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ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL
CHAOS EXPANSIONS∗

OLIVER G. ERNST‡, ANTJE MUGLER†, HANS-JÖRG STARKLOFF†

AND ELISABETH ULLMANN‡

Abstract. A number of approaches for discretizing partial differential equations with random
data are based on generalized polynomial chaos expansions of random variables. These constitute
generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in
polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions
on such measures which imply mean-square convergence of generalized polynomial chaos expansions
to the correct limit and complement these with illustrative examples.

Key words. equations with random data, polynomial chaos, generalized polynomial chaos,
Wiener-Hermite expansion, Wiener integral, determinate measure, moment problem.

1. Introduction. A fundamental task in computational stochastics is the ac-
curate representation of random quantities such as random variables, stochastic pro-
cesses and random fields using a manageable number of degrees of freedom. A pop-
ular approach, known by the names polynomial chaos expansion, Wiener-Hermite
expansion or Fourier-Hermite expansion, represents a random variable by a series
of Hermite polynomials in a countable sequence of independent standard Gaussian
random variables—so-called basic random variables—, and employs truncations of
such expansions as approximations. While the origins of this approach date back
to the 1930s, renewed interest in Wiener-Hermite expansions has resulted from re-
cent developments in computational techniques for solving stochastic partial differen-
tial equations (SPDEs), specifically partial differential equations with random data
[13, 25, 1, 2, 40, 36]. The solutions of such equations are stochastic processes indexed
by time and/or spatial coordinates, and in the latter case are referred to as random
fields.

A fundamental result of Cameron and Martin [6] states that polynomials in a
countable sequence of independent standard Gaussian random variables lie dense in
the set of random variables with finite variance which are measurable with respect to
these Gaussian random variables. However, the number of random variables and the
polynomial degree required for a sufficient approximation depend on the functional
dependence of this random variable on the Gaussian random variables. In a series of
papers [42, 41, 44, 43, 46, 20], Xiu and Karniadakis discovered that in many cases
better approximations of random variables can be achieved using polynomial expan-
sions in non-Gaussian random variables, which they termed generalized polynomial
chaos expansions. To retain the convenience of working with orthogonal polynomials
in generalized polynomial chaos expansions, the Hermite polynomials are replaced by
the sequence of polynomials orthogonal with respect to the probability measure asso-
ciated with the basic random variables. The open question we address in this work is
under what conditions the convergence of polynomial chaos expansions carries over to
generalized polynomial chaos expansions. We show, based on classical results on the
Hamburger moment problem, that an arbitrary random variable with finite variance
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†Fachgruppe Mathematik, University of Applied Sciences Zwickau, 08012 Zwickau, Germany.
‡Institut für Numerische Mathematik und Optimierung, TU Bergakademie Freiberg, 09596
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can only be expanded in generalized polynomial chaos if the the underlying probability
measure is uniquely determined by its moments.

The plan of the remainder of this paper is as follows: Section 2 recalls basic nota-
tion, definitions and convergence results of standardWiener-Hermite polynomial chaos
expansions, including the celebrated Cameron-Martin Theorem. Section 3 then treats
generalized polynomial chaos expansions, with separate discussions of expansions in
one, a finite number and a countably infinite number of basic random variables. A
number of illustrative examples follow in Section 4.

2. Wiener-Hermite polynomial chaos expansions. In this section we recall
the convergence theory of standard Wiener-Hermite polynomial chaos expansions. We
begin with some remarks on the origins of the basic concepts, which date back to the
beginnings of modern probability theory.

2.1. Origins. The term polynomial chaos was originally introduced by Norbert
Wiener in his 1938 paper [39], in which he applies his generalized harmonic analysis
(cf. [38, 26]) and what are now known as multiple Wiener integrals to a mathematical
formulation of statistical mechanics. In that work, Wiener began with the concept of
a continuous homogeneous chaos, which in modern terminology∗ corresponds roughly
to a homogeneous random field defined on Rd which, when integrated over Borel sets,
yields a stationary random measure. Essentially a mathematical description of mul-
tidimensional Brownian motion, Wiener’s homogeneous chaos was a generalization
to what Wiener called “pure one-dimensional chaos”, the random measure given by,
in modern terminology, the increments of the Wiener process. The term polynomial
chaos was introduced in [39] as the set of all multiple integrals taken with respect to
the Wiener process, and it was shown that these form a dense subset in the homoge-
neous chaos. Subsequently, Cameron and Martin [6] showed that any quadratically
integrable functional (with respect to Wiener measure) on the set of continuous func-
tions on the interval [0, 1] vanishing at zero could be expanded in an L2-convergent
series of Hermite polynomials in a countable sequence of Gaussian random variables.
The connection between multiple Wiener integrals and Fourier-Hermite expansion
is also given in [16]. A modern exposition of Hermite expansions of functionals of
Brownian motion can be found e.g. in [15], [19] and [17]. The gestation of Wiener’s
work on polynomial chaos is described in [23] and additional articles in the same
Wiener memorial issue of the Bulletin of the AMS, and more comprehensively in the
biography [24].

In stochastic analysis there are three basic representations for square integrable
functionals of Brownian motion:

• polynomial chaos expansions,
• mean-square convergent expansions with multiple Wiener integrals, and
• stochastic Itô integrals.

There exist deep connections between these representations and they can be converted
to one other. Polynomial chaos is less frequently used in this area, as Itô integrals are
often more convenient, e.g., in the study of differential equations driven by the Wiener
process. Also, the term polynomial chaos is sometimes replaced by Wiener-Hermite
expansion to avoid confusion with the more familiar concept of chaos as it arises in
the context of dynamical systems.

∗One should note that a number of basic probabilistic concepts in Wiener’s work, cf. also [37],
were developed prior to the solid foundation of probability theory provided by Kolmogorov [21].
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However, polynomial chaos has received renewed attention since the work of
Ghanem and Spanos [13] on stochastic finite element methods, in which random vari-
ables as well as random fields representing inputs and solutions of partial differential
equations with random data are represented as Fourier-Hermite series in Gaussian
random variables.

2.2. Setting and Notation. Given a probability space (Ω,A, P ), where Ω is
the abstract set of elementary events, A a σ-algebra of subsets of Ω and P a proba-
bility measure on A, we assume this space to be sufficiently rich† that it admits the
definition of nontrivial normally distributed random variables ξ : Ω → R, and we de-
note such random variables with mean zero and variance σ2 > 0 by ξ ∼ N(0,σ2). The
mean or expectation of a (not necessarily normally distributed) random variable ξ will
be denoted by �ξ�. The Hilbert space of (equivalence classes of) real-valued random
variables defined on (Ω,A, P ) with finite second moments is denoted by L2(Ω,A, P ),
with inner product (·, ·)L2 and norm � · �L2 . We refer to convergence with respect to
� · �L2 as mean-square convergence. We shall refer to a linear subspace of L2(Ω,A, P )
consisting of centered (i.e., with mean zero) Gaussian random variables as a Gaussian
linear space and, when this space is complete, as a Gaussian Hilbert space. We em-
phasize that a Gaussian Hilbert space cannot contain all Gaussian random variables
on the underlying probability space (see e.g. [33] for a counterexample).

2.3. The Cameron-Martin Theorem. Since Gaussian random variables pos-
sess moments of all orders and mixed moments of independent Gaussian random vari-
ables are simply the products of the corresponding individual moments, it is easily
seen that, for any Gaussian linear space H and n ∈ N0, the set

Pn(H ) := {p(ξ1, . . . , ξM ) : p is an M -variate polynomial of degree ≤ n,

ξj ∈ H , j = 1, . . . ,M,M ∈ N}

is a linear subspace of L2(Ω,A, P ), as is its closure Pn(H ). Note that Pn(H ) con-
sists of polynomials in an arbitrary number of random variables, which can be chosen
arbitrarily from H . The space P0(H ) = P0(H ) consists of almost surely (a.s.)
constant, i.e., degenerate, random variables. Furthermore, all elements of P1(H )
and P1(H ) are normally distributed, whereas for n > 1 the spaces Pn(H ) and
Pn(H ) also contain random variables with non-Gaussian distributions. Moreover,
one can show that the spaces Pn(H ) as well as Pn(H ) are distinct for different
values of n, so that in particular {Pn(H )}n∈N0 forms a strictly increasing sequence
of subspaces of L2(Ω,A, P ). Taking orthogonal complements, we define the spaces

Hn := Pn(H ) ∩ Pn−1(H )⊥, n ∈ N,
so that, setting also H0 := P0(H ) = P0(H ), we have the orthogonal decomposition

Pn(H ) =
n�

k=0

Hk,

where we have used ⊕ to denote the orthogonal sum of linear spaces. We also consider
the full space

∞�

n=0

Hn :=
∞�

n=0

Pn(H ).

†Otherwise there exist only trivial random variables taking the value zero with probability one,
allowing only the modeling of deterministic phenomena.
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Finally, we denote by σ(S) the σ-algebra generated by a set S of random variables.
Note that for a Gaussian linear space H defined on (Ω,A, P ) we always have σ(H ) ⊂
A.

The simplest nontrivial case of a one-dimensional Gaussian Hilbert space is that
spanned by one random variable ξ ∼ N(0, 1). In this case each linear space Hn is
also one-dimensional and is spanned by the Hermite polynomial of exact degree n in
ξ.

With this notation we can state the basic density theorem for polynomials of
Gaussian random variables due originally to Cameron and Martin in 1947 [6]. We state
the result in a somewhat more general‡ form than the original, essentially following
[17], where also a proof is given.

Theorem 2.1 (Cameron-Martin Theorem). In terms of the notation introduced
above, the spaces {Hn}n∈N0 form a sequence of closed, pairwise orthogonal linear
subspaces of L2(Ω,A, P ) such that

∞�

n=0

Hn = L2(Ω,σ(H ), P ).

In particular, if σ(H ) = A, then L2(Ω,A, P ) admits the orthogonal decomposition

L2(Ω,A, P ) =
∞�

n=0

Hn .

Before proceeding to chaos expansions, we wish to point out a number of subtleties
associated with the Cameron-Martin Theorem. First, the elements of the spaces L2,
and hence also those of H , are equivalence classes of random variables. Therefore
the notation σ(H ) implies that all such equivalent functions must be measurable,
i.e., this σ-algebra is generated by one representative from each equivalence class and
the events with probability zero. This remark applies also to similar situations below.
In particular, all statements and equalities are understood to hold almost surely, i.e.,
except for possibly sets of measure zero.

Second, we emphasize that the condition A = σ(H ) is necessary. This follows
from basic measurability properties, a relevant result is the Doob-Dynkin lemma (see
e.g. [18, Lemma 1.13]). A simple example where this condition is violated and the
conclusion of the theorem is false can be given as follows: Consider a probability
space on which two independent, non-degenerate, centered random variables ξ and η
are defined, where ξ ∼ N(0, 1) and η has an arbitrary distribution with finite second
moment. If H = {cξ : c ∈ R} denotes the one-dimensional Gaussian Hilbert space
generated by ξ, then all projections of η on the spaces Hn are almost surely con-
stant with value zero, and the approximation error equals the variance of the random
variable η. Another simple example where the probability space is too coarse can be
given as follows. Take as probability space Ω = R with σ-algebra A = σ ({0}, {1}),
P ({0}) = p, P ({1}) = 1 − p, 0 < p < 1. Then the only possible nonempty Gaussian
Hilbert space for this probability space is trivial, i.e., it consists only of the equivalence
class of random variables which are a.s. constant with value zero. For any random

‡Cameron and Martin considered the specific probability space Ω = {x ∈ C[0, 1], x(0) = 0},
together with its Borel σ-algebra and P the Wiener measure. The associated Gaussian Hilbert space
H is then generated by Gaussian random variables corresponding to the evaluation of a function x
at some t ∈ [0, 1].
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variable ξ0 of this equivalence class it holds that ξ0(0) = ξ0(1) = 0, ξ0(ω) = x0 ∈ R
for ω �∈ {0, 1}. The corresponding generated σ-algebra σ(H ) = σ (ξ0) consists only
of events with probability 0 or 1, hence it holds σ(H ) = {∅, {0, 1},R \ {0, 1},R} and
only degenerate random variables can be approximated by polynomials in “Gaus-
sian” random variables. Nevertheless on the probability space (Ω,A, P ) there exist
non-degenerate random variables with finite second order moments, e.g. the random
variable ξ with ξ(0) = 0, ξ(1) = 1 and ξ(ω) = 2 otherwise, which follows a Bernoulli
distribution with parameter p. Completion of this probability space does not change
the situation.

2.4. Chaos Expansions. For a Gaussian linear space H , we denote by Pk :
L2(Ω,A, P ) → Hk the orthogonal projection onto Hk. The Wiener-Hermite polyno-
mial chaos expansion of a random variable η ∈ L2(Ω,σ(H ), P )

η =
∞�

k=0

Pkη (2.1)

thus converges in the mean-square sense and may be approximated by the partial
sums

η ≈ ηn :=
n�

k=0

Pkη.

We note that the expansion (2.1) is mean-square convergent also when A � σ(H ),
in which case the limit is the orthogonal projection of η onto the closed subspace
L2(Ω,σ(H ), P ).

In applications of Wiener-Hermite polynomial chaos expansions the underlying
Gaussian Hilbert space is often taken to be the space spanned by a given fixed sequence
{ξj}j∈N of independent Gaussian random variables ξj ∼ N(0, 1), which we shall refer
to as the basic random variables. For computational purposes the countable sequence
{ξj}j∈N ist restricted to a finite number M ∈ N of random variables. Denoting
by PM

n = PM
n (ξ1, . . . , ξM ) the space of M -variate polynomials of (total) degree n

in the random variables ξ1, . . . , ξM , there holds that, for any random variable η ∈
L2(Ω,σ({ξj}j∈N), P ), the approximations

ηMn := PM
n η

n,M→∞−−−−−−→ η

where PM
n denotes the orthogonal projection onto PM

n , converge in the mean-square
sense. This follows, e.g., from the proof of Theorem 1 in [17].

It should be emphasized that the Wiener-Hermite polynomial chaos expansion
converges for quite general random variables, provided their second moment is finite.
In particular, their distributions can be discrete, singularly continuous, absolutely
continuous as well as of mixed type. Moreover, it can be shown that for a nontrivial
Gaussian linear space H and a distribution function with finite second moments
there exist random variables in L2(Ω,σ(H ), P ) possessing this distribution function
(cf. e.g. [33]). In particular, Wiener-Hermite polynomial chaos expansions are possible
also for random variables which are not absolutely continuous. By contrast, note that
all partial sums of a Wiener-Hermite expansion are either absolutely continuous or
a.s. constant.

The following theorem collects further known and practically useful results on
Wiener-Hermite polynomial chaos expansions. The statements are formulated for the
approximations ηn, but they also hold for the approximations ηMn .
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Theorem 2.2. Under the assumptions of the Cameron-Martin Theorem (The-
orem 2.1), the following statements hold for the Wiener-Hermite polynomial chaos
approximations

ηn =
n�

k=0

Pkη, n ∈ N0

of a random variable η ∈ L2(Ω,σ(H ), P ) with respect to a Gaussian Hilbert space
H :
(i) ηn

n→∞−−−−→ η in Lp(Ω,σ(H ), P ) for all 0 < p ≤ 2.
(ii) Relative moments converge, when they exist, i.e., for 0 < p ≤ 2 there holds

lim
n→∞

�|ηn − η|p|�
�ηp� = lim

n→∞

�|ηn − η|p|�
�|η|p� = 0

if �ηp� �= 0 and �|η|p� �= 0, respectively.
(iii) ηn → η in probability.
(iv) There is a subsequence {nk}k∈N with limk→∞ nk = ∞ such that ηnk → η almost

surely.
(v) ηn → η in distribution. This implies that the associated distribution functions

converge, i.e., that

P (ηn ≤ x) =: Fηn(x)
n→∞−−−−→ Fη(x) := P (η ≤ x)

at all points x ∈ R where Fη is continuous. If the distribution function Fη is
continuous on R then the distribution functions converge uniformly.

(vi) The previous property implies that the quantiles of the random variables ηn con-
verge for n → ∞ to the corresponding quantiles of η. (These can be set-valued.)

We remark that it may also be of interest to approximate statistical quantities
other than distribution functions and moments, such as probability densities (see e.g.
[9, 10]). In addition, other types of convergence may be relevant.

3. Generalized polynomial chaos expansions. Many stochastic problems
involve non-Gaussian random variables. When these are approximated with Wiener-
Hermite polynomial chaos expansions it is often observed that these expansions con-
verge very slowly. The reason for this is that, when expressed as functions of a
collection of Gaussian basic random variables, these functions are often highly non-
linear and can only be well approximated by truncated Wiener-Hermite expansions
of very high order. A possible remedy is to base the expansion on non-Gaussian basic
random variables whose distribution is closer to the random variables under expan-
sion, thus permitting good approximations of lower order. As a consequence, such
expansions involve polynomials orthogonal with respect to non-Gaussian measures re-
placing the Hermite polynomials. In principle a sequence of orthonormal polynomials
exists for any probability distribution on R with finite moments of all orders. In a
series of papers [42, 41, 45, 44, 43] Karniadakis and Xiu proposed using polynomials
from the Askey scheme of hypergeometric orthogonal polynomials and introduced the
term generalized polynomial chaos expansions. In the following we restrict ourselves
to continuous distributions, which suffices for most applications and avoids certain
technical difficulties.

We thus consider chaos expansions with respect to a countable sequence {ξm}m∈N
of (not necessarily identically distributed) basic random variables which satisfy the
following assumptions:
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Assumption 1.
(i) Each basic random variable ξm possesses finite moments of all orders, i.e.,�

|ξm|k
�
< ∞ for all k,m ∈ N.

(ii) The distribution functions Fξm(x) := P (ξm ≤ x) of the basic random variables
are continuous.

The linear subspaces of L2(Ω,A, P ) spanned by polynomials of arbitrary order in
such families of basic random variables are always infinite dimensional. Furthermore,
each random variable which can be represented by a (multivariate) polynomial in the
basic random variables possesses both properties in Assumption 1 or reduces to a
constant.

3.1. One basic random variable. As a first step we consider expansions in a
single basic random variable ξ with distribution function Fξ which satisfies Assump-
tion 1. For any random variable η ∈ L2(Ω,σ(ξ), P ) which is measurable with respect
to ξ there exists by the Doob-Dynkin Lemma (see e.g. [18, Lemma 1.13]) a measurable
function f : R → R such that η = f(ξ).

The distribution of the random variable ξ defines a measure on the real line
resulting in the probability space (R,B(R), Fξ(dx)) on the range of ξ, where B(R)
denotes the Borel σ-algebra on R. Since all moments of this measure are finite by
assumption this defines a sequence of orthonormal polynomials {pn}n∈N0 associated
with this measure, which can be made unique e.g. by requiring that the leading
coefficient be positive. These polynomials may be generated by orthonormalizing the
monomials via the Gram-Schmidt procedure or directly by the usually more stable
Stieltjes procedure.

The sequence of random variables {pn(ξ)}n∈N0 then constitutes an orthonormal
system in the Hilbert space L2(Ω,σ(ξ), P ), as does the sequence {pn}n∈N0 in the
Hilbert space L2(R,B(R), Fξ(dx)), and the question of approximability by generalized
polynomial chaos expansions in a single random variable ξ is equivalent with the
completeness of these two sequences, i.e., whether they lie dense in their respective
Hilbert spaces.

The completeness of these systems is characterized by a classical theorem due to
M. Riesz [29], which reduces the question of density of polynomials in an L2-space to
the unique solvability of a moment problem.

Definition 3.1. One says that the moment problem is uniquely solvable for a
probability distribution on (R,B(R)) or that the distribution is determinate (in the
Hamburger sense), if the distribution function is uniquely defined by the sequence of
its moments

µk :=
�
ξk
�
=

�

R
xkFξ(dx), k ∈ N0.

In other words, if the moment problem is uniquely solvable then no other proba-
bility distribution can have the same sequence of moments. Riesz showed in [29] that
the polynomials are dense in L2

α(R) for a positive Radon measure α if and only if
the measure dα(x)/(1 + x2) is determinate. For random variables ξ with continuous
distribution function Fξ (cf. Assumption 1) it can be shown that the polynomials
are dense in L2(Ω,σ(ξ), P ), and thus also in L2(R,B(R), Fξ(dx)), if and only if Fξ

is determinate. A proof of this equivalence can be found, e.g., in the monograph of
Freud [11, Theorem 4.3, Section II.4]. Additional results and background material on
the moment problem and polynomial density can be found in [3] and [4] as well as
the references included therein. We summarize these facts in the following theorem.
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Theorem 3.2. The sequence of orthogonal polynomials associated with a real
random variable ξ satisfying Assumption 1 is dense in L2(R,B(R), Fξ(dx)) if and
only if the moment problem is uniquely solvable for its distribution.

Thus, if this condition is satisfied the sequence of random variables {pn(ξ)}n∈N0

constitutes an orthonormal basis of the Hilbert space L2(Ω,σ(ξ), P ) and each element
(i.e., each random variable or, more precisely, each equivalence class of random vari-
ables) of this space can be expanded with respect to this basis. The basis expansions
are abstract Fourier series and can be written as

η = f(ξ) = lim
n→∞

n�

k=0

akpk(ξ) =
∞�

k=0

akpk(ξ) (3.1)

where the limit is in quadratic mean and the coefficients can be calculated as

ak = �ηpk(ξ)� = �f(ξ)pn(ξ)� =
�

R
f(x)pn(x)Fξ(dx), k ∈ N0. (3.2)

The additional properties of Wiener-Hermite expansions listed in Theorem 2.2 remain
valid also in this situation.

The following theorem collects several known sufficient conditions ensuring the
unique solvability of the moment problem in the Hamburger sense, i.e., probability
distributions with support on the entire space (R,B(R)) are allowed. (see e.g. [11,
Section II.5.], [14], [22], [34]). Basic properties of the moment generating function can
be found e.g. in [8].

Theorem 3.3. If one of the following conditions for the distribution Fξ of a ran-
dom variable ξ satisfying Assumption 1 is valid, then the moment problem is uniquely
solvable and therefore the set of polynomials in the random variable ξ is dense in the
space L2(Ω,σ(ξ), P ).
(a) The distribution Fξ has compact support, i.e., there exists a compact interval

[a, b], a, b ∈ R, such that P (ξ ∈ [a, b]) = 1.
(b) The moment sequence {µn}n∈N0 of the distribution satisfies

lim inf
n→∞

2n
√
µ2n

2n
< ∞.

(c) The random variable is exponentially integrable, i.e., there holds

�exp(a|ξ|)� =
�

R
exp(a|x|)Fξ(dx) < ∞

for a strictly positive number a. An equivalent condition is the existence of a finite
moment-generating function in a neighbourhood of the origin.

(d) (Carleman’s condition) The moment sequence {µn}n∈N0 of the distribution satis-
fies

∞�

n=0

1
2n
√
µ2n

= ∞.

(e) (Lin’s condition) If the distribution has a symmetric, differentiable and strictly
positive density fξ and for a real number x0 > 0 there holds

� ∞

−∞

− log fξ(x)

1 + x2
dx = ∞ and

−xf �
ξ(x)

fξ(x)
� ∞ (x → ∞, x ≥ x0).
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If in Lin’s condition the integral for a probability distribution with strictly positive
density is finite, then the distribution is indeterminate (Krein’s condition).

Examples of probability distributions, for which the moment problem is uniquely
solvable are the uniform, beta, gamma and the normal distributions.

By contrast, the moment problem is not uniquely solvable for the lognormal
distribution, so that the sequence of random variables {pn(ξ)}n∈N0 for a lognormal
random variable ξ does not constitute a basis of the Hilbert space L2(Ω,σ(ξ), P ), and
there will be some elements (random variables) in this space which are not the limit
of their generalized polynomial chaos expansion.

Further examples of random variables with indeterminate distribution are certain
powers of random variables with normal or gamma distribution (see e.g. [31, 34]).
Note that the expansion (3.1) still converges in quadratic mean, but its limit may
be a second-order random variable different from η. In this case the convergence of
the generalized polynomial chaos expansions to the desired limit must be shown in
another way.

3.2. Finitely many basic random variables. We now turn to the case in
which the stochasticity of the underlying problem is characterized by a finite num-
ber of independent random variables ξ1, ξ2, . . . , ξM , which we collect in the random
vector ξ = ξ(ω) ∈ RM . This situation is often referred to as finite-dimensional noise
in the stochastic finite element literature, and typically arises when a random field is

approximated by a truncated Karhunen-Loève expansion. Denoting by {p(m)
j }j∈N0 ,

m = 1, . . . ,M , the sequence of polynomials orthonormal with respect to the distribu-
tion of ξm, we note that the set of multivariate (tensor product) polynomials given
by

pα(ξ) =
M�

m=1

p(m)
αm

(ξm), α = (α1, . . . ,αM ) ∈ NM
0 , (3.3)

constitutes an orthonormal system of random variables in the space L2(Ω,σ(ξ), P ).
By consequence, the polynomials

pα : x �→ pα(x ), α ∈ NM
0 ,

form an orthonormal system in the image space L2(RM ,B(RM )) endowed with the
product probability measure Fξ1(dx1) × · · · × FξM (dxM ). As is well known, tensor
products of systems of orthonormal bases of separable Hilbert spaces form an or-
thonormal basis of the tensor product Hilbert space (see e.g. [28], Section II.4, or
[27]), which implies the following result:

Theorem 3.4. Let ξ = (ξ1, . . . , ξM ) be a vector of M ∈ N independent ran-

dom variables satisfying Assumption 1 and {p(m)
j }j∈N0 , m = 1, . . . ,M , the associated

orthonormal polynomial sequences. Then the orthonormal system of random variables

pα(ξ) =
M�

m=1

p(m)
αm

(ξm), α ∈ NM
0 ,

is an orthonormal basis of the space L2(Ω,σ(ξ), P ) if and only if the moment problem
is uniquely solvable for each random variable ξm, m = 1, . . . ,M . In this case any
random variable η ∈ L2(Ω,σ(ξ), P ) can be expanded in an abstract Fourier series
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of multivariate orthonormal polynomials in the basic random variables, the so called
generalized polynomial chaos expansion,

η =
�

α∈NM
0

aαpα(ξ) with coefficients aα = �η pα(ξ)� .

In other words, the set of multivariate tensor product polynomials (3.3) in a finite
number of independent random variables ξ1, . . . , ξM is dense in L2(Ω,σ(ξ), P ), as are
the M -variate polynomials in the space L2(RM ,B(RM ), Fξ1(dx1)× · · ·×FξM (dxM )),

if and only if each sequence {p(m)
j (ξ)}j∈N0 is dense in L2(Ω,σ(ξm), P ) for m =

1, 2, . . . ,M .
If the basic random variables are not independent, then the construction of a

sequence of orthonormal polynomials is still always possible. In this case, however,
the tensor product structure of the polynomial space is lost and additional difficulties
arise. In particular, the sequence of orthonormal polynomials is no longer uniquely de-
fined, but depends on the ordering of the monomials. Furthermore, the link between
the determinacy of the distribution and the density of polynomials in the associ-
ated L2 spaces becomes more intricate, and conditions on the determinacy of such
distributions are more complicated (see more about these and related issues e.g. in
[3, 27, 30, 47]). We therefore restrict ourselves here only to simple sufficient conditions
for the density of multivariate polynomials in the corresponding L2 spaces. These will
generally suffice in practical applications.

Theorem 3.5. If the distribution function Fξ of a random vector ξ = (ξ1, . . . , ξM )
with continuous distribution and finite moments of all orders satisfies one of the
following conditions, then the multivariate polynomials in ξ1, . . . , ξM are dense in
L2(Ω,σ(ξ), P ). In this case any random variable η ∈ L2(Ω,σ(ξ), P ) is the limit of its
generalized polynomial chaos expansion which converges in quadratic mean.
(a) The distribution function Fξ has compact support, i.e., there exists a compact set

K ⊂ RM such that P (ξ ∈ K) = 1.
(b) The random vector is exponentially integrable, i.e., there exists a > 0 such that

�exp(a�ξ�)� =
�

RM

exp(a�x�)Fξ(dx ) < ∞,

where � · � denotes any norm on RM .
Proof. By a result of Petersen (see [27, Theorem 3]) the distribution of the random

vector ξ = (ξ1, . . . , ξM ) is determinate if the distribution of each random variable
ξm,m = 1, . . . ,M , is determinate. Moreover, the set of multivariate polynomials is
dense in Lq(RM ,B(RM ), Fξ(dx)) for any 1 ≤ q < p if the polynomials are dense in
Lp(R,B(R), Fξm(dxm)) for each m = 1, . . . ,M (the proposition following Theorem 3
in [27]). But if the exponential integrability condition is satisfied, then it is satisfied
for each random variable ξm,m = 1, . . . ,M . Now by Theorem 6 in [4], the polynomials
are dense in the space Lp(R,B(R), Fξm(dxm)) for each p ≥ 1.

3.3. Infinitely many basic random variables. We now consider the situation
where the stochasticity of the underlying problem is characterized by a countable se-
quence {ξm}m∈N of random variables of which each satisfies Assumption 1, all defined
on a fixed, sufficiently rich probability space (Ω,A, P ).

As in the case of Gaussian polynomial chaos, we define the following subspaces
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of L2(Ω,A, P ) for M ∈ N and n ∈ N0:

P
M
n := {p(ξ1, . . . , ξM ) : p a polynomial of degree ≤ n},

�PM :=
∞�

n=0

PM
n ,

Pn :=
∞�

M=1

P
M
n ,

�P :=
∞�

n=0

Pn .

Furthermore we denote the relevant σ-algebras

AM := σ({ξm}Mm=1), M ∈ N, and A∞ := σ({ξm}m∈N).

We then have the inclusions

P
M
n ⊂ �PM ⊂ L2(Ω,AM , P ), n ∈ N0, M ∈ N,

Pn ⊂ Pn ⊂ �P ⊂ L2(Ω,A∞, P ), n ∈ N0.

For M ∈ N the set �PM is the closed linear subspace of L2(Ω,AM , P ) containing all

L2-limits of polynomials in the basic random variables (ξ1, . . . , ξM ), and the set �P
is the closed linear subspace of L2(Ω,A∞, P ) containing all L2-limits of polynomials
in all basic random variables {ξm}m∈N. Theorem 3.6 below asserts that a sufficient
condition for the polynomials in all basic random variables {ξm}m∈N to be dense
in L2(Ω,A∞, P ) is that the polynomials in each finite subset {ξm}Mm=1 of the basic
random variables be dense in L2(Ω,AM , P ).

Theorem 3.6. If

�PM = L2(Ω,AM , P ) for all M ∈ N, (3.4)

then �P = L2(Ω,A∞, P ).
Proof. We show that under the assumption (3.4) any random variable η in the

orthogonal complement of �P in L2(Ω,A∞, P ) must vanish. Otherwise any such ran-
dom variable η can be normalized such that

�
η2
�
= 1. The union ∪∞

M=1L
2(Ω,AM , P )

of the nested sequence of L2-spaces lies dense in L2(Ω,A∞, P ) (see e.g. [5, p. 109,
Corollary 3.6.8]). Therefore, given � > 0, there exists η0 ∈ L2(Ω,AM0 , P ) with M0

sufficiently large such that

�η − η0�L2 < �. (3.5)

By the reverse triangle inequality this implies

�η0�L2 ≥ �η�L2 − �η − η0�L2 ≥ 1− �.

On the other hand, since η0 ∈ L2(Ω,AM0 , P ) = �PM0 ⊂ �P ⊥ η, we also have

�η − η0�2L2 = �η�2L2 + �η0�2L2 ≥ 1 + (1− �)2,

which contradicts (3.5) for sufficiently small �.
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Corollary 3.7. Let {ξm}m∈N be a sequence of basic random variables satisfying
Assumption 1 and η ∈ L2(Ω,A∞, P ). If for each M ∈ N the polynomials in {ξm}Mm=1

are dense in L2(Ω,AM , P ), then the generalized polynomial chaos expansion of η
converges to η in quadratic mean.

Polynomial chaos expansions and generalized polynomial chaos expansions gener-
ally work with basic random variables which are, in addition, independent. In this case
the sufficient condition given in Theorem 3.6 is also necessary. Moreover, the density
result is then equivalent to the density of each univariate family of polynomials.

Corollary 3.8. Let {ξm}m∈N be a sequence of independent basic random vari-
ables satisfying Assumption 1 and η ∈ L2(Ω,A∞, P ). Then the generalized polynomial
chaos expansion of η converges in quadratic mean to the random variable η if and only
if the moment problem for the distribution of each random variable ξm is uniquely
solvable (or, equivalently, the polynomials in the random variable ξm are dense in
L2(Ω,σ(ξm), P ) for each m ∈ N).

Proof. If for each m ∈ N the moment problem for the distribution of the random
variable ξm is uniquely solvable and, equivalently the set of polynomials in the random
variable ξm is dense in L2(Ω,σ(ξm), P ), then this holds by Theorem 3.4 for any finite
subfamily and hence, from Theorem 3.6 the conclusion follows.

In order to prove the converse statement we assume that for an index m0 ∈ N
the polynomials in the random variable ξm0 are not dense in L2(Ω,σ(ξm0), P ). Then
there exists a second-order random variable η0 ∈ L2(Ω,σ(ξm0), P ) with norm 1, which
cannot be approximated by polynomials in ξm0 . Due to the independence of the basic
random variables, we have that polynomials in the remaining basic random variables,
and therefore also their closure, are orthogonal to L2(Ω,σ(ξm0), P ). Consequently,
such polynomials have a distance to η0 of at least one. We therefore conclude that
η0 ∈ L2(Ω,A∞, P ) \ �P.

Remark 3.9. If the basic random variables {ξm}m∈N are not independent, it

may happen that for a finite number M0 ∈ N, we have �PM0 � L2(Ω,AM0 , P ) but
�P = L2(Ω,A∞, P ).

As an example, take an infinite sequence of independent and normalized basic
variables {ξm}m∈N satisfying Assumption 1, such that the distribution of ξ1 is indeter-
minate while those of the remaining random variables are determinate. Furthermore
choose a sequence {ζm}m∈N of random variables such that the set {ξ1, ζj ; j ∈ N} is an
orthonormal basis of the Hilbert space L2(Ω,σ(ξ1), P ). This is possible because this
space is separable. Then arrange a countable number of random variables, e.g. by the
rule �ξ2k−1 := ξk, �ξ2k := ζk, k ∈ N and consider this sequence {�ξi}i∈N as a sequence of

basic random variables. Then we have �P1 �= L2(Ω,A1, P ) but

�P = L2(Ω,A∞, P ) =
∞�

m=1

L2(Ω,σ(ξm), P ).

4. Examples. In this section we present several illustrative examples for the
preceding results.

4.1. Periodic functions of a lognormal random variable. As noted in Sec-
tion 3.1, the lognormal distribution is not determinate, i.e., its moment problem fails
to possess a unique solution. By consequence, polynomials in a lognormal random
variable η are not dense in L2(Ω,σ(η), P ). We give an example of a nontrivial class
of functions in the orthogonal complement of the span of these polynomials.
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Denote by ξ ∼ N(0, 1) a standard Gaussian random variable and recall that the
density function of the lognormal random variable η := eξ is given by

fη(x) =

�
1

x
√
2π

e−
log2 x

2 , x > 0,

0, otherwise.
(4.1)

Proposition 4.1. Let η be a lognormal random variable with density (4.1).
Then for any function g : R → R which is measurable, odd and 1-periodic, i.e.,
g(y + 1) = g(y) and for which

�
g(log(η))2

�
< ∞, there holds

�
ηkg(log η)

�
=

� ∞

0
xkfη(x)g(log x) dx = 0 ∀k ∈ N0. (4.2)

Proof. The change of variables y = log x yields, for all k ∈ N0,
� ∞

0
xk 1

x
√
2π

e−
log2 x

2 g(log x) dx =
1√
2π

� ∞

−∞
ekye−

y2

2 g(y) dy

=
e

k2

2

√
2π

� ∞

−∞
e−

(y−k)2

2 g(y) dy =
e

k2

2

√
2π

� ∞

−∞
e−

z2

2 g(z + k) dz

=
e

k2

2

√
2π

� ∞

−∞
e−

z2

2 g(z) dz = 0,

where we have substituted z = y − k in the third identity and subsequently used the
periodicity and the oddness of g.

Note that the set of all random variables of the form g(log η) with g as in Propo-
sition 4.1 constitutes a (nontrivial) linear subspace of L2(Ω,σ(η), P ), and that (4.2)
extends to the closure of this subspace. An immediate consequence of (4.2) is that the
generalized polynomial chaos coefficients of the random variable g(log η) with respect
to the lognormal random variable η must also all vanish. The limit of this expansion
is therefore zero, which does not coincide with the random variable under expansion.

Specifically, the nonzero function g(x) = sin(2πx), a popular example for non-
determinacy cf. [31, 34], satisfies the requirements of Proposition 4.1. The generalized
polynomial chaos expansion of g(log η) with respect to the lognormal random variable
η therefore fails to converge in quadratic mean to the random variable g(log η). By
contrast, the (classical) polynomial chaos expansion of g(log η) with respect to the
Gaussian random variable ξ = log η is mean-square convergent to g(log(η)) = g(ξ).
This expansion is given by

sin(2π log η) =
∞�

k=0

akhk(log η), where ak =

�
(−1)(k−1)/2(2π)k√

k!
e−2π2

, k odd,

0, k even,

and {hk}k∈N0 denote the normalized (“probabilist’s”) Hermite polynomials

hk(x) =
(−1)k√

k!
e

x2

2
dk

dxk
e−

x2

2 ,

which are orthonormal with respect to the standard Gaussian density function

fξ(x) =
1√
2π

e−
x2

2 .
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4.2. The reciprocal of a lognormal random variable. Before proceeding
with the next example we give an explicit representation of the orthonormal polyno-
mials associated with the lognormal density (4.1). These can be constructed in terms
of Stieltjes-Wigert polynomials (cf. [35, Section 2.7]), which are orthogonal with re-
spect to the family of weight functions

wν(x) =
ν√
π
e−ν2 log2 x, x > 0, ν > 0.

For the details of this construction we refer to the appendix. The coefficients αk and
βk of the associated three-term recurrence

p−1(x) ≡ 0, p0(x) ≡ 1, (4.3a)
�
βk+1 pk+1(x) = (x− αk)pk(x)−

�
βk pk−1(x), k ≥ 0 (4.3b)

are found to be (cf. [32])

αk =
�
ek(e+ 1)− 1

�
e(2k−1)/2, βk = (ek − 1)e3k−2.

We shall use these to derive the generalized polynomial chaos expansion of the random
variable

ζ :=
1

η
. (4.4)

Proposition 4.2. The generalized polynomial chaos coefficients {ak}k∈N0 of the
random variable ζ defined in (4.4) with respect to the polynomials {pk}k∈N0 in η are
given by

a0 = e1/2, ak = (−1)ke−(k2+3k−2)/4

����
k�

i=1

(ei − 1), k ≥ 1. (4.5)

Proof. The first coefficient a0 of ζ is obtained as

a0 = �ζp0(η)� =
� ∞

0

1

x
· 1 · fη(x) dx =

� ∞

0

e−
1
2 log2 x

x2
√
2π

dx

=
1√
2π

� ∞

−∞
e−ye−

1
2y

2

dy =
√
e.

The remaining coefficients ak are obtained by induction making use of the recurrence
(4.3). For k = 1 this results in

a1 = �ζp1(η)� =
�
1

η

η − α0√
β1

�
=

1√
β1

− α0√
β1

�
1

η

�
= −e−1/2

√
e− 1,
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in agreement with (4.5). Assuming (4.5) holds for all 0 ≤ j ≤ k, we obtain from the
recurrence relation (4.3)

ak+1 = �ζpk+1(η)� =
�
(η − αk)pk(η)−

√
βkpk−1(η)

η
�

βk+1

�
= −αkak +

√
βkak−1�

βk+1

= − (ek/2 + ek/2−1 − e−k/2−1)ak +
√
ek − 1e−3/2ak−1√

ek+1 − 1

= (−1)k+1e−(k2+3k−2)/4

����
k�

i=1

(ei − 1)
ek/2 − e−k/2−1

√
ek+1 − 1

= (−1)k+1e−(k2+3k−2)/4

����
k�

i=1

(ei − 1)e−k/2−1 ek+1 − 1√
ek+1 − 1

= (−1)k+1e−((k+1)2+3(k+1)−2)/4

����
k+1�

i=1

(ei − 1).

Proposition 4.3. The generalized polynomial chaos expansion of the random
variable ζ defined in (4.4) with respect to the orthonormal polynomials {pk}k∈N0 in η
does not converge in mean-square to the random variable ζ.

Proof. The truncated chaos expansion of order n

ζn :=
n�

k=0

akpk(η) = e1/2 +
n�

k=1

(−1)ke−(k2+3k−2)/4

����
k�

i=1

(ei − 1)pk(η)

can be bounded as follows:

�ζn�2L2 = e+
n�

k=1

e−(k2+3k−2)/2
k�

i=1

(ei − 1) ≤ e+
n�

k=1

e−(k2+3k−2)/2
k�

i=1

ei

≤ e+
∞�

k=1

e−k+1 =
e2

e− 1
.

By consequence, and the fact that �ζ�L2 = e, the remainder of the truncated expan-
sion is bounded below by

�ζ − ζn�2L2 = �ζ�2L2 − �ζn�2L2 ≥ e2 − e2

e− 1
> 0 .

4.3. Stochastic Galerkin approximation. We now turn to a common ap-
plication of (generalized) polynomial chaos expansions, namely the approximation of
the solutions of differential equations with random data. Consider the boundary-value
problem for the one-dimensional diffusion equation posed on the unit interval (0, 1)

−(au�)� = f, u(0) = 0, (au�)(1) = F, (4.6)
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where a = a(x,ω) is a given positive random field, f = f(x) a deterministic function,
and F a given constant. The solution of (4.6) is

u(x,ω) =

� x

0

1

a(y,ω)

�
F +

� 1

y
f(z) dz

�
dy.

Consider first the case that a is simply the fixed lognormal random variable η(ω) from
the previous subsection. The solution then simplifies to

u(x,ω) = ζ(ω)

� x

0

�
F +

� 1

y
f(z) dz

�
dy,

i.e., it is the product of the random variable ζ with a purely deterministic function
of x. An approximation of u based on generalized polynomial chaos, i.e., expansion
in the orthogonal polynomials {pk} in η, cannot converge to the solution in view of
Proposition 4.3. Therefore, if the solution of the boundary value problem with random
data (4.6) is approximated with a stochastic Galerkin method employing lognormal
chaos in the stochastic variables, the approximation thus obtained can be no better
than the best approximation provided by a truncated chaos expansion. Since the
latter has been shown not to converge to the solution, the Galerkin approximation
cannot do so either.

Next, consider the same boundary value problem (4.6) with random field a(x,ω) =
exp(|ξ(ω)|x) with a standard Gaussian random variable ξ ∼ N(0, 1). The distribution
of the random variable |ξ|, sometimes called a reflected Gaussian distribution, is
determinate in the sense of Definition 3.1 by Theorem 3.3 (c). Polynomials in |ξ| are
therefore dense in L2(Ω,σ(|ξ|), P ) and the associated generalized polynomial chaos
expansion of u therefore converges to u in mean square.

In the following, we therefore compare two stochastic Galerkin approximations
(see e.g. [1] for an introduction) to the solution of (4.6) based on two different types
of polynomial chaos expansion. In the first case we use as trial space in the stochastic
dimension the Hermite polynomials in ξ up to a fixed degree p. In the second, we use
the orthonormal polynomials up to degree p with respect to |ξ|.

The load function was chosen as f ≡ 1 and the boundary data as F = 1. In
the spatial dimension we have used a single Gauss-Lobatto-Legendre spectral finite
element of degree 20.

Figure 4.1 shows the relative errors in the mean and second moment over the
spatial domain of a Stochastic Galerkin approximation to the solution of (4.6) using
standard Hermite chaos approximations in ξ of degrees 5, 10, 15 and 20 compared to
generalized polynomial chaos with respect to the reflected Gaussian random variable
|ξ| of degrees 2 and 5. It is apparent that the latter show an approximation quality
which is orders of magnitude better than the former.

This example clearly confirms the benefits of generalized polynomial chaos expan-
sions in Stochastic Galerkin approximations compared to standard Wiener-Hermite
chaos expansions. By using chaos polynomials taylored to the particular probabilistic
setting/basic random variables a much faster convergence of the Galerkin approxi-
mation can be achieved. Considering lognormal random variables as an example, we
have, however, demonstrated that a careful study of the basic random variables is nec-
essary in order to ensure the convergence of generalized polynomial chaos expansions
to the desired limit.
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Fig. 4.1. Relative errors of mean (left) and second moment (right) of the Stochastic Galerkin
approximation to the solution of (4.6) with f ≡ 1, F = 1 and random field a(x,ω) = exp(|ξ(ω)|x)
using standard and generalized polynomial chaos expansions of various orders in the stochastic
variables.

5. Summary. We have reviewed the constructions of standard as well as gener-
alized polynomial chaos expansions of random variables with finite second moments,
and we have shown under what conditions the results of the Cameron Martin Theo-
rem extend from standard to generalized polynomial chaos expansions with specific
analysis of expansions in one, finitely many and countably many random variables.
Finally, we have presented examples illustrating non-approximability by generalized
polynomial chaos expansions as well as accelerated convergence compared to standard
polynomial chaos expansion. The appendix gives a self-contained derivation of the
orthonormal polynomials associated with the lognormal probability density function.

Appendix A. The Orthonormal Polynomials for a Lognormal Density.
The Stieltjes-Wigert polynomials (cf. [35, Section 2.7] and [7, Chapter VI, Section

2]) are orthonormal with respect to the family of weight functions

wν(x) =

�
ν√
π
e−ν2 log2 x, x > 0,

0, otherwise,
ν > 0,

and are given by

qk(x) = (−1)ka(2k+1)/4[a]−1/2
k

k�

j=0

�
k
j

�

a

aj
2

(−a1/2x)j , k ≥ 0, (A.1)

where a = exp
�
−1/(2ν2)

�
and we have introduced the notation

[a]0 = 1, [a]k = (1− ak)(1− ak−1) · · · (1− a), k ≥ 1,

as well as the generalized binomial coefficient or Gauss symbol

�
k
j

�

a

=
[a]k

[a]k−j [a]j
=

(1− ak)(1− ak−1) · · · (1− ak−j+1)

(1− aj)(1− aj−1) · · · (1− a)
,

�
k
0

�

a

=

�
k
k

�

a

= 1.
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We proceed to construct from these the orthonormal polynomials associated with the
lognormal probability density function

f(x) =

�
1

x
√
2π

e−
1
2 log2 x, x > 0,

0, x ≤ 0 .
(A.2)

Proposition A.1. The polynomials {pk}k∈N0 orthonormal with respect to the
lognormal density (A.2) are given by

p0(x) ≡ 1, pk(x) =
(−1)kek(k−1)/4

��k
i=1(e

i − 1)

k�

j=0

(−1)j
�
k
j

�

a

e−j2+j/2xj , k ≥ 1, (A.3)

with a = 1/e.
Proof. We denote by {�qk}k∈N0 the particular sequence of Stieltjes-Wigert poly-

nomials obtained for the parameter value ν = 1/
√
2 with associated weight function

�w(x) =
�

1√
2π

e−
1
2 log2 x, x > 0,

0, otherwise.

In view of

e1/4�q0(ex) = e1/4e−1/4 = 1

as well as

e1/4�qk(ex) =
(−1)ke−k/2

��k
i=1(1− e−i)

k�

j=0

�
k
j

�

a

e−j2(−e−1/2ex)j

=
(−1)ke−k/2+k(k+1)/4

��k
i=1(e

i − 1)

k�

j=0

�
k
j

�

a

(−1)je−j2+j/2xj

=
(−1)kek(k−1)/4

��k
i=1(e

i − 1)

k�

j=0

�
k
j

�

a

(−1)je−j2+j/2xj , k ≥ 1,

we obtain the relation

pk(x) = e1/4�qk(ex), k ∈ N0.

Orthonormality now follows after a succession of changes of variables from

∞�

0

pk(x)p�(x)f(x) dx =

∞�

0

e1/4�qk(ex)e1/4�q�(ex)f(x) dx

=

�
e

2π

∞�

−∞

�qk
�
ey+1

�
�q�
�
ey+1

�
e−

1
2y

2

dy =

∞�

−∞

�qk (ez) �q� (ez)
e−

1
2 z

2
ez√

2π
dz

=

∞�

0

�qk(t)�q�(t)
e−

1
2 log2 t

√
2π

dt =

∞�

0

�qk(t)�q�(t) �w(t) dt = δk�.



19

Like all orthogonal polynomials over the real numbers, the polynomials {pk}k∈N
satisfy a three-term recurrence relation

�
βk+1pk+1(x) = (x− αk)pk(x)−

�
βkpk−1(x), k ≥ 0, (A.4)

with p−1 ≡ 0 and p0 ≡ 1, where we follow the common convention of denoting by
{αk}k∈N0 and {βk}k∈N0 the recurrence coefficients of the associated monic orthogonal
polynomials (cf. [12, Section 1.3]). Since the weight function f of the {pk} is a
probability density function we must have

β0 =

� ∞

0
p0(x)

2f(x) dx = 1.

The remaining coefficients are obtained from the explicit representation (A.3). If we

denote the j-th polynomial coefficient of pk by c(k)j , i.e., such that

pk(x) =
k�

j=0

c(k)j xj , k ∈ N0,

then by (A.3) we have

c(k)j =
(−1)k+jek(k−1)/4

��k
i=1(e

i − 1)

�
k
j

�

a

e−j2+j/2, j = 0, . . . , k, k ∈ N0. (A.5)

Comparing coefficients in (A.4) taking account of p−1 ≡ 0 and p0 ≡ 1, we find

β1 =

�
1

c(1)1

�2

, α0 = −c(1)0

c(1)1

and, in general,

βk+1 =

�
c(k)k

c(k+1)
k+1

�2

, αk =
c(k)k−1

c(k)k

−
c(k+1)
k

c(k+1)
k+1

, k ∈ N.

Together with (A.5), a straightforward calculation yields

αk = ek−1/2
�
ek(e+ 1)− 1

�
, βk+1 = (ek+1 − 1)e3k+1, k ∈ N0. (A.6)
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