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On tensor products of quasi-Banach spaces ∗

Markus Hansen †

October 1, 2010

Abstract

Due to applications in approximation theory we are interested in tensor products of quasi-
Banach spaces. Though a general abstract theory seems not possible beyond basic topological
issues because the dual spaces are possibly trivial, we aim at extending some basic notions
like crossnorms, reasonable and uniform norms. In the present paper this is done for quasi-
Banach spaces with separating duals, and this condition turns out to be the (in a certain
sense) minimal requirement. Moreover, we study extensions of the classical injective and p-
nuclear tensor norms to quasi-Banach spaces. In particular, we give a sufficient condition for
the p-nuclear quasi-norms to be crossnorms, which particularly applies to the case of weighted
`p-sequence spaces.

AMS subject classification (2010): 46A32, 46B28, 46F05, 46M05

Keywords: algebraic tensor product, tensor product of distributions, quasi-norm, p-norm, injective
tensor norm, p-nuclear tensor norm.

1 Introduction

In recent years tensor product bases as well as tensor product spaces became of interest in numerical
analysis. When dealing with high-dimensional problems their properties and relatively easy imple-
mentation were extremely useful. To name only some examples we refer to the work of Yserentant
[26], who showed that eigenfunctions of the electronic Schrödinger equation belong to certain tensor
product Sobolev spaces. Moreover, we refer to [5] (in particular the contribution by Stevenson) and
[2] for surveys on adaptive wavelet methods and sparse grid techniques.
The general framework for these topics is often referred to as “high-dimensional problems”. This
means, one is interested in problems (arising from PDEs or approximation theory) dealing with
functions in many variables, or families of functions with parameters coming from a high-dimensional
parameter space. In all these variants tensor product functions are of special interest since they
provide an easy access to those high-dimensional functions, and they have obvious advantages for
computation. Hence one needs to know which functions may be approximated well by tensor product
functions, i.e. one is interested in characterizations of tensor product spaces, or rather, which function
spaces can be characterized by tensor product bases.

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Priority Program (SPP) 1324 under
grant SI 487/14–1, and by the ERC grant no. 247277.
†Seminar for applied mathematics, ETH Zürich, ETH Zentrum, HG J45, Zürich, Switzerland.
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While for tensor products of Hilbert spaces, many of these aspects are well understood due to the
special properties of these Hilbert spaces, the theory of tensor products of Banach spaces is far more
involved.
Tensor products of Hilbert and Banach spaces and other basic notions were first introduced by von
Neumann, Whitney, Schatten and others in the 1940s. An important step in the history of this
theory was the work of Grothendieck, in particular his results on nuclear spaces [7] and his famous
Résumé [6]. We refer to the monograph [3] for a detailed treatment of this theory.
On the other hand this treatment of tensor product spaces had one shortcoming, which in the
context of numerical analysis and approximation theory turned out to be a major disadvantage.
From a purely functional analytic point of view the treatment of tensor products of Banach spaces
was extremely satisfying and produced lots of results giving a deep insight into the (local) structure
of Banach spaces. Moreover, the restriction to Banach spaces not only was quite convenient, but it
seems quite natural, as the theory makes heavy use of dual spaces and the Hahn-Banach extension
theorem. It is well-known that for quasi-Banach spaces this theorem fails to be true, and the dual
spaces of Banach spaces may be trivial.
However, in modern approximation theory quasi-Banach spaces became increasingly relevant. In
this context they often appear when characterizing so-called approximation spaces, i.e. given a fixed
approximation method one is interested in the collection of all functions with a given convergence
rate. For example, when studying the problem of nonlinear m-term approximation with respect
to wavelet-type bases and measuring the error in some Lp-norm, the corresponding approximation
spaces are certain Besov-spaces which are Banach spaces or quasi-Banach spaces, depending on the
parameters involved (we refer to [4] for a survey on nonlinear approximation). However, studying the
same problem for tensor product bases, one is lead to tensor products of Besov-spaces, in particular
also to tensor products of quasi-Banach spaces, see [9, 10, 8].
The aim of the present paper, which is based on earlier work by Nitsche [16] and Sickel/Ullrich [19], is
to investigate under which conditions on quasi-Banach spaces one can carry over at least some of the
important results for their respective tensor products. As regarding topological issues like existence
of Hausdorff topologies on the (algebraic) tensor product of general topological vector spaces this
has been done by Turpin and Waelbroeck, see [22, 23, 25], but little seems to be known concerning
tensor quasi-norms.
In a first section, we look at different approaches towards tensor products, which are known to
coincide for Banach spaces, and give necessary and sufficient conditions for the dual spaces of the
respective quasi-Banach spaces. Afterwards we consider the injective tensor norm as one particularly
famous example for norms on tensor products of quasi-Banach spaces. As we shall see, there are three
different versions of injective quasi-norms. In connection with these quasi-norms we shall demonstrate
that also for other basic properties of such tensor norms several non-equivalent extensions to quasi-
Banach spaces occur.
The third part of this article is devoted to the study of p-nuclear quasi-norms. For parameters
1 ≤ p ≤ ∞ these are a well-known scale of tensor norms. Once more there are different extensions
to quasi-Banach spaces. We will prove the basic properties for these extensions as well as relations
between them. In particular we will give a sufficient condition for these quasi-norms to be crossnorms.
In the last section we apply these considerations first to weighted `p-sequence spaces and afterwards to
function spaces of Sobolev- and Besov-type. These spaces are well-known to allow a characterization
in terms of wavelet bases and associated sequence spaces, and we shall study the dependence of the
norm of the corresponding isomorphisms on the dimension of the underlying domain.
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2 Tensor products of (quasi-)Banach spaces

2.1 Algebraic and analytic definition

In algebra tensor product constructions are known for several different structures. The starting point
for one possibility of an explicit construction for vector spaces X and Y (with respect to the same
field; here we concentrate on real or complex vector spaces) is the free vector space F (X, Y ) on
X × Y , i.e. the set

F (X, Y ) := span
{
x⊗ y : x ∈ X, y ∈ Y

}
=

{
n∑
j=1

λjxj ⊗ yj : xj ∈ X, yj ∈ Y, λj ∈ C, j = 1, . . . , n, n ∈ N

}
.

Afterwards the algebraic tensor product X ⊗ Y is defined as the quotient space of F (X, Y ) with
respect to the subspace

U := span
({

(x1 + x2)⊗ y − x1 ⊗ y − x2 ⊗ y : x1, x2 ∈ X, y ∈ Y
}

∪
{
x⊗ (y1 + y2)− x⊗ y1 − x⊗ y2 : x1, x2 ∈ X, y ∈ Y

}
∪
{
λ(x⊗ y)− (λx)⊗ y, λ(x⊗ y)− x⊗ (λy) : x ∈ X, y ∈ Y, λ ∈ C

})
.

In this way the canonical mapping (x, y) 7−→ x⊗ y from X × Y to X ⊗ Y becomes bilinear.

The usual functional analytic approach for normed spaces X and Y is slightly different. Once more
one starts with F (X, Y ), but this times this space is equipped with the following equivalence relation.
We say f =

∑n
j=1 λjxj ⊗ yj ∈ F (X, Y ) generates an operator Af : X ′ −→ Y by the determination

Afψ :=
n∑
j=1

λjψ(xj)yj , ψ ∈ X ′ .

Then we define for f, g ∈ F (X, Y ), f =
∑n

j=1 λ
1
jx

1
j ⊗ y1j , g =

∑m
j=1 λ

2
jx

2
j ⊗ y2j

f ' g ⇐⇒ Af (ψ) = Ag(ψ) for all ψ ∈ X ′ ,

i.e. f and g generate the same operator from the dual space X ′ of X to Y . Of interest now is the
quotient space X ⊗A Y = F (X, Y )/ ', which is found to coincide as a vector space with X ⊗ Y .
By this definition the connection with linear mappings from X ′ to Y is made obvious right from the
beginning.
This second (analytic) approach applies to quasi-normed spaces as well, but since the dual space
is possibly trivial, this equivalence relation as well as the respective quotient space might become
trivial. To avoid this, i.e. to ensure the equivalence of both approaches, we have to impose certain
restrictions on the quasi-normed spaces. This situation is clarified by the following theorem.

Theorem 1. Let X and Y be two quasi-normed spaces. Then it holds X ⊗ Y = X ⊗A Y if, and
only if, X ′ separates the points in X, i.e. for every x ∈ X \ {0} there exists a functional ϕx ∈ X ′,
such that ϕx(x) 6= 0.

A quasi-Banach space X with this property is said to have a separating dual.
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Proof . In order to show the coincidence of both spaces we have to show that U = V := {f ∈
F (X, Y ) : Af = 0} holds. The inclusion U ⊂ V is obvious. For the reverse inclusion we remark that
the condition on X ′ is equivalent to Ax⊗y 6= 0 for all x 6= 0 and y 6= 0. To show now V ⊂ U , we show
instead, that from f 6∈ U follows f 6∈ V .
We shall use the fact, that for every f 6∈ U there exists an (algebraically) equivalent representation
f =

∑n
i=1 xi ⊗ yi, where {x1, . . . , xn} ⊂ X and {y1, . . . , yn} ⊂ Y are linearly independent (this can

be seen analogously to [14, Lemma 1.1]). The linearity of f 7−→ Af , the linear independency of
{y1, . . . , yn} and the assumption for X ′ (applied to the vectors xi 6= 0) now yield Af 6= 0.

In a similar way, we can also consider operators

Bf : Y ′ −→ X , Bfφ =
n∑
i=1

φ(yi)xi , f =
n∑
i=1

xi ⊗ yi ∈ X ⊗ Y .

We then observe that

Bf = Bg ⇐⇒ Af = Ag ⇐⇒ f ' g

holds for all f, g ∈ X ⊗ Y if, and only if, X ′ and Y ′ are separating. This follows from F (X, Y ) ∼=
F (Y,X) and X ⊗A Y ∼= X ⊗ Y ∼= Y ⊗ X ∼= Y ⊗A X, where the isomorphism is provided by the
canonical identification x⊗y 7−→ y⊗x, x ∈ X, y ∈ Y (for the algebraic tensor product this is always
true, and the assumptions assure that this extends to the respective (functional analytic) equivalence
relations). Due to this observation we henceforth always assume that X and Y both have separating
duals (without always explicitly mentioning it).

Remark 1. If one is only interested in equipping the algebraic tensor product X ⊗ Y of general
topological vector spaces with just some topological structure, then one does not need information
on the respective dual spaces. For example, if X and Y are equipped with topologies which are
Hausdorff, then there exists a topology on X ⊗ Y which is Hausdorff as well. For more information
on such topological issues, we refer to Turpin [22, 23] and Waelbroeck [25].

2.2 Tensor products of distributions

The calculus of tensor products of (tempered) distributions is based on the following result, see [19,
Appendix B] and further references given there. We shall use the notation ϕ ⊗f ψ for the usual
tensor product of functions, i.e. if ϕ : Ω1 −→ C and ψ : Ω2 −→ C, then ϕ ⊗f ψ : Ω1 × Ω2 −→ C,
(ϕ⊗f ψ)(x, y) = ϕ(x)ψ(y).

Proposition 1. Let Si ∈ S ′(Rd1) and Ti ∈ S ′(Rd2), i = 1, . . . , n. Then there exists a uniquely
determined distribution U ∈ S ′(Rd1+d2), such that for all functions ϕ ∈ S(Rd1) and ψ ∈ S(Rd2)

U(ϕ⊗f ψ) =
n∑
i=1

Si(ϕ) · Ti(ψ)

holds. In case n = 1, this distribution U ≡ S ⊗D T is given explicitly by the formula

U
(
ρ(x, y)

)
= Ty

(
Sx(ρ(x, y))

)
= Sx

(
Ty(ρ(x, y))

)
, ρ ∈ S(Rd1+d2) ,

and in the general case, U can be written as

U =
n∑
i=1

Si ⊗D Ti .
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Usually this proposition is stated for the case n = 1 only, but it extends immediately to finite linear
combinations.
This last proposition ensures, that

∑n
i=1 Si ⊗D Ti is again a well-defined tempered distribution.

Moreover, if S and T are regular distributions, generated by functions f : Rd1 −→ C and g :
Rd2 −→ C, then it can be easily seen, that also S ⊗D T is a regular distribution, generated by
f ⊗f g : Rd1+d2 −→ C.

At the end we intend to apply the theory to tensor products of Sobolev and Besov spaces. This
motivates a closer look on spaces of tempered distributions.
Hence, let X and Y be quasi-Banach spaces of tempered distributions. The first question to be
addressed is whether their dual spaces are rich enough to provide meaningful results for tensor
products.

Lemma 1. Let X be a topological vector space, such that we have a continuous embedding X ↪→
S ′(Rn). Then X ′ separates the points in X.

Proof . We consider the natural injection J : S(Rn) −→ S ′′(Rn), which is defined by (Jϕ)(f) =
f(ϕ), ϕ ∈ S(Rn), f ∈ S ′(Rn). Due to the assumed topological embedding X ↪→ S ′(Rn) we immedi-
ately find Jϕ ∈ X ′ for every ϕ ∈ S(Rn).
Now let f ∈ X, f 6= 0. Then we also have f 6= 0 in the sense of S ′(Rd1). This means there is some
function ϕ ∈ S(Rd1) such that f(ϕ) 6= 0. This immediately implies (Jϕ)(f) 6= 0, which yields the
desired functional from X ′.

Thus when dealing with tensor products of spaces of tempered distributions the minimal assumption
is a continuous topological embedding into the space S ′(Rn). In particular, all types of (Fourier
analytical) Sobolev and Besov spaces satisfy this condition.

Another interesting aspect arises from Proposition 1. Due to the uniqueness assertion the set

X ⊗D Y =

{
n∑
i=1

fi ⊗D gi : fi ∈ X, gi ∈ Y, i = 1, . . . , n, n ∈ N

}

is a well-defined subspace of S ′(Rd1+d2). Moreover, Proposition 1 motivates the following definition
for all h =

∑n
i=1 λifi ⊗ gi and w =

∑m
j=1 µjuj ⊗ vj from F (X, Y ):

n∑
i=1

λifi ⊗ gi ∼=
m∑
j=1

µjuj ⊗ vj

⇐⇒
n∑
i=1

λifi(ϕ) · gi(ψ) =
m∑
j=1

µjuj(ϕ) · vj(ψ) for all ϕ ∈ S(Rd1) , ψ ∈ S(Rd2) .

The relation ∼= then turns out to be an equivalence relation on F (X, Y ), and we have X ⊗D Y =
F (X, Y )/ ∼= via the obvious identification f ⊗ g 7−→ f ⊗D g. This yields another approach towards
tensor product spaces which is applicable also for quasi-Banach spaces.

Remark 2. Note that for h =
∑n

i=1 fi ⊗ gi we have

n∑
i=1

fi(ϕ)gi(·) =
n∑
i=1

(Jϕ)(fi)gi = Ah(Jϕ) ∈ Y ,
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and similarly

n∑
i=1

gi(ψ)fi(·) =
n∑
i=1

(Jψ)(gi)fi = Bh(Jψ) ∈ X .

Since we do not require a dense embedding J (S(Rd1)) ↪→ X or J (S(Rd2)) ↪→ Y , we need to
investigate whether h ∼= w implies Ah = Aw or Bh = Bw.

Before we come to a comparison of X ⊗ Y with X ⊗D Y we shall prove an auxiliary assertion.

Lemma 2. Let X be a topological vector space, such that we have a continuous embedding X ↪→
S ′(Rn). Then J

(
S(Rn)

)
is σ(X ′, X)-dense in X ′, where J is once more the natural injection J :

S(Rn) −→ S ′′(Rn).

The proof of this lemma requires some preparation. We start by recalling some notions for dual pairs
of vector spaces and weak topologies.

A dual pair of vector spaces is any pair of vector spaces X and Y over the same field (here C),
together with a bilinear form, which will be denoted by 〈·, ·〉. Moreover, they have to satisfy the
compatibility conditions

∀x ∈ X \ {0} ∃y ∈ Y : 〈x, y〉 6= 0 ,

∀y ∈ Y \ {0} ∃x ∈ X : 〈x, y〉 6= 0 .

The weak topology σ(X, Y ) on X is the locally convex topology generated by the family of seminorms{
py(x) = |〈x, y〉| : y ∈ Y

}
.

For given sets A ⊂ X and B ⊂ Y the polar of A is defined as

A0 :=
{
y ∈ Y : R〈x, y〉 ≤ 1 for all x ∈ A

}
,

and the polar of B is defined as

B0 :=
{
x ∈ X : R〈x, y〉 ≤ 1 for all y ∈ B

}
.

The bi-polar A00 is defined accordingly. If we denote by co(C) the convex hull of some set C, then
the main tool for the proof of Lemma 2 reads as follows.

Proposition 2 (Bi-polar theorem). Let (X, Y ) be a dual pair, and let A ⊂ X. Then it holds

A00 = co(A ∪ {0}) ,

where the closure is taken in the σ(X, Y )-topology.

Note that neither X nor Y a priori need to be locally convex spaces. Though the proof of this
theorem uses a version of the Hahn-Banach theorem for locally convex spaces, this is applied to the
locally convex space

(
X, σ(X, Y )

)
only, not to X itself. For further details we refer to [18] (p. 126,

Theorem 1.5) or [1] (Chapter IV, p. 53).
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Proof of Lemma 2. We remind on the observation Jϕ ∈ X ′ for every ϕ ∈ S(Rn), see Lemma 1.
Moreover, in view of Lemma 1 we conclude that (X ′, X) together with the induced dual pairing is a
dual pair.
We now consider the set A = J

(
S(Rn)

)
⊂ X ′. Then we immediately find A0 = {0}. This follows

indirectly: Let x ∈ A0, x 6= 0. Then we also have x 6= 0 in the sense of S ′(Rn), i.e. there is a function
ϕ ∈ S(Rn), such that x(ϕ) 6= 0. W.l.o.g. assume x(ϕ) ∈ R, x(ϕ) > 0. Then we find x(λϕ) > 0 for all
real numbers λ > 0. This implies we can find some λ0, such that x(λ0ϕ) > 1. But since λ0ϕ ∈ S(Rn)
this contradicts x ∈ A0.
Moreover, A0 = {0} trivially implies A00 = X ′. Then we find by the Bi-polar theorem

X ′ = A00 = co(A ∪ {0}) = A = J
(
S(Rn)

)
,

where the closure is taken in the σ(X ′, X)-topology. This completes the proof.

The main result concerning the comparison of X ⊗ Y and X ⊗D Y is the following theorem.

Theorem 2. Let X be a topological vector space, such that we have a continuous embedding
X ↪→ S ′(Rd1). Moreover, let Y be an arbitrary subspace of S ′(Rd2). Then we have X⊗Y = X⊗AY ,
and it holds X ⊗A Y = X ⊗D Y in the sense, that the canonical identification f ⊗ g 7−→ f ⊗D g is a
linear isomorphism mapping the spaces onto each other.

Note that we do not need any topological structure for Y .

Proof . The identification X ⊗ Y = X ⊗A Y follows immediately from Theorem 1 and Lemma 1.
For the other assertion, let h,w ∈ X ⊗ Y and H,W ∈ X ⊗D Y , where

h =
n∑
i=1

fi ⊗ gi , H =
n∑
i=1

fi ⊗D gi , w =
m∑
j=1

uj ⊗ vj , W =
m∑
j=1

uj ⊗D vj .

We shall prove that h = w in the sense of X ⊗A Y = X ⊗ Y if, and only if H = W in the sense of
S ′(Rd1+d2), i.e. the mapping f ⊗ g 7−→ f ⊗D g can be extended to a well-defined linear isomorphism
from X ⊗A Y onto X ⊗D Y .

Step 1: h = w implies H = W .
The assumptions h = w explicitly means

n∑
i=1

φ(fi)gi =
m∑
j=1

φ(uj)vj for all φ ∈ X ′ .

This particularly applies to φ = Jϕ, ϕ ∈ S(Rd1). Hence we find

n∑
i=1

fi(ϕ)gi =
m∑
j=1

uj(ϕ)vj

as an equation in Y ⊂ S ′(Rd2). But this immediately yields

n∑
i=1

fi(ϕ)gi(ψ) =
m∑
j=1

uj(ϕ)vj(ψ) for all ϕ ∈ S(Rd1) , ψ ∈ S(Rd2) ,
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which by the uniqueness assertion of Proposition 1 is equivalent to H = W .

Step 2: H = W implies h = w.
We first note that it is sufficient to prove the assertion in the case W = 0. Moreover, the assumption
H = 0 is equivalent to

n∑
i=1

fi(ϕ)gi = 0 for every ϕ ∈ S(Rd1) ,

which is to be understood as an equation in S ′(Rd2) ⊃ Y . Using the mapping J this can be rewritten
as

n∑
i=1

(
Jϕ
)
(fi)gi = 0 for every ϕ ∈ S(Rd1) .

Now it is obvious from the definition of the weak*-topology, that this implies h = 0 if, and only if
J
(
S(Rd1)

)
is weak*-dense in X ′. But this is exactly the content of Lemma 2.

3 Injective quasi-norms

3.1 Associated norms and Banach envelopes

Tensor products arise quite naturally in the study of bilinear forms and their relation to linear
operators. Hence it is no great surprise that also the Hahn-Banach extension theorem is frequently
used in proofs, in particular the well-known identity

‖x|V ‖ = sup

{
|ψ(x)| : ‖ψ|V ′‖ ≤ 1

}
= sup

{
|ψ(x)| : ‖ψ|V ′‖ = 1

}
, (1)

which is valid for any (real or complex) normed vector space V .
It is well-known that the Hahn-Banach extension theorem generally fails to be true for quasi-Banach
spaces. Hence a natural question when trying to transfer proofs from Banach spaces to quasi-Banach
spaces is whether at least the identity (1) remains valid. The answer is given by the following lemma.

Lemma 3. Let X be a quasi-Banach space. Then we define

9x |X9 := sup

{
|ψ(x)| : ‖ψ|X ′‖ ≤ 1

}
, x ∈ X .

(i) The functional 9 · |X9 defines a norm on X if, and only if, X ′ separates the points in X.

(ii) It holds ‖x |X ‖ = 9x |X9 for all x ∈ X if, and only if, ‖ · |X‖ is a norm on X.

(iii) We have 9x |X9 ≥ c ‖x|X‖ for all x ∈ X if, and only if, 9 · |X9 is an equivalent norm on X.

The proof is obvious. We only mention, that 9 · |X9 is called the associated norm onX. Its properties
are consequences of the fact that the dual spaces of quasi-Banach spaces are always Banach spaces
and the observation 9x|X9 = ‖J x |X ′′‖, where J : X −→ X ′′ is the canonical mapping used
before.
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Moreover, the completion of X with respect to the associated norm is called the Banach envelope
and will be denoted by XE. In particular, it follows X ′ = (XE)′. For further details and references
we refer to [12].
Since `p, p < 1, is known not to be locally convex and hence also not normable, both conditions in
(ii) and (iii) would exclude these spaces. Thus they are far too restrictive to be feasible. This means
many proofs for tensor products of Banach spaces relying on equation (1) cannot be carried over
without changes to the quasi-Banach case, at least without exceptional additional assumptions on
the spaces involved.

Before we return to tensor product spaces, we shall recall a last well-known notion for quasi-Banach
spaces.

Definition 1. Let 0 < p ≤ 1, and let X be a quasi-Banach space. Then X is called a p-Banach
space and its quasi norm p-norm, respectively, if∥∥ f + g

∣∣X ∥∥p ≤ ∥∥ f ∣∣X ∥∥p +
∥∥ g ∣∣X ∥∥p for all f, g ∈ X .

It is clear, that every Banach space is a 1-Banach space and every norm is a 1-norm. Furthermore,
it can be shown that for every quasi-Banach space (X, ‖ · ‖) there exists a p ∈ (0, 1] and a p-norm
‖ · ‖∗ on X, which is equivalent to ‖ · ‖, i.e. (X, ‖ · ‖∗) is a p-Banach space. We refer to [17] for details
and further references.

3.2 Injective quasi-norms and their basic properties

When studying properties of quasi-norms and tensor product spaces we shall only be concerned with
two particular aspects. The notions we are going to introduce now are immediate extensions of the
respective versions for Banach spaces. Thereby, if δ is some quasi-norm on X ⊗ Y , we denote by
X ⊗δ Y the completion of X ⊗ Y with respect to δ.

Definition 2.

(i) A quasi-norm δ on X ⊗ Y satisfying

δ(x⊗ y) = ‖x|X‖ · ‖y|Y ‖ for all x ∈ X, y ∈ Y ,

is called crossnorm.

(ii) Let Ti : Xi −→ Yi, i = 1, 2, be bounded linear operators mapping quasi-Banach spaces Xi into
quasi-Banach spaces Yi. We define a linear mapping T1 ⊗ T2 on F (X1, X2) (and on X1 ⊗X2)
by the property

(T1 ⊗ T2)(x1 ⊗ x2) = (T1x1)⊗ (T2x2) , x1 ∈ X1, x2 ∈ X2 , (2)

and linear extension. Then a quasi-norm δ is called uniform, if

δ
(
(T1 ⊗ T2)h, Y1, Y2

)
≤
∥∥T1∣∣L(X1, Y1)

∥∥ · ∥∥T2∣∣L(X2, Y2)
∥∥δ(h,X1, X2) (3)

holds for all h ∈ X1 ⊗X2.
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(iii) For functionals ϕ ∈ X ′ and ψ ∈ Y ′, we can define a functional ϕ ⊗ ψ on F (X, Y ) (and on
X ⊗ Y as well) via

(ϕ⊗ ψ)(x⊗ y) = ϕ(x) · ψ(y) , x ∈ X, y ∈ Y ,

and linear extension. A quasi-norm δ on X ⊗ Y is called reasonable, if ϕ ⊗ ψ is bounded on
X ⊗ Y with respect to δ, and its continuous extension ϕ⊗δ ψ to X ⊗δ Y satisfies∥∥ϕ⊗δ ψ∣∣(X ⊗δ Y )′∥∥ =

∥∥ϕ∣∣X ′∥∥ · ∥∥ψ∣∣Y ′∥∥ .
Concerning these definitions we only mention, that φ ⊗ ψ ∈ (X ⊗ Y )′ is always well-defined due to
the observation (φ ⊗ ψ)(z) = ψ(Azφ). Moreover, we similarly find from the linearity of T1 and T2
that two representations

∑n
i=1 xi ⊗ yi and

∑m
j=1 fj ⊗ gj are equivalent algebraically if, and only if,∑n

i=1 T1xi ⊗ T2yi and
∑m

j=1 T1fj ⊗ T2gj are equivalent, i.e. T1 ⊗ T2 is well-defined on X1 ⊗X2.
Every uniform quasi-norm δ admits for every operator T1 ⊗ T2 a unique quasi-norm-preserving con-
tinuous extension T , such that

T : X1 ⊗δ X2 −→ Y1 ⊗δ Y2 and T ∈ L(X1 ⊗δ X2, Y1 ⊗δ Y2) .

We will denote this extension T by T1 ⊗δ T2.

As a first important example we are now going to study the injective tensor norm, which we will
denote by λ. For Banach spaces, it is usually defined as

λ(z,X, Y ) =
∥∥Az∣∣L(X ′, Y )

∥∥ = sup
‖φ|X′‖≤1

∥∥∥∥ n∑
i=1

φ(xi)yi

∣∣∣∣Y ∥∥∥∥ , z =
n∑
i=1

xi ⊗ yi ∈ X ⊗ Y ,

where the definition is independent of the representation of z by the definition of the underlying
equivalence relation in X ⊗ Y .
Moreover, if we define the functional φ ⊗ ψ ∈ X ′ ⊗ Y ′ ⊂ (X ⊗ Y )′ as above, we further find for
z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y

∥∥Az∣∣L(X ′, Y )
∥∥ = sup

‖φ|X′‖≤1

∥∥∥∥ n∑
i=1

φ(xi)yi

∣∣∣∣Y ∥∥∥∥ = sup
‖φ|X′‖≤1

sup
‖ψ|Y ′‖≤1

∣∣∣∣ψ( n∑
i=1

φ(xi)yi

)∣∣∣∣
= sup
‖φ|X′‖≤1

sup
‖ψ|Y ′‖≤1

∣∣(φ⊗ ψ)(z)
∣∣ = sup

‖ψ|Y ′‖≤1
sup

‖φ|X′‖≤1

∣∣∣∣φ( n∑
i=1

ψ(yi)xi

)∣∣∣∣
= sup
‖ψ|Y ′‖≤1

∥∥∥∥ n∑
i=1

ψ(yi)xi

∣∣∣∣X ∥∥∥∥ =
∥∥Bz

∣∣L(Y ′, X)
∥∥ .

For quasi-Banach spaces this chain of equalities no longer needs to be true. Though the operators
Az and Bz still generate the same equivalence relation (at least, if X and Y have separating duals),
their quasi-norms are usually incomparable. This can be easily seen for dyads x ⊗ y, where one
immediately verifies∥∥Ax⊗y∣∣L(X ′, Y )

∥∥ = 9x|X 9 ·‖y |Y ‖ and
∥∥Bx⊗y

∣∣L(Y ′, X)
∥∥ = ‖x|X ‖ · 9y |Y 9

Hence the above calculation gives rise to three (generally different) versions of injective quasi-norms:
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Definition 3. Let X and Y be quasi-Banach spaces with separating duals. Then we put

λA(z,X, Y ) =
∥∥Az∣∣L(X ′, Y )

∥∥ ,
λB(z,X, Y ) =

∥∥Bz

∣∣L(Y ′, X)
∥∥ ,

λC(z,X, Y ) = sup
‖φ|X′‖≤1

sup
‖ψ|Y ′‖≤1

∣∣(φ⊗ ψ)(z)
∣∣ .

The independence of λC of the representation of z follows from the well-definedness of φ ⊗ ψ, and
we observe

λC(z,X, Y ) = sup
‖φ|X′‖≤1

sup
‖ψ|Y ′‖≤1

∣∣(φ⊗ ψ)(z)
∣∣ = sup

‖φ|X′‖≤1
9Azφ|Y 9 = sup

‖ψ|Y ′‖≤1
9Bzψ |X 9 .

The functionals λA and λB define quasi-norms on X ⊗ Y (this follows from the linearity of the
mappings z 7→ Az and z 7→ Bz and the properties of the quasi-norms on X and Y ). Moreover, λA
is a p-Norm, if Y is a p-Banach space, and λB is a p-Norm, if X is a p-Banach space (the p-triangle
inequalities follow from the respective ones on X or Y ). Finally, λC is always a norm (we remind on
the standing assumption, that X ′ and Y ′ shall have separating duals; the norm-properties follow by
the usual arguments for operator norms such as 9 · |X9 and 9 · |Y 9).
As we saw above, neither λA nor λB are crossnorms, and for λC we find

λC(x⊗ y,X, Y ) = 9x|X 9 · 9y |Y 9 , x ∈ X , y ∈ Y . (4)

This follows immediately from the respective definitions. Furthermore, we shall add, that neither of
these injective quasi-norms is equivalent to some crossnorm, which is a direct consequence of Lemma
3.
As a corollary of these considerations, we find

Lemma 4. Let X and Y be quasi-Banach spaces with separating duals. Then it holds

X ⊗λC Y = XE ⊗λC Y E = XE ⊗λ Y E

The first identity follows from (4), the latter one from the mentioned observation λ ≡ λA = λB = λC
for Banach spaces.

In particular, we obtain from (`p)
E = `1 (which holds with equality of norms)

Corollary 1. Let 0 < p, q ≤ 1. Then it holds

`p ⊗λC `q = `1 ⊗λ `1 .

The main aspect of these considerations is the observation that the above notion of a crossnorm no
longer is the only version relevant for the study of quasi-norms, though it remains the most important
one, since often the associated norm is no easily accessible.
For the notion of a reasonable norm, the situation is quite different. This stems from the mentioned
fact that the dual space of an arbitrary quasi-Banach space is a Banach space (though possibly
trivial), and the observation that a tensor norm δ on X ⊗Y is reasonable if, and only if, the induced
norm δ∗ on X ′ ⊗ Y ′ ⊂ (X ⊗ Y )′ is a crossnorm. Hence even if X and Y are quasi-Banach spaces,
this property is concerned only with Banach spaces, so no change is necessary.
Before we return to the injective quasi-norms we add a simple criterion for some quasi-norm δ to be
reasonable. Its counterpart for Banach spaces is well-known (see e.g. [14]).
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Lemma 5. Let X and Y be quasi-Banach spaces, and let δ be a quasi-norm on X ⊗Y . Further we
assume

δ(x⊗ y) ≤ ‖x|X‖ · ‖y|Y ‖ , x ∈ X , y ∈ Y , (5)

|(φ⊗ ψ)(z)| ≤ ‖φ|X ′‖ · ‖ψ|Y ′‖ · δ(z) , z ∈ X ⊗ Y , φ ∈ X ′ , ψ ∈ Y ′ . (6)

Then δ is a reasonable quasi-norm.

Note that this lemma only requires the weakest version of a crossnorm-inequality for δ.

Proof . If we denote by δ∗ the induced operator quasi-norm on (X⊗Y, δ)′ the assumption (6) yields

δ∗(φ⊗ ψ) ≤
∥∥φ ∣∣X ′ ∥∥ · ∥∥ψ ∣∣Y ′ ∥∥ (7)

Moreover, by definition of δ∗ we have for all x ∈ X and y ∈ Y

|φ(x)| · |ψ(y)| = |(φ⊗ ψ)(x⊗ y)| ≤ δ∗(φ⊗ ψ,X, Y )δ(x⊗ y,X, Y ) (8)

Using the estimate (5) and taking a supremum over the unit balls of X and Y we find∥∥φ ∣∣X ′ ∥∥ · ∥∥ψ ∣∣Y ′ ∥∥ ≤ δ∗(φ⊗ ψ) (9)

Combining (7) and (9) proves that δ∗ is a crossnorm on X ′⊗Y ′. As mentioned above this is equivalent
to δ being reasonable.

For the injective quasi-norms we have the following counterpart of well-known properties of λ.

Lemma 6. Let X and Y be quasi-Banach spaces with separating duals. Then λA, λB and λC are
reasonable. Moreover, for every reasonable quasi-norm α on X ⊗ Y we have α(z) ≥ λC(z,X, Y ) for
all z ∈ X ⊗ Y .

Proof . The proof follows along the lines of the one for Banach spaces. In particular, we have for
φ ∈ X ′ and ψ ∈ Y ′

|(φ⊗ ψ)(z)| = ‖φ|X ′‖ · ‖ψ|Y ′‖ ·
∣∣∣∣( φ

‖φ|X ′‖
⊗ ψ

‖ψ|Y ′‖

)( n∑
i=1

xi ⊗ yi
)∣∣∣∣

≤ ‖φ|X ′‖ · ‖ψ|Y ′‖ · λC(z,X, Y ) .

Now the reasonability of λC follows from Lemma 5 (the assumption (5) is a consequence of (4)). The
respective assertions for λA and λB follow from λC(z) ≤ λA(z) and λC(z) ≤ λB(z) for all z ∈ X ⊗Y .
Now let α be any reasonable tensor quasi-norm. Then we have

|(φ⊗ ψ)(z)| ≤ ‖φ⊗ ψ|(X ⊗ Y )′‖ · α(z) = ‖φ|X ′‖ · ‖ψ|Y ′‖ · α(z) .

Taking the supremum over the unit balls of X ′ and Y ′ yields λC(z) ≤ α(z).
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3.3 Uniform quasi-norms

Next we try to determine whether the notion of a uniform quasi-norm needs to be modified as well.
The answer is two-fold. On the one hand, the important inequality (3) makes sense for quasi-Banach
spaces, and even the consequence about the extendability of T1 ⊗ T2 remains valid. However, when
trying to determine whether the equation

‖T1 ⊗δ T2|L(X1 ⊗δ X2, Y1 ⊗δ Y2)‖ = ‖T1|L(X1, Y1)‖ · ‖T2|L(X2, Y2)‖

holds true, i.e. whether the operator quasi-norm is a crossnorm, its relation to the modified notions
of crossnorms becomes clear.
To begin with we slightly modify the classical situation of uniform crossnorms, and demonstrate how
the above identity for the operator norms can be derived in this situation.

Proposition 3. Let α be a quasi-norm on F ⊗ G, and let β be a quasi-norm on X ⊗ Y , where
F,G,X, Y are quasi-Banach spaces. Moreover, we assume

α(f ⊗ g) ≤ ‖f |F‖ · ‖g|G‖ for all f ∈ F , g ∈ G , (10)

β(x⊗ y) = ‖x|X‖ · ‖y|Y ‖ for all x ∈ X , y ∈ Y , (11)

β
(
(S ⊗ T )h

)
≤
∥∥S∣∣L(F,X)

∥∥ · ∥∥T ∣∣L(G, Y )
∥∥ · α(h) . (12)

Then it holds∥∥S ⊗α T ∣∣L(F ⊗α G,X ⊗β Y )
∥∥ =

∥∥S∣∣L(F,X)
∥∥ · ∥∥T ∣∣L(G, Y )

∥∥ .
Proof . Immediately from the definition of the operator quasi-norm we find∥∥S ⊗α T ∣∣L(F ⊗α G,X ⊗β Y )

∥∥ = sup
α(h)≤1

β
(
(S ⊗ T )(h)

)
≥ sup

f∈F,g∈G:α(f⊗g)≤1
β
(
(S ⊗ T )(f ⊗ g)

)
≥ sup
‖f |F‖≤1,‖g|G‖≤1

β
(
(Sf)⊗ (Tg)

)
,

where in the last estimate we used assumption (10). Using property (11) we further find∥∥S ⊗α T ∣∣L(F ⊗α G,X ⊗β Y )
∥∥ ≥ sup

‖f |F‖≤1
sup
‖g|G‖≤1

‖Sf |X‖ · ‖Tg|Y ‖ =
∥∥S∣∣L(F,X)

∥∥ · ∥∥T ∣∣L(G, Y )
∥∥ .

Together with (12) this proves the claim.

While the result is a final one and clearly gives a satisfying answer in the classical situation, the
assumed crossnorm-property generally no longer holds true for quasi-Banach spaces and quasi-norms
as we have seen before. Moreover, also the assumption (10) (or (3)) turn out to not sufficient when
dealing with other types of crossnorm-properties. Exemplary we will treat the injective quasi-norms
in detail.

Proposition 4. Let X1, X2, Y1, Y2 be quasi-Banach spaces with separating duals, and let 0 < p ≤ 1.
Moreover, let T1 ∈ L(X1, Y1) and T2 ∈ L(X2, Y2). Then it holds∥∥T1 ⊗λA T2∣∣L(X1 ⊗λA X2, Y1 ⊗λA Y2)

∥∥ =
∥∥T1∣∣L(X1, Y

E
1 )
∥∥ · ∥∥T2∣∣L(X2, Y2)

∥∥ , (13)∥∥T1 ⊗λB T2∣∣L(X1 ⊗λB X2, Y1 ⊗λB Y2)
∥∥ =

∥∥T1∣∣L(X1, Y1)
∥∥ · ∥∥T2∣∣L(X2, Y

E
2 )
∥∥ , (14)∥∥T1 ⊗λC T2∣∣L(X1 ⊗λC X2, Y1 ⊗λC Y2)

∥∥ =
∥∥T1∣∣L(X1, Y

E
1 )
∥∥ · ∥∥T2∣∣L(X2, Y

E
2 )
∥∥ . (15)
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As a first step, we shall determine the operator quasi-norm of the usual dual operator T ′ of some given
operator T ∈ L(X, Y ). For Banach spaces ‖T ′|L(Y ′, X ′)‖ = ‖T |L(X, Y )‖ is well-known, but clearly
this no longer needs to be true for quasi-Banach spaces, in particular since the dual spaces might be
trivial. However, for quasi-Banach spaces with separating duals, a precise answer is possible.

Lemma 7. Let X and Y be quasi-Banach spaces with separating duals, and let T ∈ L(X, Y ). Then
it holds∥∥T ′ ∣∣L(Y ′, X ′)

∥∥ =
∥∥T ∣∣L(X, Y E)

∥∥ =
∥∥T ∣∣L(XE, Y E)

∥∥ ,
where T is extended by continuity to the whole of XE.

Proof . By straightforward calculations, inserting the relevant definitions, we find∥∥T ′ ∣∣L(Y ′, X ′)
∥∥ = sup

‖ψ|Y ′‖≤1
‖T ′ψ|X ′‖ = sup

‖ψ|Y ′‖≤1
sup
‖x|X‖≤1

|(T ′ψ)(x)|

= sup
‖x|X‖≤1

sup
‖ψ|Y ′‖≤1

|ψ(Tx)| = sup
‖x|X‖≤1

9Tx|Y 9 ≡ sup
‖x|X‖≤1

‖Tx|Y E‖

=
∥∥T ∣∣L(X, Y E)

∥∥ .
This proves the claim.

Proof of Proposition 4.

Step 1: Treatment of λC.
Let z ∈ X1 ⊗X2 be given by z =

∑n
i=1 xi ⊗ yi. Then we find

λC
(
(T1 ⊗ T2)(z), Y1, Y2

)
= sup
‖φ|Y ′1‖≤1

sup
‖ψ|Y ′2‖≤1

∣∣(φ⊗ ψ)
(
(T1 ⊗ T2)(z)

)∣∣
= sup
‖φ|Y ′1‖≤1

sup
‖ψ|Y ′2‖≤1

∣∣∣∣ n∑
i=1

(T ′1φ)(xi)(T
′
2ψ)(yi)

∣∣∣∣
≤
∥∥T ′1∣∣L(Y ′1 , X

′
1)
∥∥ · ∥∥T ′2∣∣L(Y ′2 , X

′
2)
∥∥ sup
‖φ̃|X′1‖≤1

sup
‖ψ̃|X′2‖≤1

∣∣∣∣ n∑
i=1

φ̃(xi)ψ̃(yi)

∣∣∣∣
=
∥∥T ′1∣∣L(Y ′1 , X

′
1)
∥∥ · ∥∥T ′2∣∣L(Y ′2 , X

′
2)
∥∥ · λC(z,X1, X2

)
.

This implies the first inequality needed to prove (15). The reverse inequality follows in the same way
as in the proof of Proposition 3, using property (4) in the second part of the calculation. We end up
with∥∥T1 ⊗λC T2∣∣L(X1 ⊗α X2, Y1 ⊗λC Y2)

∥∥ ≥ ∥∥T1∣∣L(X1, Y
E
1 )
∥∥ · ∥∥T2∣∣L(X2, Y

E
2 )
∥∥ .

In view of Lemma 7 this proves the claim.

Step 2: Treatment of λA and λB.
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Directly from the respective definitions we find for z ∈ X1 ⊗X2

λA((T1 ⊗ T2)(z), Y1, Y2) = sup
‖ψ|Y ′1‖≤1

∥∥∥∥ n∑
j=1

ψ(T1xj)T2yj

∣∣∣∣Y2∥∥∥∥ = sup
‖ψ|Y ′1‖≤1

∥∥∥∥T2( n∑
j=1

ψ(T1xj)yj

)∣∣∣∣Y2∥∥∥∥
≤
∥∥T2∣∣L(X2, Y2)

∥∥ sup
‖ψ|Y ′1‖≤1

∥∥∥∥ n∑
j=1

(T ′1ψ)(xj)yj

∣∣∣∣Y2∥∥∥∥
≤
∥∥T2∣∣L(X2, Y2)

∥∥ · ∥∥T ′1∣∣L(Y ′1 , X
′
1)
∥∥ sup
‖φ|X′1‖≤1

∥∥∥∥ n∑
j=1

φ(xj)yj

∣∣∣∣Y2∥∥∥∥
=
∥∥T2∣∣L(X2, Y2)

∥∥ · ∥∥T ′1∣∣L(Y ′1 , X
′
1)
∥∥λA(z,X1, X2) ,

which immediately yields∥∥T1 ⊗λA T2∣∣L(X1 ⊗λA X2, Y1 ⊗λA Y2)
∥∥ ≤ ∥∥T ′1∣∣L(Y ′1 , X

′
1)
∥∥ · ∥∥T2∣∣L(X2, Y2)

∥∥ .
The reverse estimate once more follows as in the proof of Proposition 3. In particular we find∥∥T1 ⊗λA T2∣∣L(X1 ⊗λA X2, Y1 ⊗λA Y2)

∥∥ ≥ sup
‖x|X1‖≤1,‖y|X2‖≤1

λA
(
(T1x)⊗ (T2y), Y1, Y2

)
≥ sup
‖x|X1‖≤1

sup
‖y|X2‖≤1

9T1x|Y1 9 ·‖T2y|Y ‖

=
∥∥T1∣∣L(X1, Y

E
1 )
∥∥ · ∥∥T2∣∣L(X2, Y2)

∥∥ .
In view of Lemma 7 this shows the claim. The proof for λB is completely analogous.

Remark 3. Note that these results correspond to the assertion in Lemma 4 and the respective
counterparts

X ⊗λA Y = XE ⊗λA Y and X ⊗λB Y = X ⊗λB Y E .

Starting with these identifications, Proposition 4 can be obtained either from Proposition 3 or in the
same way as for λ in the case of Banach spaces.

4 p-nuclear-norms for quasi-Banach spaces

For Banach spaces X and Y , the p-nuclear tensor norm αp(·, X, Y ) is well-known, where 1 < p <∞,
see e.g. [14]. Its definition can be extended to values p ≤ 1 in different ways, which are seen to
coincide for Banach spaces (for completeness we shall repeat those arguments below). However, they
are generally different for quasi-Banach spaces.

Definition 4. Let X and Y be quasi-Banach spaces, and let f ∈ X ⊗ Y .

(i) Let 0 < p ≤ 1. Then we define the p-nuclear norm γp by

γp
(
f,X, Y

)
:= inf

{( n∑
j=1

∥∥xj∣∣X∥∥p · ∥∥yj∣∣Y ∥∥p)1/p

: f =
n∑
j=1

xj ⊗ yj

}
.
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(ii) Now let 0 < p ≤ ∞ and 1
q

=
(
1− 1

p

)
+

. Then we define

αp
(
f,X, Y

)
:= inf

{( n∑
j=1

∥∥xj∣∣X∥∥p)1/p

sup
‖ψ|Y ′‖≤1

( n∑
j=1

|ψ(yj)|q
)1/q

: f =
n∑
j=1

xj ⊗ yj

}
,

with the usual modification in case q =∞ (i.e. p ≤ 1).

(iii) Finally, let again 0 < p ≤ ∞. Then we define

βp
(
f,X, Y

)
:= inf

{( n∑
j=1

∥∥xj∣∣X∥∥p)1/p

sup
‖λ|`np‖≤1

∥∥∥∥ n∑
j=1

λjyj

∣∣∣∣Y ∥∥∥∥ : f =
n∑
j=1

xj ⊗ yj

}
,

where `np is the vector space Cn, equipped with the usual (quasi-)norm ‖λ|`np‖ =
(∑n

j=1 |λj|p
)1/p

.

The version (i) was used already by Grothendieck in [6]. It can be shown that for Banach spaces the
projective norm γ1 = γ is always equal to the 1-nuclear norm α1 as defined in [14] (which justifies
the above notion in case p = 1). On the other hand, (ii) and (iii) are more immediate extensions of
the usual formulations of the p-nuclear tensor norm.

4.1 Properties of γp

In this subsection, we are concerned with some basic properties of the quasi-norms γp defined above
(among others that they are indeed p-norms).

Lemma 8. Let X be a quasi-Banach space with separating dual, and let Y be a p-Banach space.
Then γp(·, X, Y ), 0 < p ≤ 1, is a reasonable p-norm on X ⊗ Y .
Moreover, let X1 and X2 be quasi-Banach spaces with separating duals, and let Y1 and Y2 be further
quasi-Banach spaces. Then it holds (3) for every T1 ∈ L(X1, Y1), T2 ∈ L(X2, Y2) and h ∈ X1 ⊗X2,
i.e. γp is uniform.

Proof . We shall follow closely the corresponding proofs for γ1 ≡ γ in [14].
Due to the assumptions Theorem 1 is applicable, hence the functional analytic tensor product coin-
cides with the algebraic one. In other words, given z ∈ X ⊗ Y , z 6= 0, there is a functional φ ∈ X ′,
‖φ|X ′‖ ≤ 1, such that we have Azφ 6= 0, where Az : X ′ −→ Y is the operator associated to z. Then
we find

0 <
∥∥Azφ ∣∣Y ∥∥ ≤

∥∥∥∥∥
n∑
j=1

φ(xi)yi

∣∣∣∣Y
∥∥∥∥∥

≤

(
n∑
i=1

|φ(xi)|p ·
∥∥ yi ∣∣Y ∥∥p)1/p

≤

(
n∑
i=1

∥∥xi ∣∣X ∥∥p · ∥∥ yi ∣∣Y ∥∥p)1/p

.

Taking the infimum over all representations of z yields γp(z,X, Y ) > 0. The other p-norm properties
for γp are obvious.
For the proof of the reasonability, we first observe

γp(x⊗ y,X, Y ) ≤
∥∥x∣∣X∥∥ · ∥∥y∣∣Y ∥∥ , x ∈ X, y ∈ Y . (16)
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Now let φ ∈ X ′, ψ ∈ Y ′ and z =
∑n

i=1 xi ⊗ yi ∈ X ⊗ Y . Then we find

|(φ⊗ ψ)(z)| ≤
n∑
i=1

|(φ⊗ ψ)(xi ⊗ yi)| =
n∑
i=1

|φ(xi)| · |ψ(yi)|

≤
∥∥φ ∣∣X ′ ∥∥ · ∥∥ψ ∣∣Y ′ ∥∥ n∑

i=1

∥∥xi ∣∣X ∥∥ · ∥∥ yi ∣∣Y ∥∥
Taking the infimum over all representations of z we obtain

|(φ⊗ ψ)(z)| ≤
∥∥φ ∣∣X ′ ∥∥ · ∥∥ψ ∣∣Y ′ ∥∥γ1(z,X, Y ) ≤

∥∥φ ∣∣X ′ ∥∥ · ∥∥ψ ∣∣Y ′ ∥∥γp(z,X, Y ) ,

where we additionally used the monotonicity of the `p-quasi-norms. Now Lemma 5 shows that γp is
reasonable.
Finally, let T1 ∈ L(X1, Y1), T2 ∈ L(X2, Y2) and z =

∑n
i=1 ui ⊗ vi ∈ X1 ⊗X2. Then it holds

γp

( n∑
i=1

T1ui ⊗ T2vi
)
≤
( n∑
i=1

∥∥T1ui ∣∣Y1 ∥∥p · ∥∥T2vi ∣∣Y2 ∥∥p)1/p

≤
∥∥T1∣∣L(X1, Y1)

∥∥ · ∥∥T2∣∣L(X2, Y2)
∥∥( n∑

i=1

∥∥ui∣∣X1

∥∥p ∥∥vi∣∣X2

∥∥p)1/p

Taking the infimum over all representations of z yields (3).

Remark 4. Note, that the assumption of Y being a p-Banach space can be slightly weakened to Y
being p-normable, i.e. there has to be some p-norm on Y equivalent to ‖ · |Y ‖, since this condition
was used only to show that γp(z,X, Y ) > 0 for z 6= 0.

The following corollary is a consequence of the uniformity. Its proof is analogous to the one for the
normed case in [19, Appendix B].

Corollary 2. Let X1, X2, Y1, Y2 be quasi-Banach spaces, which fulfil the assumptions of Lemma 8,
and let 0 < p < 1. Suppose that T1 ∈ L(X1, Y1) and T2 ∈ L(X2, Y2) are isomorphisms. Then also
T1 ⊗γp T2 is an isomorphism from X1 ⊗γp X2 onto Y1 ⊗γp Y2.

A particular application for this corollary will be discussed in the last section.

4.2 Properties of αp and βp

Lemma 9. Let X and Y be quasi-Banach spaces with separating duals. Furthermore, let X be a
p-Banach space, where 0 < p ≤ 1. Then αp(·, X, Y ) is a p-norm.

Proof . The homogenity is obvious. We remind on the operators Bz and the observation, that the
quotient spaces with respect to the corresponding equivalence relation coincide with X ⊗ Y . Now
let z ∈ X ⊗ Y , z =

∑n
i=1 xi ⊗ yi 6= 0. Then due to the assumption on Y ′ we find some φz ∈ Y ′,
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‖φz|Y ′‖ ≤ 1, such that Bzφz 6= 0, and hence

0 < ‖Bzφz|X‖p =

∥∥∥∥ n∑
i=1

φz(yi)xi

∣∣∣∣X∥∥∥∥p ≤ n∑
i=1

|φz(yi)|p‖xi|X‖p

≤
( n∑
i=1

‖xi|X‖p
)

max
j=1,...,n

|φz(yj)|p ≤
( n∑
i=1

‖xi|X‖p
)

sup
‖ψ|Y ′‖≤1

max
j=1,...,n

|ψ(yj)|p .

Taking the infimum over all representations of z and afterwards the supremum over the unit ball of
Y ′ yields

0 <
∥∥Bz

∣∣L(Y ′, X)
∥∥ ≤ αp(z,X, Y ) .

We finally prove the p-triangle inequality. Let ε > 0, and choose a representation of z ∈ X⊗Y , such
that

n∑
j=1

∥∥xj∣∣X∥∥p sup
‖ψ|Y ′‖≤1

max
j=1,...,n

|ψ(yj)|p ≤ αp(z,X, Y )p + ε ,

where we additionally may assume

n∑
j=1

∥∥xj∣∣X∥∥p ≤ αpp(z,X, Y ) + ε , sup
‖ψ|Y ′‖≤1

max
j=1,...,n

|ψ(yj)| ≤ 1 .

Moreover, we choose a representation of w ∈ X ⊗ Y ,

w =
m∑

i=n+1

xi ⊗ yi ,

with analogous properties. Then we have in particular

|ψ(yj)| ≤ 1 , j = 1, . . . ,m , ψ ∈ Y ′ , ‖ψ|Y ′‖ ≤ 1 ,

and hence

sup
‖ψ|Y ′‖≤1

max
j=1,...,m

|ψ(yj)| ≤ 1 .

Moreover, we easily find

m∑
j=1

∥∥xj∣∣X∥∥p ≤ αp(z,X, Y )p + αp(w,X, Y )p + 2ε .

Combinig the last two estimates yields (upon taking the infimum over all representations of z + w)

αp(z + w,X, Y )p ≤
m∑
j=1

∥∥xj∣∣X∥∥p sup
‖ψ|Y ′‖≤1

max
j=1,...,m

|ψ(yj)| ≤ αp(z,X, Y )p + αp(w,X, Y )p + 2ε .

For ε→ 0 we obtain the desired inequality.
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Remark 5. Note, that the assumption of X being a p-Banach space is only used to show∥∥Bz

∣∣L(Y ′, X)
∥∥ ≤ αp(z,X, Y ) ,

in particular, the p-triangle inequality did not need any additional assumption. Hence, this assump-
tion once more can be weakened to X being p-normable.

Lemma 10. LetX be a quasi-Banach space with separating dual. Furthermore, let Y be a p-Banach
space, where 0 < p ≤ 1. Then βp(·, X, Y ) is a p-norm.

Proof . The homogenity is obvious. For the p-triangle inequality we refer to Nitsche [16].
Now let z ∈ X ⊗ Y , z =

∑n
i=1 xi ⊗ yi 6= 0. Moreover, let φz ∈ X ′, ‖φz|X ′‖ ≤ 1, such that Azφz 6= 0

(such a linear functional exists due to the assumption). Then it follows

0 < ‖Azφz|Y ‖p =

∥∥∥∥ n∑
i=1

φz(xi)yi

∣∣∣∣Y ∥∥∥∥p ≤ ( n∑
i=1

|φz(xi)|p
)

sup
‖λ|`np‖≤1

∥∥∥∥ n∑
j=1

λjyj

∣∣∣∣Y ∥∥∥∥p .
This is an immediate consequence of the homogenity of the quasi-norm on Y . Hence we find (as
before taking the infimum over all representations of z and afterwards the supremum over the unit
ball of X ′)

0 <
∥∥Az∣∣L(X ′, Y )

∥∥ ≤ βp(z,X, Y ) .

Lemma 11. Let 0 < p ≤ 1. Then αp is reasonable and uniform.

Proof . Let X and Y be arbitrary quasi-Banach spaces. Furthermore, let φ ∈ X ′, ψ ∈ Y ′ and
f =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y . Then it holds

|(φ⊗ ψ)(f)| =
∣∣∣∣ n∑
i=1

φ(xi)ψ(yi)

∣∣∣∣ ≤ ‖φ|X ′‖( n∑
i=1

‖xi|X‖
)

max
j=1,...,n

|ψ(yj)|

≤ ‖φ|X ′‖
( n∑
i=1

‖xi|X‖p
)1/p

‖ψ|Y ′‖ sup
‖η|Y ′‖≤1

max
j=1,...,n

|η(yj)| ,

where we used the monotonicity of the `np -quasi-norms. Taking the infimum over all representations
of f we obtain

|(φ⊗ ψ)(f)| ≤ ‖φ|X ′‖ · ‖ψ|Y ′‖ · αp(f,X, Y ) .

Since the inequality (5) is obvious, from Lemma 5 now follows that αp(·, X, Y ) is reasonable.
Concerning the uniformity, let X1, X2, Y1 and Y2 be quasi-Banach spaces, and let Ti ∈ L(Xi, Yi),
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i = 1, 2. Then we find for z =
∑n

j=1 fj ⊗ gj ∈ X1 ⊗X2

αp
(
(T1 ⊗ T2)z, Y1, Y2

)
≤
( n∑
j=1

‖T1fj|Y1‖p
)1/p

sup
‖ψ|Y ′2‖≤1

max
j=1,...,n

|ψ(T2gj)|

≤ ‖T1|L(X1, Y1)‖
( n∑
j=1

‖fj|X1‖p
)1/p

sup
‖ψ|Y ′2‖≤1

max
j=1,...,n

|(T ∗2ψ)(gj)|

≤ ‖T1|L(X1, Y1)‖ · ‖T ′2|L(Y ′2 , X
′
2)‖
( n∑
j=1

‖fj|X1‖p
)1/p

sup
‖ψ|Y ′2‖≤1

max
j=1,...,n

∣∣∣∣( T ′2ψ

‖T ′2|L(Y ′2 , X
′
2)‖

)
(gj)

∣∣∣∣
≤ ‖T1|L(X1, Y1)‖ · ‖T2|L(X2, Y2)‖

( n∑
j=1

‖fj|X1‖p
)1/p

sup
‖φ|X′2‖≤1

max
j=1,...,n

∣∣φ(gj)
∣∣ .

Concerning the dual operator T ′2 we only need the inequality ‖T ′2|L(Y ′2 , X
′
2)‖ ≤ ‖T2|L(X2, Y2)‖ at

this point. Taking the infimum over all representations of z, we end up with the inequality (3).

4.3 Equivalence of these norms for Banach spaces

For Banach spaces and 1 ≤ p ≤ ∞ it is well-known that we have αp = βp. Moreover, we find
α1 = γ1 ≡ γ, the projective tensor norm. For a proof of the former assertion, we refer to [14], the
latter one is covered by the following lemma.

Lemma 12. Let X and Y be Banach spaces and 0 < p ≤ 1. Then αp = γp. Moreover, these norms
are crossnorms, i.e. γp(x⊗ y,X, Y ) = αp(x⊗ y,X, Y ) = ‖x|X‖ · ‖y|Y ‖ for all x ∈ X and y ∈ Y .

Proof . Since every Banach space is also a p-Banach space for every value p < 1, we immediately
obtain from Lemmas 9 and 14 (the required inequality for this lemma is obvious) the estimate
αp ≤ γp. Hence it remains to prove the reverse relation.
Let z =

∑n
i=1 xi ⊗ yi, then we find

γp(z,X, Y )p ≤
n∑
i=1

‖xi|X‖p · ‖yi|Y ‖p =
n∑
i=1

‖xi|X‖p · sup
‖ψ|Y ′‖≤1

|ψ(yi)|p

≤
( n∑
i=1

‖xi|X‖p
)

sup
‖ψ|Y ′‖≤1

max
j=1,...,n

|ψ(yi)|p .

Taking the infimum over all representations of z yields the desired estimate.
For the crossnorm-assertion we first find for all x ∈ X, y ∈ Y , φ ∈ X ′, ψ ∈ Y ′

|φ(x)| · |ψ(y)| = |(φ⊗ ψ)(x⊗ y)| ≤ γ∗p(φ⊗ ψ)γp(x⊗ y) = ‖φ|X ′‖ · ‖ψ|Y ′‖ · γp(x⊗ y) ,

where we used Lemma 8 (γp is reasonable). Now using (1) we find by taking the supremum over the
unit balls of X ′ and Y ′

γp(x⊗ y,X, Y ) ≥ ‖x|X‖ · ‖y|Y ‖ .

Since the reverse inequality is obvious, this proves the crossnorm property for γp and hence also for
αp (this could be proved directly as well, using analogous arguments).
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Lemma 13. Let X and Y be Banach spaces and 0 < p ≤ 1. Then αp = βp.

Proof . Using the usual identifications
(
`n1
)′

= `n∞ and
(
`n∞
)′

= `n1 we observe first

sup
‖ψ|Y ′‖≤1

max
j=1,...,n

|ψ(yj)| ≡ sup
‖ψ|Y ′‖≤1

∥∥ψ ∣∣`n∞∥∥ = sup
‖ψ|Y ′‖≤1

sup
‖µ|(`n∞)′‖≤1

∣∣µ(ψ)
∣∣

= sup
‖ψ|Y ′‖≤1

sup
‖λ|`n1 ‖≤1

∣∣∣∣ n∑
j=1

λjψ(yj)

∣∣∣∣ = sup
‖λ|`n1 ‖≤1

sup
‖ψ|Y ′‖≤1

∣∣∣∣ψ( n∑
j=1

λjyj

)∣∣∣∣
= sup
‖λ|`n1 ‖≤1

∥∥∥∥ n∑
j=1

λjyj

∣∣∣∣Y ∥∥∥∥ ≥ sup
‖λ|`np‖≤1

∥∥∥∥ n∑
j=1

λjyj

∣∣∣∣Y ∥∥∥∥ ,
where the last step is a consequence of the `p-monotonicity (for decreasing values of p the unit
balls of `np become smaller). Inserting this into the respective definitions for the tensor norms yields
αp(z,X, Y ) ≥ βp(z,X, Y ).
The reverse inequality is a special case of Lemma 16 below.

Remark 6. Note that neither Lemma 12 nor Lemma 13 use any information on the space X, i.e.
the assertions and the corresponding proofs remain valid in case X is only a quasi-Banach space.

4.4 Relations in case of Quasi-Banach spaces

The first relation is based on the p-norm property of all the variants of the p-nuclear quasi-norm.

Lemma 14. Let 0 < p ≤ 1, and let X and Y be two quasi-Banach spaces. If α is some p-norm
satisfying

α(x⊗ y) ≤ ‖x|X‖ · ‖y|Y ‖ for all x ∈ X , y ∈ Y ,

then α(z) ≤ γp(z,X, Y ) for all z ∈ X ⊗ Y .

Proof . The proof follows along the lines of the one for the projective tensor norm γ1 ≡ γ. Let
z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y , then

α(z)p ≤
n∑
i=1

α(xi ⊗ yi)p ≤
n∑
i=1

‖xi|X‖p · ‖yi|Y ‖p .

Taking the infimum over all representations of z yields the desired estimate.

In particular, we find αp ≤ γp and βp ≤ γp for all 0 < p ≤ 1.

Lemma 15. Let X be an arbitrary quasi-Banach space, and let Y be a p-Banach space, 0 < p ≤ 1.
Then it holds βp(·, X, Y ) = γp(·, X, Y ).

Proof . Since we have ‖ej|`np‖ = 1, j = 1, . . . , n, for the canonical basis vectors, it follows

‖yj|Y ‖ ≤ sup
‖λ|`np‖≤1

∥∥∥∥ n∑
i=1

λiyi

∣∣∣∣Y ∥∥∥∥ , j = 1, . . . , n ,
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for all y1, . . . , yn ∈ Y . This immediately yields( n∑
j=1

∥∥xj∣∣X∥∥p · ∥∥yj∣∣Y ∥∥p)1/p

≤
( n∑
j=1

∥∥xj∣∣X∥∥p)1/p

sup
‖λ|`np‖≤1

∥∥∥∥ n∑
j=1

λjyj

∣∣∣∣Y ∥∥∥∥
for all x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y . Taking the infimum over all representations of z ∈ X ⊗ Y
we obtain βp(z,X, Y ) ≥ γp(z,X, Y ) for all z ∈ X ⊗ Y , which in view of the remark above completes
the proof.

Remark 7. If Y is a p-Banach space, one can verify

max
j=1,...,n

‖yj|Y ‖ = sup
‖λ|`np‖≤1

∥∥∥∥ n∑
i=1

λiyi

∣∣∣∣Y ∥∥∥∥ .
To see this, one uses the same estimate as in the proof above, and subsequently one applies the
p-triangle inequality.

Since the definition of αp involves duality more directly, its comparisons to the other quasi-norms
are more subtle.

Lemma 16. Let X and Y be quasi-Banach spaces, and let 0 < p ≤ 1. Then it holds

αp(f,X, Y ) ≤ βp(f,X, Y ) , f ∈ X ⊗ Y .

Proof . The observation 9y |Y 9 ≤ ‖y|Y ‖ yields for arbitrary y1, . . . , yn ∈ Y

sup
‖λ|`np‖≤1

∥∥∥∥ n∑
i=1

λiyi

∣∣∣∣Y ∥∥∥∥ ≥ sup
‖λ|`np‖≤1

sup
‖ψ|Y ′‖≤1

∣∣∣∣ψ( n∑
i=1

λiyi

)∣∣∣∣ = sup
‖ψ|Y ′‖≤1

sup
‖λ|`np‖≤1

∣∣∣∣ n∑
i=1

λiψ(yi)

∣∣∣∣ .
Now we choose an index j ∈ {1, . . . , n}, such that |ψ(yj)| = maxi=1,...,n |ψ(yi)|. We further choose
µ = ej ∈ `np , the jth canonical unit vector. Then we have ‖µ|`np‖ = 1 and hence

sup
‖ψ|Y ′‖≤1

sup
‖λ|`np‖≤1

∣∣∣∣ n∑
i=1

λiψ(yi)

∣∣∣∣ ≥ sup
‖ψ|Y ′‖≤1

∣∣∣∣ n∑
i=1

µiψ(yi)

∣∣∣∣ = sup
‖ψ|Y ′‖≤1

max
i=1,...,n

∣∣ψ(yi)
∣∣ .

Inserting this into the respective definitions finally yields the assertion.

Corollary 3. Let 0 < p ≤ 1. Then βp is reasonable and uniform.

Proof . The assumption (6) of Lemma 5 now follows immediately from the one for αp, and the
inequality βp(x⊗ y,X, Y ) ≤ ‖x|X‖ · ‖y|Y ‖ is obvious.
Furthermore, by linearity we always have T2(

∑n
i=1 λiyi) =

∑n
i=1 λiT2yi, hence the estimate (3) follows

directly by applying the definition of βp to the representation Tz =
∑n

i=1(T1xi)⊗ (T2yi).

In order to establish αp = βp = γp it now would be sufficient to show αp ≥ γp. However, even for
the prominent (and particularly simple) example X = Y = `p this fails to be true. In [19] it was
shown `p(I) ⊗γp `p(I) = `p(I

2), 0 < p ≤ 1, which holds with equality of quasi-norms. In particular,

this implies γp(x ⊗ y) = ‖x|`p(I)‖ · ‖y|`p(I)‖ for all x, y ∈ `p(I). Since
(
`p(I)

)E
= `1(I), we have

αp(x⊗ y) = ‖x|`p(I)‖ · ‖y|`1(I)‖ (see Lemma 17 below), which yields αp(x⊗ y) < γp(x⊗ y) already
for all those dyads, where y is different from multiples of the unit vectors ei, i ∈ I.
Hence, in general the quasi-norms αp and γp are different, and even non-equivalent. More precisely,
they are equivalent if, and only if, Y is normable, see Lemma 3.
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4.5 Crossnorm-properties

In this section we shall investigate the p-nuclear tensor norms from Definition 4 regarding possible
crossnorm-properties. To begin with, we observe that αp generally is neither a crossnorm, nor
equivalent to one. Instead, we have the following assertion.

Lemma 17. Let X and Y be quasi-Banach spaces, and let 0 < p ≤ 1. Then it holds

αp(z,X, Y ) ≥ λB(z,X, Y ) , z ∈ X ⊗ Y ,

and furthermore

αp(x⊗ y,X, Y ) = ‖x|X ‖ · 9y |Y 9 , x ∈ X , y ∈ Y . (17)

Proof . The first assertion can already be found in the proof of Lemma 9, where we have shown

αp(z,X, Y ) ≥
∥∥Bz

∣∣L(Y ′, X)
∥∥ = λB(z,X, Y ) .

Applying this to z = x⊗ y, we find

αp(x⊗ y,X, Y ) ≥
∥∥Bx⊗y

∣∣L(Y ′, X)
∥∥

= sup
‖ψ|Y ′‖≤1

‖ψ(y)x|X‖ = ‖x|X‖ sup
‖ψ|Y ′‖≤1

|ψ(y)| = ‖x|X‖ · 9y |Y 9 .

Since the reverse estimate simply follows by inserting x ⊗ y into the definition of αp, the proof is
complete.

From (17) we immediately obtain results for X ⊗αp Y similarly as in Lemma 4.

Lemma 18. Let X be a p-Banach space, 0 < p ≤ 1, and Y a further quasi-Banach space, both
with separating duals. Then it holds

X ⊗αp Y = X ⊗αp Y
E = X ⊗βp Y E = X ⊗γp Y E .

The latter identities follow from the observation αp(·, F,G) = βp(·, F,G) = γp(·, F,G), whenever G
is a Banach space (see Remark 6).

For γp we obtain no final result for general spaces X and Y .

Lemma 19. Let X and Y be p-Banach spaces, where 0 < p ≤ 1. Then it holds

γp(z,X, Y ) ≥ max
(
λA(z,X, Y ) , λB(z,X, Y )

)
, z ∈ X ⊗ Y .

In particular, we find

max
(
‖x|X‖ · 9y |Y 9 , 9x|X 9 ·‖y|Y ‖

)
≤ γp(x⊗ y,X, Y ) ≤ ‖x|X‖ · ‖y|Y ‖ (18)

for all x ∈ X and y ∈ Y .
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Proof . In the proof of Lemma 8 we have shown∥∥Azφ ∣∣Y ∥∥ ≤ γp(z,X, Y ) , z ∈ X ⊗ Y , φ ∈ X ′ .

This yields γp(z,X, Y ) ≥ λA(z,X, Y ) for all z ∈ X ⊗ Y . The proof of γp(z,X, Y ) ≥ λB(z,X, Y )
follows by analogous arguments. This yields the first assertion. Applying this result to z = x ⊗ y
one immediately obtains the second one.

Also the estimate (18) can be reformulated in terms of Banach envelopes.

Corollary 4. Let 0 < p ≤ 1, and let X and Y be p-Banach spaces with separating duals. Then it
holds

X ⊗γp Y ↪→ XE ⊗γp Y ∩ X ⊗γp Y E ↪→ XE ⊗γp Y E .

Remark 8. Without any additional assumption on the quasi-norms of X and Y we still get

9x |X 9 · 9y |Y 9 ≤ γp(x⊗ y,X, Y ) ≤ ‖x|X‖ · ‖y|Y ‖ ,

based on the reasonability of γp (see Lemmas 8 and 17). This corresponds to the trivial embedding
X ⊗γp Y ↪→ XE ⊗γp Y E.

However, sharper estimates for γp(x ⊗ y,X, Y ) or βp(x ⊗ y,X, Y ) hold true, at the cost of stronger
assumptions on the space X. Then we can prove that βp or γp are (almost) crossnorms.

Theorem 3. Let X be a quasi-Banach space with separating dual, and let Y be another quasi-
Banach space. Assume that for arbitrary x, x1, . . . , xn ∈ X and y, y1, . . . , yn ∈ Y , such that x⊗y 6= 0
and

x⊗ y =
n∑
i=1

xi ⊗ yi ,

the following condition is fulfilled:

sup
ϕ∈X∗\{0}

∑n
i=1 ‖xi|X‖p∑n
i=1 |ϕ(xi)|p

· |ϕ(x)|p

‖x|X‖p
≥ C1 > 0 , (19)

where X∗ denotes the algebraic dual X∗ of X, and C1 does not depend on x, x1, . . . , xn ∈ X and
n ∈ N. Then it holds

βp(x⊗ y,X, Y ) ≥ C
1/p
1 ‖x|X‖ · ‖y|Y ‖ for all x ∈ X and y ∈ Y .

Note that the restriction on x, x1, . . . , xn ∈ X implies that
∑n

i=1 |ϕ(xi)|p is non-vanishing for all
functionals ϕ ∈ X∗ \ {0}.
Clearly, we always have C1 ≤ 1 (take n = 1 and x = x1). The proof is based on an argument by
Nitsche [16]. We further remark that for Banach spaces and `p-spaces we have C1 = 1 (even upon
replacing X∗ by X ′).
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Proof . Let x, x1, . . . , xn ∈ X and y, y1, . . . , yn ∈ Y be given as required. Moreover, consider an
arbitrary functional ϕ ∈ X∗ \ {0}. We put ηi = ϕ(xi)/M . Then it follows( n∑

i=1

‖xi|X‖p
)1/p

sup
‖µ|`np‖≤1

∥∥∥∥ n∑
i=1

µiy
i

∣∣∣∣Y ∥∥∥∥ ≥ ( n∑
i=1

‖xi|X‖p
)1/p∥∥∥∥ n∑

i=1

ηiy
i

∣∣∣∣Y ∥∥∥∥
=

1

M

( n∑
i=1

‖xi|X‖p
)1/p∥∥∥∥ n∑

i=1

ϕ(xi)yi
∣∣∣∣Y ∥∥∥∥

=
1

M

( n∑
i=1

‖xi|X‖p
)1/p∥∥ϕ(x)y

∣∣Y ∥∥
=

((∑n
i=1 ‖xi|X‖p

)1/p(∑n
i=1 |ϕ(xi)|p

)1/p · |ϕ(x)|
‖x|X‖

)∥∥x∣∣X∥∥ · ∥∥y∣∣Y ∥∥ .
Taking the supremum over all such functionals and afterwards taking the infimum over all equivalent
representations of x⊗ y yields the claimed result.

To finish this subsection we adapt another result of Nitsche, giving an example of spaces satisfying
condition (19). We suppose

• X is a p-Banach space,

• X contains a Schauder basis B = (bi)i∈I , where I is a countable index set,

• the mapping J : f 7−→
(
λi(f)‖bi|X‖

)
i∈I is bounded from X to `p(I).

Theorem 4. Under these assumptions it holds

βp(x⊗ y,X, Y ) ≥ C0 ‖x|X‖ · ‖y|Y ‖ for all x ∈ X and y ∈ Y ,

where the constant C0 is given by C0 = ‖J |L(X, `p(I))‖−1.

Proof . We shall show that every space X with a basis as assumed satisfies the condition (19) with
C1 = Cp

0 . Throughout the proof (λi)i∈I ⊂ X ′ denotes the system of the correponding coefficient
functionals. Now let x, x1, . . . , xn ∈ X, be given as in the last theorem, which particularly implies
x 6= 0 and

Mi =

(∑n
j=1|λi(xj)|p

)1/p(∑n
j=1‖xj|X‖p

)1/p > 0 for all i ∈ I .

The assumption on the mapping J then yields∑
i∈I

Mp
i ‖bi|X‖p ≤ ‖J‖p .

Now consider the set

Φ :=
{
ϕi = M−1

i sgn(λi(x))λi : i ∈ I
}
⊂ X ′ .
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By construction we find for all ϕ ∈ Φ

n∑
j=1

|ϕ(xj)|p =
n∑
j=1

‖xj|X‖p .

Now assume that there is no ϕ ∈ Φ, such that ϕ(x) ≥ C0‖x|X‖ (observe that ϕ(x) is real for all
ϕ ∈ Φ). This implies ϕi(x) < C0‖x|X‖ for all i ∈ I and hence (summing up over i ∈ I)∑

i∈I

Mp
i ‖bi|X‖p =

∑
i∈I

(
|λi(x)|
ϕi(x)

)p
‖bi|X‖p >

∑
i∈I

|λi(x)|p

Cp
0‖x|X‖p

‖bi|X‖p .

Moreover we find from the p-triangle inequality

‖x|X‖p =

∥∥∥∥∑
i∈I

λi(x)bi

∣∣∣∣X∥∥∥∥p ≤∑
i∈I

∥∥λi(x)bi
∣∣X∥∥p =

∑
i∈I

|λi(x)|p‖bi|X‖p .

Altogether we find

‖J‖p ≥
∑
i∈I

Mp
i ‖bi|X‖p > C−p0 .

Hence in case C0 = ‖J |L(X, `p(I))‖−1 this is a contradiction, thus a functional ϕ ∈ Φ with ϕ(x) ≥
C0‖x|X‖ does exist. This functional then yields condition (19) with C1 = Cp

0 , what proves the
claim.

5 Applications

As a first application of the results of the last section we will have a closer look at `p-type sequence
spaces. In particular, we consider weighted spaces `p(w, I), defined via the norm

‖a|`p(w, I)‖ :=

(∑
i∈I

|ai|pwi
)1/p

, 0 < p <∞ ,

where w = (wi)i∈I is an arbitrary sequence of positive real numbers.

Theorem 5. Let X = `p(w
1, I), Y = `p(w

2, J), 0 < p ≤ 1, where I and J are arbitrary countable
index sets. Then condition (19) holds with C1 = 1, and the canonical basis satisfies all conditions
in Theorem 4 with C0 = 1. In particular, βp(·, `p(w1, I), `p(w

2, J)) = γp(·, `p(w1, I), `p(w
2, J)) is a

crossnorm.

On the one hand this theorem extends the main results of Nitsche to the case of weighted sequence
spaces, on the other hand this corroborates the findings in [19], where it was proven

`p(w
1, I)⊗δp `p(w2, J) = `p(w

1 ⊗ w2, I × J) , 0 < p <∞ ,

with equality of quasi-norms, which implies the crossnorm-property for γp. Here δp = γp if 0 < p ≤ 1
and δp = αp if 1 < p <∞.
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One particular application for these tensor product techniques is given by wavelet transformations
with respect to tensor product wavelet systems. More precisely, if X and Y are spaces of tempered
distributions with wavelet bases Φ = {φi}i∈I and Ψ = {ψj}j∈J , respectively, and if TX : X −→ X and
TY : Y −→ Y are isomorphisms mapping the distribution spaces onto associated sequence spaces,
then the system Φ⊗Ψ = {φi⊗ψj}(i,j)∈I×J is a basis of X ⊗γp Y (which itself is a space of tempered
distributions as well), and TX ⊗γp TY maps X ⊗γp Y onto the sequence space X ⊗γp Y . By Corollary
2 this mapping is again an isomorphism.
In this way, the knowledge about tensor products of sequence spaces can immediately be transferred
to function spaces. Particularly, this applies to Besov spaces Bs

p,q(Rn) and Sobolev spaces Hs
p(Rn)

and variants thereof, which can be characterized (at least for a certain range of parameters) using
Meyer or Daubechies wavelets (to name only some possible bases). For details regarding to the
wavelet characterization we refer to the literature, see e.g. [15, 11, 21].
Further applications of these facts are due to the following results, which provide a characterization
of tensor products of some prominent function spaces. To this purpose, we define the Sobolev space
Wm
p (Rn), m ∈ N, 1 < p <∞, as the collection of all functions f ∈ Lp(Rn), such that∥∥f ∣∣Wm

p (Rn)
∥∥ :=

∑
|α|≤m

∥∥Dαf
∣∣Lp(Rn)

∥∥
is finite. Here we used the usual multiindex notation, and Dαf denotes the weak derivative of f of
order α. These spaces can be generalized using Fourier analytic means. Defining spaces Hs

p(Rn),
s ∈ R, 1 < p <∞, as the collection of all tempered distributions satisfying∥∥f ∣∣Hs

p(Rn)
∥∥ :=

∥∥F−1(1 + |ξ|2)s/2Ff
∣∣Lp(Rn)

∥∥ <∞ ,

it holds Wm
p (Rn) = Hm

p (Rn), m ∈ N, 1 < p <∞, in the sense of equivalent norms.
For tensor products of these spaces it has been shown (see [19, 8])

Hs1
p (Rn)⊗αp H

s2
p (Rm) = S(s1,s2)

p H(Rn × Rm) , 1 < p <∞ , s1, s2 ∈ R,

which generalizes the well-known Hilbert space identity Hs(R)⊗Hs(R) = Hs
mix(R2). Moreover, this

can be extended to more than two factors in the sense of iterated tensor products,

Hs1
p (Rd1)⊗αp · · · ⊗αp H

sN
p (RdN ) = Hs1

p (Rd1)⊗αp

(
Hs2
p (Rd2)⊗αp · · · ⊗αp H

sN
p (RdN )

)
= S(s1,...,sN )

p H(Rd1 × · · · × RdN ) , 1 < p <∞ , s1, . . . , sN ∈ R,

and it has been shown, that the outcome is independent of the order of iteration. The spaces on
the right hand side of these identities are called (fractional) Sobolev spaces of dominating mixed
smoothness. These are again defined Fourier analytically via the norm∥∥f ∣∣S(s1,s2)

p H(Rn×Rm)
∥∥ :=

∥∥F−1(1+ |ξ|2)s1/2(1+ |η|2)s2/2Ff
∣∣Lp(Rn+m)

∥∥ <∞ , (ξ, η) ∈ Rn×Rm.

Particular cases of this scale of spaces can once more be described using weak derivatives of functions
from Lp. It holds S

(k1,k2)
p H(Rn × Rm) = S

(k1,k2)
p W (Rn × Rm), (k1, k2) ∈ N2, where∥∥f ∣∣S(k1,k2)

p W (Rn × Rm)
∥∥ :=

∑
|α|≤k1

∑
|β|≤k2

∥∥Dα
xD

β
y f(x, y)

∣∣Lp(Rn+m)
∥∥ .

In particular, this yields the identity

W k1
p (Rn)⊗αp W

k2
p (Rm) = S(k1,k2)

p W (Rn × Rm) , 1 < p <∞ , k1, k2 ∈ N ,
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which holds with equivalence of norms. For details we refer to the cited literature. Moreover,
counterparts of these results are known for spaces on [0, 1] and [0, 1]2, respectively, see [20].

As a last example we shall discuss Besov spaces Bs
p,p(Rn). Instead of giving their definition we state

that they can be characterized using Meyer wavelets or Daubechies wavelets of sufficiently high order
(to name only some possible choices). If Ψ is such a wavelet system (in particular we assume it to
be an orthonormal basis of L2(Rn)), then the corresponding wavelet transformation J , i.e. the
mapping associating to a tempered distribution f ∈ S ′(Rn) the sequence of its wavelet coefficients
(λj,ν(f))j∈N0,ν∈∇, is an isomorphism mapping Bs

p,p(Rn) onto the sequence space bsp,p, defined by

∥∥a∣∣bsp,p∥∥ :=

( ∞∑
j=0

2j(s+d/2−d/p)p
∑
ν∈∇

|aj,ν |p
)1/p

, s ∈ R , 0 < p <∞ .

We note that these sequence spaces fit in the framework of the weighted `p-spaces discussed above.

In this way we can identify their tensor product bs1p,p ⊗δp bs2p,p with the space s
(s1,s2)
p,p b, which is given

for parameters s1, s2 ∈ R and 0 < p <∞ by the norm

∥∥a∣∣s(s1,s2)p,p b
∥∥ :=

( ∞∑
j1=0

∞∑
j2=0

2j1(s1+d1/2−d1/p)p2j2(s2+d2/2−d2/p)p
∑
ν∈∇̃

|a(j1,j2),ν |p
)1/p

.

On the other hand this kind of sequence space is known to arise in characterizations of function
spaces of dominating mixed smoothness using tensor product wavelets. In particular, let Ψ1 be a
wavelet basis for Bs1

p,p(Rd1) as described above, and let Ψ2 be a wavelet basis of Bs2
p,p(Rd2). Then

the tensor product basis Ψ1 ⊗ Ψ2, consisting of all pairwise tensor products of basis vectors, turns
out to be a basis for the Besov space of dominating mixed smoothness S

(s1,s2)
p,p B(Rd1 ×Rd2), and the

mapping I associating to a distribution f ∈ S ′(Rd1+d2) the sequence of its wavelet coefficients with

respect to Ψ1 ⊗Ψ2 is an isomorphism from S
(s1,s2)
p,p B(Rd1 ×Rd2) onto s

(s1,s2)
p,p b. For further details we

refer to [24, 8].
The outcome of these considerations is the identity

Bs1
p,p(Rd1)⊗δp Bs2

p,p(Rd2) = S(s1,s2)
p,p B(Rd1 × Rd2) , 0 < p <∞ , s1, s2 ∈ R ,

which now is an immediate consequence of Corollary 2, see also [19]. Moreover, we find for the
wavelet isomorphisms the following result.

Theorem 6. Let Ψ be a wavelet basis for Bs
p,p(R), where s ∈ R and 0 < p < ∞. Denote by J

the corresponding isomorphism mapping Bs
p,p(R) onto the associated sequence space bsp,p. Moreover,

let Ψd be the d-fold tensor product of Ψ, and denote by Jd the corresponding isomorphism mapping
S
(s,...,s)
p,p B(Rd) onto s

(s,...,s)
p,p b

• Let 0 < p <∞. Then it holds Jd = J ⊗δp · · · ⊗δp J , and∥∥Jd : S(s,...,s)
p,p B(Rd) −→ s(s,...,s)p,p b

∥∥ =
∥∥J : Bs

p,p(R) −→ bsp,p
∥∥d .

• Let 1 ≤ p <∞. Then it holds (Jd)−1 = J−1 ⊗αp · · · ⊗αp J
−1, and∥∥(Jd)−1 : s(s,...,s)p,p b −→ S(s,...,s)

p,p B(Rd)
∥∥ =

∥∥J−1 : bsp,p −→ Bs
p,p(R)

∥∥d .
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This means whenever the quasi-norm of the “one-dimensional” mappings is greater than one, the
quasi-norm of the tensor mapping grows exponentially in the number of factors (variables), and
hence suffers from the curse of dimension. That observation has some immediate consequences for
estimates of certain approximation quantities like approximation, Kolmogorov and entropy numbers
or m-term approximation. More precisely, one is interested in their asymptotic behaviour. To this
purpose one transfers these problems from function spaces to the corresponding sequence spaces,
and afterwards solves the task for the sequence spaces. Afterwards, the results are transferred back
to function spaces. The key point in this discretization technique is that the asymptotic order of
the estimates is preserved. However, for practical implementation also the constants involved in
these estimates became increasingly relevant, in particular their dependence on the dimension of the
underlying domains. Here the norm of the above isomorphism comes into play, as in the resulting
estimates for the function spaces the constants are the product of the constants for the sequence
spaces and the norm of the isomorphism.
In other words: Even if the dependence on the dimension on sequence space level is moderate (i.e.
polynomial dependence or even independent of the dimension), this positive behaviour gets lost on
function space level.
The proof of Theorem 6 follows immediately from Proposition 3, keeping in mind that for p ≥ 1 the
spaces Bs

p,p(R) and bsp,p are Banach spaces and αp is a uniform crossnorm, and for p ≤ 1 we still know
that γp is uniform and a crossnorm on bsp,p ⊗ bsp,p.
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[22] P. Turpin, Représentation fonctionelle des espaces vectorielles topologiques. Studia Math.
73 (1982), 1–10.

[23] P. Turpin, Produits tensorielle d’espaces vectoriels topologiques. Bull. Soc. Math. France
110 (1982), 3–13.

[24] J. Vybral, Function spaces with dominating mixed smoothness. Dissertationes Mathemati-
cae 436 (2006), 1–73.

[25] L. Waelbroeck, The tensor product of a locally pseudo-convex and a nuclear space. Studia
Math. 38 (1970), 101–104.

[26] H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Lecture
notes in Math. 2000, Springer, 2010.

30



Preprint Series DFG-SPP 1324

http://www.dfg-spp1324.de

Reports

[1] R. Ramlau, G. Teschke, and M. Zhariy. A Compressive Landweber Iteration for
Solving Ill-Posed Inverse Problems. Preprint 1, DFG-SPP 1324, September 2008.

[2] G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform
for Sparse Representation of Two-dimensional Data. Preprint 2, DFG-SPP 1324,
September 2008.
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[27] G. Plonka, S. Tenorth, and D. Roşca. A New Hybrid Method for Image Approx-
imation using the Easy Path Wavelet Transform. Preprint 27, DFG-SPP 1324,
October 2009.

[28] O. Koch and C. Lubich. Dynamical Low-rank Approximation of Tensors.
Preprint 28, DFG-SPP 1324, November 2009.

[29] E. Faou, V. Gradinaru, and C. Lubich. Computing Semi-classical Quantum Dy-
namics with Hagedorn Wavepackets. Preprint 29, DFG-SPP 1324, November 2009.

[30] D. Conte and C. Lubich. An Error Analysis of the Multi-configuration Time-
dependent Hartree Method of Quantum Dynamics. Preprint 30, DFG-SPP 1324,
November 2009.

[31] C. E. Powell and E. Ullmann. Preconditioning Stochastic Galerkin Saddle Point
Problems. Preprint 31, DFG-SPP 1324, November 2009.

[32] O. G. Ernst and E. Ullmann. Stochastic Galerkin Matrices. Preprint 32, DFG-SPP
1324, November 2009.

[33] F. Lindner and R. L. Schilling. Weak Order for the Discretization of the Stochastic
Heat Equation Driven by Impulsive Noise. Preprint 33, DFG-SPP 1324, November
2009.

[34] L. Kämmerer and S. Kunis. On the Stability of the Hyperbolic Cross Discrete
Fourier Transform. Preprint 34, DFG-SPP 1324, December 2009.

[35] P. Cerejeiras, M. Ferreira, U. Kähler, and G. Teschke. Inversion of the noisy Radon
transform on SO(3) by Gabor frames and sparse recovery principles. Preprint 35,
DFG-SPP 1324, January 2010.

[36] T. Jahnke and T. Udrescu. Solving Chemical Master Equations by Adaptive
Wavelet Compression. Preprint 36, DFG-SPP 1324, January 2010.

[37] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Irregular Shearlet Frames: Geometry
and Approximation Properties. Preprint 37, DFG-SPP 1324, February 2010.

[38] G. Kutyniok and W.-Q Lim. Compactly Supported Shearlets are Optimally Sparse.
Preprint 38, DFG-SPP 1324, February 2010.

[39] M. Hansen and W. Sickel. Best m-Term Approximation and Tensor Products of
Sobolev and Besov Spaces – the Case of Non-compact Embeddings. Preprint 39,
DFG-SPP 1324, March 2010.



[40] B. Niu, F.J. Hickernell, T. Müller-Gronbach, and K. Ritter. Deterministic Multi-
level Algorithms for Infinite-dimensional Integration on RN. Preprint 40, DFG-SPP
1324, March 2010.

[41] P. Kittipoom, G. Kutyniok, and W.-Q Lim. Construction of Compactly Supported
Shearlet Frames. Preprint 41, DFG-SPP 1324, March 2010.

[42] C. Bender and J. Steiner. Error Criteria for Numerical Solutions of
Backward SDEs. Preprint 42, DFG-SPP 1324, April 2010.

[43] L. Grasedyck. Polynomial Approximation in Hierarchical Tucker Format by Vector-
Tensorization. Preprint 43, DFG-SPP 1324, April 2010.

[44] M. Hansen und W. Sickel. Best m-Term Approximation and Sobolev-Besov Spaces
of Dominating Mixed Smoothness - the Case of Compact Embeddings. Preprint 44,
DFG-SPP 1324, April 2010.

[45] P. Binev, W. Dahmen, and P. Lamby. Fast High-Dimensional Approximation with
Sparse Occupancy Trees. Preprint 45, DFG-SPP 1324, May 2010.

[46] J. Ballani and L. Grasedyck. A Projection Method to Solve Linear Systems in
Tensor Format. Preprint 46, DFG-SPP 1324, May 2010.

[47] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk.
Convergence Rates for Greedy Algorithms in Reduced Basis Methods. Preprint 47,
DFG-SPP 1324, May 2010.

[48] S. Kestler and K. Urban. Adaptive Wavelet Methods on Unbounded Domains.
Preprint 48, DFG-SPP 1324, June 2010.

[49] H. Yserentant. The Mixed Regularity of Electronic Wave Functions Multiplied by
Explicit Correlation Factors. Preprint 49, DFG-SPP 1324, June 2010.

[50] H. Yserentant. On the Complexity of the Electronic Schrödinger Equation.
Preprint 50, DFG-SPP 1324, June 2010.

[51] M. Guillemard and A. Iske. Curvature Analysis of Frequency Modulated Manifolds
in Dimensionality Reduction. Preprint 51, DFG-SPP 1324, June 2010.

[52] E. Herrholz and G. Teschke. Compressive Sensing Principles and Iterative Sparse
Recovery for Inverse and Ill-Posed Problems. Preprint 52, DFG-SPP 1324, July
2010.

[53] L. Kämmerer, S. Kunis, and D. Potts. Interpolation Lattices for Hyperbolic Cross
Trigonometric Polynomials. Preprint 53, DFG-SPP 1324, July 2010.



[54] G. Kutyniok and W.-Q Lim. Shearlets on Bounded Domains. Preprint 54, DFG-
SPP 1324, July 2010.

[55] A. Zeiser. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order
with Applications to the Electronic Schrödinger Equation. Preprint 55, DFG-SPP
1324, July 2010.

[56] G. Kutyniok, J. Lemvig, and W.-Q Lim. Compactly Supported Shearlets.
Preprint 56, DFG-SPP 1324, July 2010.

[57] A. Zeiser. On the Optimality of the Inexact Inverse Iteration Coupled with Adaptive
Finite Element Methods. Preprint 57, DFG-SPP 1324, July 2010.

[58] S. Jokar. Sparse Recovery and Kronecker Products. Preprint 58, DFG-SPP 1324,
August 2010.

[59] T. Aboiyar, E. H. Georgoulis, and A. Iske. Adaptive ADER Methods Using Kernel-
Based Polyharmonic Spline WENO Reconstruction. Preprint 59, DFG-SPP 1324,
August 2010.

[60] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the Convergence of
Generalized Polynomial Chaos Expansions. Preprint 60, DFG-SPP 1324, August
2010.

[61] S. Holtz, T. Rohwedder, and R. Schneider. On Manifolds of Tensors of Fixed
TT-Rank. Preprint 61, DFG-SPP 1324, September 2010.

[62] J. Ballani, L. Grasedyck, and M. Kluge. Black Box Approximation of Tensors in
Hierarchical Tucker Format. Preprint 62, DFG-SPP 1324, October 2010.

[63] M. Hansen. On Tensor Products of Quasi-Banach Spaces. Preprint 63, DFG-SPP
1324, October 2010.


