) E(V ∗
` )

q ≤ c · E|V`|q

by the same argument that leads to (26), and in view of (29) and Lemma 2 it therefore
remains to show that

(31) E|Vm|q ≤ c · (m−1 + n−1)q.
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Clearly, E(V r−1
` · ξ`) = 0, which yields

E|V`+1|q = E|V`|q +
q∑

j=2

(
q

j

)
· E
(
V q−j
` · ξj`

)
.

Due to the properties of a and b we have

|β̂` · Y`+1 − β̃` · Ỹ`+1| ≤ |β̂` − β̃`| · |Y`+1|+ |β̃`| · |Y`+1 − Ỹ`+1|

≤ c ·
(
|X̂` − X̃`| · |Y`+1|+ |β̃`| · |Y`+1 − Ỹ`+1|

)
and, observing (28),

|γ̂` · (Y 2
`+1 − 1)− γ̃` · (Ỹ 2

`+1 − E(Ỹ 2
`+1))|

≤ |γ̂` − γ̃`| · |Y 2
`+1 − 1|+ |γ̃`| · |Y 2

`+1 − Ỹ 2
`+1 − (1− E(Ỹ 2

`+1))|

≤ c ·
(
|X̂` − X̃`| · (1 + |β̃`|) · |Y 2

`+1 − 1|+ |β̃`| · (|Y 2
`+1 − Ỹ 2

`+1|+ n−1)
)
.

Therefore

|ξ`| ≤ c ·
(
|X̂` − X̃`| · (1 + Y 2

`+1) ·m−1/2 + |β̃`| · |Y`+1 − Ỹ`+1| ·m−1/2

+|X̂` − X̃`| · (1 + |β̃`|) · |Y 2
`+1 − 1| ·m−1 + |β̃`| · (|Y 2

`+1 − Ỹ 2
`+1|+ n−1) ·m−1

)
.

Furthermore

E|Y 2
`+1 − Ỹ 2

`+1|j ≤ E
(
|Y`+1 − Ỹ`+1|j−1 · (|Y`+1|+ |Ỹ`+1|)j+1

)
≤
(
E|Y`+1 − Ỹ`+1|j

)(j−1)/j ·
(
E(|Y`+1|+ |Ỹ`+1|)j(j+1)

)1/j
≤ c · n−(j−1)

follows from (A3), if j ∈ {2, . . . , q}.
Now, observe that (X̂`, X̃`, V`) and (Y`+1, Ỹ`+1) are independent, and use (A2) and

(A3) as well as

n−j ·m−j/2 + n−(j−1) ·m−j ≤ c ·m−1 · (m−1 + n−1)j
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for j ∈ {2, . . . , q} to derive

E|V q−j
` · ξj` | ≤ c ·

(
E
(
|V`|q−j · |X̂` − X̃`|j

)
· E|1 + Y 2

`+1|j ·m−j/2

+ E(|V`|q−j · |β̃`|j) · E|Y`+1 − Ỹ`+1|j ·m−j/2

+ E
(
|V`|q−j · |X̂` − X̃`|j · (1 + |β̃`|j)

)
· E|Y 2

`+1 − 1|j ·m−j

+E(|V`|q−j · |β̃`|j) · (E|Y 2
`+1 − Ỹ 2

`+1|j + n−j) ·m−j
)

≤ c ·
(
E
(
|V`|q−j · |X̂` − X̃`|j

)
·m−j/2 + E(|V`|q−j · |β̃`|j) · n−j ·m−j/2

+ E
(
|V`|q−j · |X̂` − X̃`|j · (1 + |β̃`|j)

)
·m−j

+ E(|V`|q−j · |β̃`|j) · n−(j−1) ·m−j
)

≤ c ·
(
E
(
|V`|q−j · |X̂` − X̃`|j

)
·m−j/2 + E

(
|V`|q−j · |X̂` − X̃`|j · |β̃`|j

)
·m−j

+E(|V`|q−j · |β̃`|j) ·m−1 · (m−1 + n−1)j
)
.

We obtain
q∑

j=2

(
q

j

)
· E(V q−j

` · ξj` )

≤ c ·
(
E(|V`|+ |X̂` − X̃`|)q ·m−1 + E(|V`|+ |X̂` − X̃`| · |β̃`|)q ·m−2

+E(|V`|+ |β̃`| · (n−1 +m−1))q ·m−1
)

≤ c ·
(
E|V`|q ·m−1 + E|X̂` − X̃`|q ·m−1

+
(
E|X̂` − X̃`|q

)(q−1)/q ·m−2 + (n−1 +m−1)q ·m−1
)

≤ c ·m−1 ·
(
E|V`|q + E|X̂` − X̃`|q + (n−1 +m−1)q

)
.

using Lemmata 1 and 2.
Due to (29), (30), and Lemma 2, we have

E|X̂` − X̃`|q ≤ c · E(V ∗
` + X̃∗

` · n−1)q ≤ c · (E|V`|q + n−q).

We conclude that

E|V`+1|q ≤ E|V`|q · (1 + c ·m−1) + c · (n−1 +m−1)q ·m−1,

such that Gronwall’s inequality implies (31). �

Combine the error estimates from Lemma 1 and Lemma 3 to obtain Proposition 1.
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3.4. Proof of Theorem 1. Recall that B` is the difference between the Brownian
motion W and its linear interpolation at t`−1 and t`, see (7). Thus B1, . . . , Bm are
independent Brownian bridges on the respective subintervals. For m ∈ N we consider
an auxiliary approximation Xm to the solution X defined by

Xm(t) = (t− t`−1) ·m · X̂m(t`) + (t` − t) ·m · X̂m(t`−1) + b(X̂m(t`−1)) ·B`(t)

for t ∈ [t`−1, t`].

Lemma 4. For every r ≥ 1 we have

sup
t∈[0,1]

E|X(t)−Xm(t)|r ≤ c ·m−r.

and
E
(
sup
t∈[0,1]

|X(t)−Xm(t)|r
)
≤ c ·m−r · (lnm)r.

Proof. In view of Lemma 1 it suffices to establish Lemma 4 with X replaced by the

time-continuous Milstein scheme X̂m.
Put

R(t) = 1/2 ·
m∑
`=1

(b · b′)(X̂m(t`−1)) · ((W (t)−W (t`−1))
2 − (t− t`−1)) · 1]t`−1,t`](t).

Fix t ∈ ]t`−1, t`]. Then

Xm(t) = X̂m(t`−1) + a(X̂m(t`−1)) · (t− t`−1)

+ b(X̂m(t`−1)) · (W (t)−W (t`−1)) + (t− t`−1) ·m ·R(t`),
and therefore,

X̂m(t)−Xm(t) = R(t)− (t− t`−1) ·m ·R(t`).
Use Lemma 1 to obtain

E|R(t)|r ≤ c · E(1 + |X̂m(t`−1)|)r · E((W (t)−W (t`−1))
2 +m−1)r ≤ c ·m−r,

which implies the first estimate.
Furthermore, we have

sup
t∈[0,1]

|R(t)| ≤ c ·
(
1 + sup

t∈[0,1]
|X̂m(t)|

)
·
(
max

`=1,...,m
sup

t∈[t`−1,t`]

|W (t)−W (t`−1)|2 +m−1
)

and the well known estimate

(32) E
(
sup
t∈[0,1]

|W (t)−W (t`−1)|2r
)
≤ c · (lnm/m)r.

Hence, by Lemma 1
E
(
sup
t∈[0,1]

|R(t)|r
)
≤ c · (lnm/m)r,

which yields the second estimate. �
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Recall that Sk(B) is a k-quantization of a Brownian bridge B on [0, 1]. In the sequel
we consider fixed parameters p, q ≥ 1 with q ≥ min{r ∈ 2N : r ≥ p}. Moreover, we put

δk = e(p)(B,Sk(B), Lp)

for k ∈ N, and for m,n,N ∈ N we define

Am,n,N = m−(p+2)/2 ·
m∑
`=1

∣∣b(X̃(q)
m,n(t`−1))

∣∣p · δpK`,N

with random variables K`,N given by (9).

Lemma 5.

e(p)(X, X̃
(p,q)
m,n,N , Lp) ≤ c · (m−1 + n−1) + (EAm,n,N)

1/p

Proof. In view of Lemma 4 it suffices to establish Lemma 5 with X replaced by the
approximation Xm. By definition,

Xm − X̃
(p,q)
m,n,N = U1 + U2,

where

U1(t) = (t− t`−1) ·m ·
(
X̂m(t`)− X̃(q)

m,n(t`)
)

(33)

+ (t` − t) ·m ·
(
X̂m(t`−1)− X̃(q)

m,n(t`−1)
)

+
(
b(X̂m(t`−1))− b(X̃(q)

m,n(t`−1))
)
·B`(t),

and

U2(t) = b(X̃(q)
m,n(t`−1)) ·

(
B`(t)− B̃`,K`,N

(t)
)

for t ∈ [t`−1, t`].

Observe that (X̂m(t0), X̃
(q)
m,n(t0), . . . , X̂m(tm), X̃

(q)
m,n(tm)) and (B1, . . . , Bm) are are in-

dependent, and use Proposition 1 to obtain

(34) E‖U1‖pC[0,1] ≤ c · E
(
max

`=1,...,m
|X̂m(t`)− X̃(q)

m,n(t`)|p
)
≤ c · (m−1 + n−1)p.

For the analysis of the process U2 we use the fact that

(35) E‖B` − B̃`,k‖pLp[t`−1,t`]
= m−(p/2+1) · δpk

holds for every k ∈ N, which is a straightforward consequence of the definition (8) of

B̃`,k and the scaling property of a Brownian bridge. Put

(36) V = (X̃(q)
m,n(t0), . . . , X̃

(q)
m,n(tm−1)),

and note that k`,N is measurable w.r.t. σ(V ). Observe that V and B` are independent,
and use (35) to derive

E
(
‖B` − B̃`,K`,N

‖pLp[t`−1,t`]

∣∣V ) = m−(p/2+1) · δpK`,N
.
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Hence

E
(
‖U2‖pLp[0,1]

∣∣V ) = m∑
`=1

|b(X̃(q)
m,n(t`−1))|p · E

(
‖B` − B̃`,K`,N

‖pLp[t`−1,t`]

∣∣V ) = Am,n,N ,

which completes the proof. �
Consider a sequence of integers mN ∈ N that satisfies (11). We analyze the asymp-

totic behavior of the corresponding sequence of random variables AmN ,mN ,N . Recall
that C(p) is given by (12) and that κ(p) = lim supk→∞(ln k)1/2 · δk by definition.

Lemma 6.
lim sup
N→∞

(
(lnN)1/2 ·

(
EAmN ,mN ,N

)1/p) ≤ κ(p) · C(p).

Proof. Put
κN = max

`=1,...,mN

(ln k`,N)
1/2 · δk`,N

as well as

D̃r,N =

(
1

mN

·
mN∑
`=1

∣∣b(X̃(q)
mN ,mN

(t`−1))
∣∣r)1/r

for r ≥ 1, and define Dr,N as D̃r,N with X̃
(q)
mN ,mN (t`−1) replaced by X(t`−1). Moreover,

let
p∗ = 2p/(p+ 2).

Assume N ≥ 2. By definition of K`,N we have∣∣b(X̃(q)
mN ,mN

(t`−1))
∣∣p · (lnK`,N)

−p/2

≤ m
p/2
N ·

∣∣b(X̃(q)
mN ,mN

(t`−1))
∣∣p∗ · D̃p·p∗/2

p∗,N · (lnN)−p/2,

which implies

AmN ,mN ,N ≤
(
κN · D̃p∗,N

)p
· (lnN)−p/2.

Note that ln(K`,N) ≥ (lnN)/(mN · lnmN). Hence

lim
N→∞

min
`=1,...,mN

K`,N = ∞,

due to (11), and consequently, lim supN→∞ κN/κ
(p) ≤ 1. Furthermore,

lim
N→∞

Dp∗,N = ‖b(X)‖Lp∗ ([0,1]),

since the process (b(X(t)))t∈[0,1] has continuous trajectories. Thus

lim sup
N→∞

E (κN ·Dp∗,N)
p ≤ E

(
lim sup
N→∞

(κN ·Dp∗,N)
p

)
=
(
κ(p) · C(p)

)p
.

It remains to show that

lim
N→∞

∣∣(E(κN · D̃p∗,N

)p
)α − (E

(
κN ·Dp∗,N

)p
)α
∣∣ = 0



26 MÜLLER-GRONBACH AND RITTER

for some α > 0. Clearly, we may assume κ(p) <∞, which implies

(37) sup
N∈N

κN ≤ c.

First, we consider the case p ≥ 2. Then 1 ≤ p∗ < p, and therefore

|D̃p∗,N −Dp∗N | ≤
(

1

mN

·
mN∑
`=1

∣∣b(X̃(q)
mN ,mN

(t`−1))− b(X(t`−1))
∣∣p∗)1/p∗

(38)

≤ c · max
`=1,...,mN

∣∣X̃(q)
mN ,mN

(t`−1)−X(t`−1)
∣∣.

Observe (37) and use Proposition 1 to conclude that∣∣(E(κN · D̃p∗,N)
p)1/p − (E(κN ·Dp∗,N)

p)1/p
∣∣ ≤ c ·

(
E|D̃p∗,N −Dp∗,N |p

)1/p ≤ c ·m−1
N .

Next, we assume 1 ≤ p < 2. Then p∗ ≤ 1, and we have

|D̃p∗

p∗,N −Dp∗

p∗,N | ≤
1

mN

·
mN∑
`=1

∣∣b(X̃(q)
mN ,mN

(t`−1))− b(X(t`−1))
∣∣p∗

≤ c · max
`=1,...,mN

∣∣X̃(q)
mN ,mN

(t`−1)−X(t`−1)
∣∣p∗ .

Consequently, by (37) and Proposition 1,∣∣(E(κpN · D̃p
p∗,N))

p∗/p − (E(κpN ·Dp
p∗,N))

p∗/p
∣∣

≤ c ·
(
E
∣∣D̃p∗

p∗,N −Dp∗

p∗,N

∣∣p/p∗)p∗/p ≤ c ·m−p∗

N ,

which finishes the proof. �

Combine Lemma 5 with Lemma 6 and observe (11) to obtain the error estimate for

the quantization X̃
(p,q)
N of X in Theorem 1. Moreover, the bound for the size of the

range of X̃
(p,q)
N is a straightforward consequence of (10) and (11).

3.5. Proof of Theorem 2. We fix s, q ≥ 1 with q ≥ min{r ∈ 2N : r ≥ s}. For N ∈ N
we put

δN = e(s)(W,SN(W ), C).

First, we analyze the quantization B̃
(γ,q)
m,n,N of a weighted combination B(γ) of the

Brownian bridges B1, . . . , Bm, see (13) and (16).

Lemma 7. For every γ ∈ Rm \ {0} that satisfies (14),(
E‖B(γ) − B̃

(γ,q)
m,n,N‖

s
C[0,1]

)1/s ≤ δN + c · n−1.
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Proof. Due to (15) we have

‖B(γ) − B̃
(γ,q)
m,n,N‖C[0,1] ≤ ‖W (γ) − SN(W

(γ))‖C[0,1] + max
`=1,...,m

|W (γ)(s`)− W̃ (γ,q)
m,n (s`)|.

Put

U` =W (γ)(s`)− W̃ (γ,q)
m,n (s`) = m−1/2 ·

∑̀
j=1

γj ·
(
Zj − Z̃

(q)
j,n

)
and note that the sequence (U`)`=0,...,m is a centered martingale, due to property (A1).
Hence

E
(
max

`=1,...,m
|U`|q

)
≤ c · E|Um|q.

Use property (A3) and observe (14) to derive

E|U`+1|q = E

( q∑
j=0

(
q

j

)
U q−j
` ·

(
m−1/2 · γ`+1 · (Zj − Z̃

(q)
j,n)
)j)

= E|U`|q +
q∑

j=2

(
q

j

)
E(U q−j

` ) · (γ`+1/m
1/2)j · E(Zj − Z̃

(q)
j,n)

j

≤ E|U`|q + c · γ2`+1/m ·
q∑

j=2

(
q

j

)
E|U`|q−j · n−j

≤ E|U`|q + c · γ2`+1/m · E(|U`|+ n−1)q

≤ E|U`|q · (1 + c · γ2`+1/m) + c · γ2`+1/m · n−q.

Hence
E|Um|q ≤ c · n−q,

due to Gronwall’s inequality, which completes the proof. �
Put

Am,n =

(
1

m

m−1∑
j=0

b2m(X̃
(q)
m,n(t`))

)1/2

for m,n ∈ N.

Lemma 8.

e(s)(X, X̃
(q)
m,n,N , C) ≤ c · (m−1 · lnm+ n−1) + (EAs

m,n)
1/s · (δN + c · n−1).

Proof. In view of Lemma 4 it suffices to establish Lemma 8 with X replaced by Xm.
By definition,

Xm − X̃
(q)
m,n,N = U1 + U2 + U3

with U1 given by (33),

U2(t) =
(
b(X̃(q)

m,n(t`−1))− bm(X̃
(q)
m,n(t`−1))

)
·B`(t)
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for t ∈ [t`−1, t`], and

U3 = Am,n ·
(
B(Γ) − B̃

(Γ,q)
m,n,N

)
.

Clearly |b(x)− bm(x)| ≤ m−1, and therefore

(39) E‖U2‖sC[0,1] ≤ c ·m−s · (lnm/m)s/2

follows from (32). Recall the definition (36) of V , and note that (B1, Z1, . . . , Bm, Zm)
and V are independent, while Γ and Am,n are measurable w.r.t. σ(V ). Hence

(40) E
(
‖U3‖sC[0,1]

∣∣V ) ≤ As
m,n · (δN + c · n−1)s

follows from Lemma 7. Combine (34), (39), and (40) to complete the proof. �
Consider a sequence of integers mN ∈ N that satisfies (18) and recall the definition

of D̃r,N and Dr,N in the proof of Lemma 6. Use (38) and Proposition 1 to establish(
EAs

mN ,mN

)1/s ≤ c ·m−1
N +

(
EDs

2,N

)1/s
so that

lim sup
N→∞

(
EAs

mN ,mN

)1/s ≤ C(∞,s).

Now, apply Lemma 8 and observe (18) to obtain the error estimate for the quantization

X̃
(q)
N of X in Theorem 2. The bound for the size of the range of X̃

(q)
N is a straightforward

consequence of (17) and (18).
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[12] M. Döhler, S. Kunis, and D. Potts. Nonequispaced Hyperbolic Cross Fast Fourier
Transform. Preprint 12, DFG-SPP 1324, April 2009.

[13] C. Bender. Dual Pricing of Multi-Exercise Options under Volume Constraints.
Preprint 13, DFG-SPP 1324, April 2009.

[14] T. Müller-Gronbach and K. Ritter. Variable Subspace Sampling and Multi-level
Algorithms. Preprint 14, DFG-SPP 1324, May 2009.

[15] G. Plonka, S. Tenorth, and A. Iske. Optimally Sparse Image Representation by the
Easy Path Wavelet Transform. Preprint 15, DFG-SPP 1324, May 2009.

[16] S. Dahlke, E. Novak, and W. Sickel. Optimal Approximation of Elliptic Problems
by Linear and Nonlinear Mappings IV: Errors in L2 and Other Norms. Preprint 16,
DFG-SPP 1324, June 2009.

[17] B. Jin, T. Khan, P. Maass, and M. Pidcock. Function Spaces and Optimal Currents
in Impedance Tomography. Preprint 17, DFG-SPP 1324, June 2009.

[18] G. Plonka and J. Ma. Curvelet-Wavelet Regularized Split Bregman Iteration for
Compressed Sensing. Preprint 18, DFG-SPP 1324, June 2009.

[19] G. Teschke and C. Borries. Accelerated Projected Steepest Descent Method for
Nonlinear Inverse Problems with Sparsity Constraints. Preprint 19, DFG-SPP
1324, July 2009.

[20] L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors. Preprint 20,
DFG-SPP 1324, July 2009.

[21] D. Rudolf. Error Bounds for Computing the Expectation by Markov Chain Monte
Carlo. Preprint 21, DFG-SPP 1324, July 2009.

[22] M. Hansen and W. Sickel. Best m-term Approximation and Lizorkin-Triebel Spaces.
Preprint 22, DFG-SPP 1324, August 2009.

[23] F.J. Hickernell, T. Müller-Gronbach, B. Niu, and K. Ritter. Multi-level Monte
Carlo Algorithms for Infinite-dimensional Integration on RN. Preprint 23, DFG-
SPP 1324, August 2009.

[24] S. Dereich and F. Heidenreich. A Multilevel Monte Carlo Algorithm for Lévy Driven
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