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Sparse Recovery and Kronecker Products
Sadegh Jokar

(Invited Paper)

Abstract—In this note will consider sufficient conditions
for sparse recovery such as Spark, coherence, restricted
isometry property (RIP) and null space property (NSP).
Then we will discuss the solution of underdetermined lin-
ear equations when the matrix is the Kronecker product of
matrices. Specially we will explain how NSP behave in the
case where the matrix is the Kronecker product of matrices.

Index Terms—Spark, coherence, null space property, re-
stricted isometry property, compressed sensing, Kronecker
product, sparse solution of linear systems.

I. Introduction

In this short paper we will consider the computation of
sparse solutions of underdetermined linear systems

Ax = b,

where A ∈ Rm,n, with m≤ n is given as a Kronecker prod-
uct, i.e.

A = A1⊗A2⊗ . . .⊗AN , Ai ∈ Rmi,ni , i = 1, . . . , N. (1)

Since the solution is typically non-unique it is an im-
portant topic in many applications, in particular in sparse
signal recovery, see e.g. [1], [3], [4], [5], [6], [9], [10], [19] to
find the sparsest solution,

min ‖x‖0, s.t. Ax = b, (2)

where ‖x‖0 denotes the number of nonzero entries of a
vector x, see Section II.

In general, the problem of finding the sparsest solution is
known to be NP-hard [21]. However, in the context of com-
pressed sensing, conditions have been derived on the size of
the support of x, i.e. the number of nonzero elements of x,
that allow one to compute the sparsest solution using `1-
minimization via the so called basis pursuit algorithm [3],
[5], [7], [8], [10], [11], [12], i.e, by computing

min ‖x‖1, s.t. Ax = b, (3)

where ‖x‖1 =
∑

i|xi|.
Sufficient conditions for this approach to work are that

some properties of the matrix A called spark [10], [22],
coherence [7], [12], or the restricted isometry property
(RIP) [2], [3], [4] or the null space property [8] are studied.
We will introduce these properties in Section II.
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For general matrices it is possible to determine the co-
herence, while analyzing the spark, the restricted isometry
property or null space property is difficult. If, however,
the matrix A has the form (1) then we show in Section III
that these properties can be derived from the correspond-
ing properties of the factors.

II. Preliminary Observations

For m,n ∈ N, where N = {1,2, . . .}, we denote by Rm,n

the set of real m× n matrices, by In the n× n identity
matrix, and by 〈·, ·〉 the Euclidean inner product in Rn.
For 1≤ p≤∞, the `p-norm of x ∈ Rn is defined by

‖x‖p :=
( n∑

j=1

|xj |p
) 1

p ,

with the special case

‖x‖∞ := max
j∈{1,...,n}

|xj |,

if p=∞. Finally, for x ∈ Rn, we introduce the notation

‖x‖0 := # supp(x),

where supp(x) := {j ∈ {1, . . . , n} : xj 6= 0} is the support
of x. We use the term k-sparse for all vectors x such that
‖x‖0 ≤ k.

Definition II.1. [17], [20] The Kronecker product of A=
[ai,j ] ∈ Rp,q and B = [bi,j ] ∈ Rr,s is denoted by A⊗B and
is defined to be the block matrix

A⊗B :=

 a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB

 ∈ Rpr,qs.

As our first special property we introduce the spark of a
matrix.

Definition II.2. [10], [22] Let A = [a1, . . . , an] ∈ Rm,n,
2 ≤ m ≤ n have columns ai that are normalized so that
‖ai‖2 = 1, i = 1, . . . , n. The spark of A, denoted as
spark(A) is defined as the cardinality of the smallest subset
of linearly dependent columns of A.

The quantity spark(A) can be used to derive sufficient
conditions for the existence of sparse solutions.

Lemma II.3. [10], [16] Consider the linear system Ax= b
with A ∈ Rm,n, m≤ n. A sufficient condition for the linear
system Ax= b to have a unique k-sparse solution x is that
k ≤ spark(A)/2.
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The second property that we consider is the coherence.

Definition II.4. [12] Let A = [a1, . . . , an] ∈ Rm,n, m ≤ n
have columns ai that are normalized so that ‖ai‖2 = 1, i=
1, . . . ,n. Then the coherence M(A) is defined by

M(A) := max
i6=j
|〈ai, aj〉|.

Note that, since the columns of A are normalized, by
the triangle inequality we always have M(A)≤ 1. On the
other hand, if A has orthonormal columns, thenM(A) = 0.

The following lemma relates the sparsest solution as de-
fined in (2) and the `1-solution as defined in (3) of the linear
equation Ax= b in terms of the coherence of a matrix A.

Lemma II.5. [10], [15], [14] Suppose that A ∈ Rm,n, m≤
n has columns ai that are normalized so that ‖ai‖2 = 1,
i= 1, . . . ,n. If there exists a solution x for a given b of the
equation Ax= b satisfying

‖x‖0 <
1 + 1

M(A)

2
,

then the `1-norm minimal solution in (3) coincides with
the `0-minimal solution in (2).

The third quantity that is important in the context of
sparse recovery and compressed sensing is the restricted
isometry property.

Definition II.6. [2], [3], [4], [5] Let A = [a1, . . . , an] ∈
Rm,n, m ≤ n have columns ai that are normalized so that
‖ai‖2 = 1, i= 1, . . . ,n. The k-restricted isometry constant
of A is the smallest number δk such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (4)

for all x ∈ Rn with ‖x‖0 ≤ k.

The following lemma gives the relation between the
sparsest solution (as defined in (2)) of a linear system
Ax = b and the `1-solution as defined in (3) in terms of
the k-restricted isometry constant.

Lemma II.7. [2] Let A = [a1, . . . , an] ∈ Rm,n, m ≤ n
have columns ai that are normalized so that ‖ai‖2 = 1,
i= 1, . . . ,n.

Suppose that
δ2k <

√
2− 1.

Then for all k-sparse solution vectors x of Ax = b the so-
lution of (3) is equal to the solution of (2).

For A ∈ Rm,n with m< n, a vector of the form b = Ax
represents (encodes) the vector x in terms of the columns
of A. To extract the information that b holds about x,
we may use a decoder ∆ which is a (not necessary linear)
mapping. Then y = ∆(b) = ∆(Ax) is our approximation
to x from the information given in b.

Let Σk = {z ∈ Rn : ‖z‖0 ≤ k} denote the vectors of sup-
port less than or equal to k. In the following we use the
classical `l-norm.

We introduce the distance

σk(x)p := min
z∈Σk

‖x− z‖p. (5)

Definition II.8. In going further, we say that Φ has the
null space property of order k with constant Ck if

‖η‖1 ≤ Ckσk(η)1

holds for all η ∈N .

Theorem II.9. [8] Let a = `/k, b = `′/k with `, `′ ≥ k
integers. If Φ satisfies the RIP of order (a+ b)k with
δ = δ(a+b)k < 1, then Φ satisfies the null space property
in `1 of order ak with constant

C = 1 +
√
a(1 + δ)√
b(1− δ)

. (6)

From this Theorem one could get the following result.

Theorem II.10. [8] Let A ∈ Rm,n satisfy (4) in the form

(1− δ3k)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ3k)‖x‖22

with

δ3k ≤ δ <
(
√

2− 1)2

3
.

Define a decoder ∆ for A via

∆(b) = argminb=Ax‖x‖1. (7)

Then

‖x−∆(Ax)‖1 ≤ Cσk(x)1,

where

C =
2
√

2 + 2− (2
√

2− 2)δ√
2− 1− (

√
2 + 1)δ

.

Theorem II.10 shows that the `1-norm solution can be
as good as best k-term approximation.

In the following we will explain a way to calculate and
estimate the NSP constant Ck.

Theorem II.11. Suppose that A ∈ Rm,n is normalized
(‖ai‖2 = 1) where m < n. If k < spark(A), then the con-
stant Ck in NSP is:

Ck = 1 + max
S⊂{1,···n}

#S=k

‖A†SASc‖1. (8)

where AS = [ai]i∈S and A†S = (A
T

SAS)−1AT
S is the psedoin-

verse of AS. In the special case where k = 1, we have:

C1 = 1 +M(A). (9)

Proof: Since k < spark(A), this problem is well defined.
Let assume that S ⊂ {1, . . . ,n} with #S = k. Then from
Aη = 0, we get:

ASηS +AScηSc = [AS ASc ]
[
ηS

ηSc

]
= 0,

and therefore ηS =−A†SAScηSc . By taking the `1-norm in
both direction we have:

‖ηS‖1 = ‖A†SAScηSc‖1 ≤ ‖A†SASc‖1‖ηSc‖1.
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By adding ‖ηSc‖1 in both direction we get:

‖η‖1 ≤ (1 + ‖A†SASc‖1)‖ηSc‖1.

By taking all subsets S of cardinality k we have (8) for all
subset S with #S ≤ k and η ∈N(A).

For the case where k = 1, we have:

max
S⊂{1,···n}

#S=1

‖A†SASc‖1 = max
1≤i≤n

‖[ai]
T

[aj ]j 6=i‖1.

Therefore
C1 = 1 + max

i 6=j
|〈ai, aj〉|.

Remark II.12. Note that if k ≥ spark(A) then there exist
η 6= 0 with ‖η‖0 = k such that Aη = 0. But in null space
property we must have

0 < ‖η‖1 ≤ Ckσk(η)1 = 0

which is impossible. Therefore null space property of order
k does not make sense.

After introducing the concepts of spark, coherence, k-
restricted isometry property and null space property, in
the next section we analyze these concepts for Kronecker
product of matrices.

III. Sparse representation and Kronecker
Products

In this section we study sparse solutions for linear system
Ax= b, where the matrixA is given as a Kronecker product
as in (1).

In [18], we charatrezied spark(A ⊗ B) in terms of
spark(A) and spark(B). Note that if A,B have normal-
ized columns then A⊗B has normalized columns as well.

Theorem III.1. [18] Let A = [a1, . . . , aq] ∈ Rp,q and
B = [b1, . . . , bs] ∈ Rr,s be rank-deficient matrices with nor-
malized columns, i.e., ‖ai‖2 = 1, i = 1, . . . , q, ‖bi‖2 = 1,
i= 1, . . . ,s. Then

spark(A⊗B) = spark(B⊗A) = min{spark(A), spark(B)}.
(10)

If A is an invertible matrix and B is rank-deficient matrix,
then

spark(A⊗B) = spark(B). (11)

If both A and B are square and invertible then

spark(A⊗B) = (spark(A)−1)(spark(B)−1) + 1 = qs+ 1.

Corollary III.2. [18] Consider rank-deficient matrices
{Ai}Ni=1 with normalized columns. Then

spark(A1 ⊗ . . .⊗AN ) = min
1≤i≤N

{spark(Ai)}.

We immediately have the following corollary of III.2.

Corollary III.3. [18] Consider a linear system (A1⊗. . .⊗
AN )x= b with rank-deficient matrices Ai ∈ Rpi,qi that have
normalized columns. A sufficient condition for this linear
system to have a unique k-sparse solution x is that

k ≤
min

1≤i≤N
{spark(Ai)}

2
.

Similar to the analysis of spark(A ⊗ B), it has been
shown in [18], an estimate of M(⊗N

i=1Ai) in terms of each
M(Ai)’s.

Theorem III.4. [18] Consider matrices {Ai}Ni=1 with nor-
malized columns and let A=A1⊗ . . .⊗AN . Then,

M(A) = max
1≤i≤n

M(Ai).

Theorem III.4 shows that if one of the matrices Ai has a
large coherence, then it will dominate the coherence of A,
regardless of all the other factors in the Kronecker product.

We immediately have the following corollary of Theorem
III.4.

Corollary III.5. Consider a linear system (A1 ⊗ . . .⊗
AN )x= b with rank-deficient matrices Ai ∈ Rpi,qi that have
normalized columns. A sufficient condition for this linear
system to have a unique k-sparse solution x is that

k ≤

1 + 1

min
1≤i≤N

{M(Ai)}

2
.

One could also have similiar results which relates the k-
restricted isometry constant of δA⊗B

k to those of δA
k and

δB
k .

Theorem III.6. [18] Let A ∈ Rp,q and B ∈ Rr,s have nor-
malized columns. Then

δA⊗B
k = δB⊗A

k ≥ max{δA
k , δ

B
k }. (12)

Remark III.7. In [13], they gave also an upper bound for
the RIP where

δA1⊗···⊗AN

k ≤
N∏

i=1

(1 + δAi

k )− 1.

We have the following obvious corollary.

Corollary III.8. Suppose that matrices Ai for i= 1, . . . ,N
have normalized columns. Then

max
1≤i≤N

{δAi

k } ≤ δ
A1⊗...⊗AN

k ≤
N∏

i=1

(1 + δAi

k )− 1.

According to Lemma II.7, if the restricted isometry con-
stant δ2k is small enough (δ2k <

√
2− 1), then one can re-

cover all k-sparse solutions using `1-minimization. On the
other hand, Corollary III.8 implies that if the k-restricted
isometry constant δk of A is small (for example less than
1/2), then A can not be written as a Kronecker product of
matrices Ai with smaller sizes.

We will show in the following that one could also relates
the k-null space constant of CA⊗B

k to those of CA
k and CB

k .
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Theorem III.9. Let A ∈ Rp,q and B ∈ Rr,s have normal-
ized columns. Then

CA⊗B
k ≥ max{CA

k , C
B
k }. (13)

Proof: Let A ∈ Rp,q and B ∈ Rr,s. Then, we have:

CA⊗B
k = 1 + max

S⊂{1,···n}
#S=k

‖(A⊗B)†S(A⊗B)Sc‖1

We choose S for example, such that

(A⊗B)S =

 a1,1b1 · · · a1,1bk
...

. . .
...

ap,1b1 · · · ap,1bk

 .
Then there exists a permutation matrix P such that

CA⊗B
k ≥ 1 + ‖(〈b`, bw〉)−1

`,w=1,··· ,k(A⊗B)T
S (A⊗B)Sc‖1

where

(A⊗B)Sc =

 a1,1bk+1 · · · a1,1bs
...

. . .
... D

ap,1bk+1 · · · ap,1bs

P
and matrix D is the rest of (A ⊗ B)Sc . For simplic-
ity let assume that Ek = (〈b`, bw〉)`,w=1,··· ,k, Es−k =
(〈b`, bw〉)k,s

`,w=1,k+1. and F = (A⊗B)T
SD. Then we have:

(A⊗B)T
S (A⊗B)Sc = [Es−kF ]P

Thus:

CA⊗B
k ≥ 1 + ‖[E−1

k Es−k E−1
k F ]‖1

≥ 1 + ‖[E−1
k Es−k]‖1

Therefore we have CA⊗B
k ≥ CB

k . Using the fact that
there exist permutation matrices Π1,Π2 such that Π1(B⊗
A)Π2 =A⊗B, we conclude that CA⊗B

k ≥ CA
k .

Using Theorem II.9 and II.10, if the NSP constant CA⊗B
k

is small enough, then one can recover all k-sparse solutions
using `1-minimization. On the other hand, Theorem III.6
implies that if one k-th NSP constant Ck of A or B is not
small, then A⊗B can not have a good NSP constant which
means that one could not hope to recover sparse signals of
high order.

IV. Conclusion

We have analyzed the recently introduced concepts of
the spark, the coherence, the k-restricted isometry prop-
erty and specially NSP of matrix in Kronecker product
form to that of the Kronecker factors.
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