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Abstract

Pricing a path-dependent financial derivative, such as an Asian option, re-
quires the computation of E(g(B)), the expectation of a payoff function g,
that depends on a Brownian motion B. Employing a standard series expan-
sion of B the latter problem is equivalent to the computation of the expecta-
tion of a function of the corresponding i.i.d. sequence of random coefficients.
This motivates the construction and the analysis of algorithms for numerical
integration with respect to a product probability measure on the sequence
space RN. The class of integrands studied in this paper is the unit ball in a re-
producing kernel Hilbert space obtained by superposition of weighted tensor
product spaces of functions of finitely many variables. Combining tractabil-
ity results for high-dimensional integration with the multi-level technique
we obtain new algorithms for infinite-dimensional integration. These deter-
ministic multi-level algorithms use variable subspace sampling and they are
superior to any deterministic algorithm based on fixed subspace sampling
with respect to the respective worst case error.

Key words: infinite-dimensional quadrature, multi-level method,
tractability, low discrepancy points, fixed subspace sampling, variable
subspace sampling, minimal errors

1. Introduction

Infinite-dimensional quadrature problems, i.e., numerical integration with
respect to measures on infinite-dimensional spaces, naturally arise for in-
stance in the context of stochastic processes. A common approach to such

March 12, 2010



quadrature problems involves some kind of truncation or projection onto
finite-dimensional subspaces, and accordingly the integrands have to be eval-
uated only at points from these subspaces.

This article is part of a recent line of research on infinite-dimensional
quadrature problems, where the cost of function evaluation is assumed to be
dimension dependent and where deterministic as well as randomized algo-
rithms are studied. See [1] for integration on separable Banach spaces and
[12, 5, 10] for integration on the sequence space RN. In the latter papers as
well as in the present one, tractability results for high-dimensional integra-
tion are heavily used in the analysis and for the construction of algorithms.
For the study of tractability we refer in particular to the monograph series
[14, 15]. Furthermore, in [1, 5] as well as in the present paper the multi-level
methodology, which was introduced by [4] in the context of integral equations
and by [2] in the context of stochastic differential equations, plays a key role.

In the present paper we study integration on the sequence space RN, as
we wish to compute the expectation

I(f) = E(f(X1, X2, . . .))

for functions f : RN → R, where (X1, X2, . . .) is an i.i.d. sequence of random
variables with a common distribution ρ on a Borel subset D ⊆ R. Impor-
tant examples include the uniform distribution ρ on [0, 1] and the standard
normal distribution on the real line. In a reasonable approach to compute
the integral I(f) all but finitely many random variables Xj are replaced by
some nominal value c of the distribution ρ, and the aim is to construct de-
terministic quadrature formulas based on a finite number of function values
f(xi,1, . . . , xi,di

, c, c, . . .).
Let Ψ1:df denote the corresponding function of the first d variables, i.e.,

(Ψ1:df)(x) = f(x1, . . . , xd, c, c . . . )

for d ∈ N and x ∈ RN. For example, an equal weight quadrature formula
that uses n function values in a fixed dimension d takes the form

Q(f) =
1

n

n∑
i=1

(Ψ1:df)(xi) =
1

n

n∑
i=1

f (xi,1, . . . , xi,d, c, c, . . .)

for some design of points (xi,1, . . . , xi,d) ∈ Rd. The cost of a single function
evaluation is assumed to be given by ds for some s ≥ 0, so that the cost of
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the quadrature formula Q is given by

N = n · ds,

which corresponds to the fixed subspace sampling model of [1]. Clearly, s = 0
is unrealistic in practical applications, while s = 1 is a reasonable choice in
many situations.

For quadrature on the sequence space, a multi-level algorithm is based
on an increasing sequence d1 < · · · < dL of dimensions, and functions f of
infinitely many variables are decomposed as

f = Ψ1:d1f +
L∑

`=2

(Ψ1:d`
f −Ψ1:d`−1

f) + f −Ψ1:dL
f. (1)

The function Ψ1:d1f as well as the functions Ψ1:d`
f −Ψ1:d`−1

f are integrated
separately by means of suitable quadrature formulas Q1, . . . , QL in dimen-
sions d1, . . . , dL. This leads to the multi-level algorithm

Q(f) = Q1(Ψ1:d1f) +
L∑

`=2

(
Q`(Ψ1:d`

f)−Q`(Ψ1:d`−1
f)

)
.

Let n` denote the number of knots used by Q`. As previously, the cost of
evaluating a function of d variables is assumed to be ds, so that the cost of
the multi-level algorithm Q is given by

N = n1 · ds
1 +

L∑

`=2

n` · (ds
` + ds

`−1),

which corresponds to the varying subspace sampling model of [1]. We refer to
[10] for a more generous cost model, where the cost of a function evaluation
at a point x ∈ RN may depend in any way on the number of components of x
that are different from the nominal value c. Obviously the cost for evaluat-
ing Ψ1:d`

f −Ψ1:d`−1
f increases with the level `. Suppose, on the other hand,

that these differences get small in a suitable norm, which makes the integra-
tion problem easier with increasing `. Then the multi-level decomposition
allows to balance these two effects by sampling more frequently in smaller
dimensions.

The class F of integrands f that will be studied in this paper is the unit
ball B(K) in a Hilbert space H(K) with reproducing kernel K. The con-
struction of K is based on a reproducing kernel k for real-valued functions
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of a single variable x ∈ D and a sequence of weights γj > 0. By assumption,∫
D

k(x, x) ρ(dx) < ∞ and k(c, c) = 0, the latter being called the anchored
case in the literature, and furthermore we assume

∑∞
j=1 γj < ∞. The repro-

ducing kernel K for functions of infinitely many variables is given by

K(x,y) =
∑

u

∏
j∈u

γj k(xj, yj),

where u varies over all finite subsets of N and x and y belong to a subset of
DN of measure one. Function spaces H(K) of this kind have already been
studied in [12, 5, 10, 9]. In particular, (1) is an orthogonal decomposition of
f ∈ H(K).

We study the minimal worst case errors efix
s (N,B(K)) and evar

s (N, B(K))
that can be achieved by deterministic algorithms that use fixed or variable
subspace sampling, respectively, with worst case cost at most N . We de-
rive upper and lower bounds for these quantities, which depend on the de-
cay of the weights γj and on respective upper and lower bounds for finite-
dimensional integration on the unit balls B(K1:d), where

K1:d(x,y) =
∑

u⊆{1,...,d}

∏
j∈u

γj k(xj, yj)

is a reproducing kernel for functions of the variables x1, . . . , xd ∈ D. The
upper bounds for evar

s (N, B(K)) are achieved by suitable multi-level algo-
rithms, and in the corresponding analysis auxiliary weights γ′j such that
limj→∞ γj/γ

′
j = 0 are employed. We refer to [5] for a counterpart of this ap-

proach in the analysis of randomized (Monte Carlo) multi-level algorithms.
To give a flavor of our results, consider the uniform distribution ρ on

D = [0, 1] and the kernel

k(x, y) = min(x, y), x, y ∈ [0, 1],

and assume γj = j−1−2q with q > 0. Furthermore, let s = 1 in the definition
of the cost. In order to simplify the presentation we put

λvar = sup{χ > 0 : sup
N∈N

evar
1 (N, B(K)) ·Nχ < ∞},

and we use λfix to denote the corresponding quantity for fixed subspace sam-
pling. Roughly speaking, λvar and λfix are the best orders of convergence
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that can be achieved by any sequence of algorithms using variable or fixed
subspace sampling, respectively. Clearly, λvar ≥ λfix. We have

λfix =
q

q + 1

if q ≥ 1/2, and otherwise the rather tight bounds

q

2q/(2q + 1) + 1
≤ λfix ≤ q

q + 1

hold true. For variable subspace sampling

λvar = min (q, 1)

if |q − 1| ≥ 1/2, while otherwise we only know that

q + 1/2

2
≤ λvar ≤ min (q, 1)

with a significant gap between the upper and the lower bound. Still we con-
clude that variable subspace sampling is superior to fixed subspace sampling
for all q > 0. Moreover, the lower bounds for λvar are achieved by multi-level
algorithms based on rank-1 lattice rules, so that we have optimality for these
multi-level algorithms in the case |q−1| ≥ 1/2. The proof of the lower bound
for λvar relies on a tractability result from [8] for rank-1 lattice rules.

This article is organized as follows. The present section concludes by
describing an application that motivates the problem of computing the ex-
pectation of f(X1, X2, . . .). Section 2 defines the Hilbert space H(K) where
the function f resides, and appropriate assumptions are made to facilitate
the worst case error analysis later. The worst case setting for quadrature on
the sequence space and in particular the different cost models are presented
in Section 3. In Section 4 key results on the single level algorithm from [12]
are reviewed, and upper bounds for the error of multi-level algorithms are
derived. Lower bounds are established in Section 5, and Section 6 contains an
application of our results for ρ being the uniform distribution on D = [0, 1]
and k = min.

For motivation we now consider the problem of option pricing in math-
ematical finance, which very well fits into the setting of the present paper,
see [3]. The option pricing problem amounts to the computation of the ex-
pectation E(ϕ(S)), where S = (S(t))t∈[0,T ] denotes the asset price over some
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time interval [0, T ] and ϕ denotes a discounted and possibly path dependent
payoff. Typically, S is modeled by a stochastic differential equation, and here
we consider the scalar case for convenience. Thus

dS(t) = r(t, S(t)) dt + σ(S(t), t) dB(t),

with deterministic initial price S(0) = s0 and a scalar Brownian motion B.
Consequently, under regularity assumptions on the drift coefficient r and
the diffusion coefficient σ, we have S = Γ(B) for some measurable mapping
Γ : C([0, T ]) → C([0, T ]). For example,

Γ(u)(t) = s0 exp((r − σ2/2)t + σu(t))

and

ϕ(v) = e−rT max

(
T−1

∫ T

0

v(t) dt−K, 0

)

in the case of an arithmetic Asian call option with strike K in a Black Scholes
model with constant interest rate r and constant volatility σ. Take a series
expansion

B =
∞∑

j=1

Xj · ej

of the Brownian motion with an i.i.d. sequence of standard normal random
variables Xj and a sequence of functions ej ∈ C([0, T ]). Then

E(ϕ(S)) = I(f)

with f : RN → R given by

f(x) = ϕ ◦ Γ

( ∞∑
j=1

xj · ej

)

and ρ being the standard normal distribution.
Possible choices of of basis functions ej are provided by the Karhunen-

Loéve expansion and by the Lévy-Ciesielski expansion, which is also known
as the Brownian bridge construction of B. In the Karhunen-Loéve expansion
the basis functions are orthogonal in L2([0, T ]) and given by

ej(t) =
√

2T · sin ((j − 1/2)πt/T )

(j − 1/2)π
.
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In the Lévy-Ciesielski construction the basis functions are the Schauder func-
tions and (with a more convenient index set) given by e1,0(t) = t and

ek,m(t) =

∫ t

0

2(m−1)/2 · (1[(k−1)/2m,k/2m[ − 1[k/2m,(k+1)/2m[

)
(u) du

for k ∈ {2j − 1 : j = 1, . . . , 2m−1} and m ∈ N.
Multi-level algorithms on the sequence space RN are applicable if ϕ ◦ Γ

(or a reasonable approximation thereof) can be evaluated at any function∑d
j=1 xj ·ej. Results on the smoothness of f within the setting of the present

paper seem to be unknown so far.
This multi-level application to problems from computational finance has

been suggested and tested in [3] for various options in the Black Scholes
model. In the latter paper the inverse of the cumulative normal distribution
function is used to transform the problem to an integration problem with ρ
being the uniform distribution on [0, 1], and rank-1 lattice rules are used as
the building block.

2. The Function Spaces

In this section, the Hilbert space H(K) where the functions f reside is
constructed. The elements of H(K) depend on a countably infinite number of
variables, and H(K) is constructed as the tensor product space of a countable
number of reproducing kernel Hilbert spaces. As discussed in Section 1, the
computational problem is to approximate I(f) = E(f(X1, X2, . . .)), where
(X1, X2, . . .) is an i.i.d. sequence of random variables with a common distri-
bution ρ on a Borel subset D ⊆ R.

A measurable, symmetric, positive semi-definite kernel function

k : D ×D → R

is the building block used to construct the Hilbert space H(K). This kernel
may possibly be unbounded, but we assume that

∫

D

k(x, x) ρ(dx) < ∞. (2)

In addition, it is assumed that the nominal value satisfies c ∈ D and

k(c, c) = 0, (3)
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which implies that f(c) = 0 for all functions f in the Hilbert space H(k)
with reproducing kernel k.

To facilitate the definition of the Hilbert space H(K) of functions of an
infinite number of variables, a sequence γ = (γ1, γ2, . . .) of positive weights
is introduced, which satisfies the condition

∞∑
j=1

γj < ∞. (4)

Under these assumptions the appropriate choice of a domain for the functions
f of an infinite number of variables is

X =
{
x ∈ DN :

∞∑
j=1

γjk(xj, xj) < ∞
}

,

since
(X1, X2, . . . ) ∈ X

holds almost surely, see [5, Lemma 1]. Moreover,
∏∞

j=1(1 + γj|k(xj, yj)|)
converges for x,y ∈ X , so that

K(x,y) =
∞∏

j=1

(1 + γjk(xj, yj))

defines a measurable, symmetric, positive semi-definite kernel function

K : X × X → R,

see [5, Sec. 2.4]. In the sequel we consider the Hilbert space H(K) with
reproducing kernel K.

We discuss the orthogonal decomposition of f ∈ H(K) into functions
that only depend on finitely many variables. Let U = {u ⊆ N : |u| < ∞}
denote the set of all finite subsets of N. For every u ∈ U we consider the
Hilbert space H(ku) whose reproducing kernel is given by

ku(x,y) =
∏
j∈u

k(xj, yj)

for all x,y ∈ X . By definition, k∅ = 1 and therefore H(k∅) is the space of
constant functions. As shown in [9, Sec. 2] in the case of a bounded kernel
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k and D = [0, 1], the functions f ∈ H(ku) satisfy f(x) = f(y) for x,y ∈ X
with xj = yj for every j ∈ u. Hence f ∈ H(ku) may be identified with a
function f : Du → R of the variables xj with j ∈ u only. Let

γu =
∏
j∈u

γj

for u ∈ U to obtain
K(x,y) =

∑

u∈U
γuku(x,y)

for x,y ∈ X . We refer to [9] for a proof of the following fact, see also [12, 5].

Lemma 1. The Hilbert space H(K) consists of all functions

f =
∑

u∈U
fu

with fu ∈ H(ku) such that

∑

u∈U
γ−1

u ‖fu‖2
ku

< ∞.

Moreover, 〈f, g〉K =
∑

u∈U γ−1
u 〈fu, gu〉ku for f, g ∈ H(K).

According to Lemma 1, (H(ku))u∈U is a family of closed and pairwise
orthogonal subspaces of H(K) and fu is the orthogonal projection of f onto
H(ku). Roughly speaking, fu represents the joint effect of the variables xj

with j ∈ u on the function f .
In a reasonable approach to compute the integral I(f) = E(f(X1, X2, . . .))

all but finitely many random variables Xj are replaced by the nominal value
c. Hence we define

(Ψvf)(x) = f(xv, c)

for x ∈ X and v ∈ U, where (xv, c) is used to denote the sequence y ∈ X
with yj = xj for j ∈ v and yj = c otherwise. For f =

∑
u∈U fu according to

Lemma 1 we get fu(xv, c) = 0 if u 6⊆ v because of (3), and therefore

Ψvf =
∑
u⊆v

fu.
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We conclude that Ψvf is the orthogonal projection of f onto the Hilbert
space H(Kv) with reproducing kernel

Kv(x,y) =
∑
u⊆v

γuku(x,y) =
∏
j∈v

(1 + γjk(xj, yj)).

We add that f ∈ H(Kv) may be identified with a function f : Dv → R of
the variables xj with j ∈ v only.

3. The Integration Problem

The assumptions (2) and (4) guarantee that f 7→ I(f) defines a bounded
linear function on H(K), see [5, Sec. 2.5]. We approximate I by means of
quadrature formulas

Q(f) =
n∑

i=1

aif(xi)

with coefficients ai ∈ R and knots xi ∈ X , whose components coincide with
the nominal value c for all but finitely many coordinates.

We study the worst case error

e(Q,F ) = sup
f∈F

|I(f)−Q(f)|

of Q on function classes F , where we are primarily interested in the case of
the unit ball

B(K) = {f ∈ H(K) : ‖h‖K ≤ 1}
in H(K).

We study two different cost models for the infinite-dimensional quadrature
problem. Let 1 : d = {1, . . . , d} and

X1:d = {x ∈ DN : xd+1 = xd+2 = · · · = c}.

Clearly X1:d ⊆ X , and X1:d may be considered as a d-dimensional affine
subspace of RN. As the basic assumption in both models, for every dimension
d an oracle is available that provides values of f at any knot x ∈ X1:d, and the
cost of a single function evaluation by means of this oracle is given by ds with
some fixed parameter s > 0. In the fixed subspace model every quadrature
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formula Q uses a single oracle for some dimension d to provide all function
values f(xi). Accordingly, the cost cfix

s (Q) of Q is defined by

cfix
s (Q) = n · (min{d ∈ N : {x1, . . . ,xn} ⊆ X1:d})s

if x1, . . . ,xn are the pairwise different knots of Q. In the variable subspace
model a quadrature formula may use oracles for different dimensions. This
leads to the definition of the cost

cvar
s (Q) =

n∑
i=1

(min{d ∈ N : xi ∈ X1:d})s

of Q in the variable subspace model.
In [10] a more generous cost model is introduced, where the cost of a

function evaluation at x is linked to the number

`(x) = |{j ∈ N : xj 6= c}|
of components of x that are different from the nominal value c. In this model
the cost of Q is defined by

c∗s(Q) =
n∑

i=1

(max(`(x), 1))s.

For a cost budget N ∈ N and † ∈ {fix, var, ∗} the minimal errors in the
corresponding cost models are defined by

e†s(N, F ) = inf{e(Q,F ) : c†s(Q) ≤ N}.
Clearly c∗s(Q) ≤ cvar

s (Q) ≤ cfix
s (Q), and therefore

e∗s(N,F ) ≤ evar
s (N, F ) ≤ efix

s (N,F ).

In this paper we study the asymptotic behavior of the minimal errors
efix

s (N, B(K)) and evar(N,B(K)), and we also compare this behavior with
results on e∗s(N, B(K)) from [10]. Furthermore, we study the construction of
quadrature formulas with cost bounded by N and error close to the corre-
sponding minimal error. In order to simplify the presentation we introduce
the exponents

λ†s(B(K)) = sup{χ > 0 : sup
N∈N

e†s(N,B(K)) ·Nχ < ∞} (5)

for † ∈ {fix, var, ∗}.
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4. Multi-level Algorithms

In a common approach to the integration problem the infinite-dimensional
integral I(f) = E(f(X1, X2, . . .)) is approximated by a finite-dimensional
integral

I(Ψ1:df) = E(f(X1, . . . , Xd, c, c, . . .)),

and a quadrature formula Q for integration with respect to the joint distribu-
tion of X1, . . . , Xd, i.e., with respect to the d-fold product of the probability
measure ρ, is used to approximately compute I(Ψ1:df). Hence there are two
kinds of errors, namely |I(f) − I(Ψ1:df)|, which is due to the truncation of
the infinite-dimensional integral, and |I(Ψ1:df)−Q(f)| for the d-dimensional
integration problem. Recall that Ψ1:df is the orthogonal projection of f onto
H(K1:d). Under the natural assumption that Q uses knots from the space
X1:d we have Q(f) = Q(Ψ1:df). Then the decomposition of the error corre-
sponds to the orthogonal decomposition of H(K) into the space H(K1:d) and
its complement.

4.1. The Multi-level Construction

In the multi-level approach the space H(K1:d) is further decomposed as
follows. Consider a sequence of increasing dimensions

1 ≤ d1 < · · · < dL = d

with the associated closed subspaces

H(K1:d1) ⊆ · · · ⊆ H(K1:dL
)

of H(K). For f ∈ H(K) we employ the orthogonal decomposition

f = Ψ1:d1f +
L∑

`=2

(Ψ1:d`
−Ψ1:d`−1

)f + f −Ψ1:dL
f. (6)

Roughly speaking, (Ψ1:d`
− Ψ1:d`−1

)f yields the part of f that depends on
the first d` variables, but not only on the first d`−1 variables. For integration
of these parts we choose quadrature formulas Q1, . . . , QL, and we apply the
so-called multi-level algorithm

Q = Q1 ◦Ψ1:d1 +
L∑

`=2

Q` ◦ (Ψ1:d`
−Ψ1:d`−1

)
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for integration of Ψ1:dL
f .

Suppose that

Q`(f) =

n∑̀
i=1

a
(`)
i f(x

(`)
i )

with coefficients a
(`)
i ∈ R and knots x

(`)
i ∈ X . Then the quadrature formulas

Q` ◦Ψ1:d`
and Q` ◦Ψ1:d`−1

for ` > 1 use the coefficients a
(`)
i ∈ R together with

the knots
((x

(`)
i )1:d`

, c) ∈ X1:d`

and
((x

(`)
i )1:d`−1

, c) ∈ X1:d`−1
,

respectively. In particular,

cvar
s (Q) ≤ n1 · ds

1 +
L∑

`=2

n` · (ds
` + ds

`−1) ≤ 2 ·
L∑

`=1

n` · ds
` (7)

holds for the cost of the multi-level algorithm Q in the variable subspace
model.

4.2. General Error Bounds

Now we turn to the error analysis of multi-level algorithms. Put

b1:d(B(K)) = sup
f∈B(K)

|I(f)− I(Ψ1:df)|,

which is the worst case truncation error, and let B(K1:d) denote the unit ball
in H(K1:d).

Theorem 1. Under the assumptions (2), (3), and (4) the error of the multi-
level algorithm Q satisfies

e2(Q,B(K))

= e2(Q1, B(K1:d1)) +
L∑

`=2

(
e2(Q`, B(K1:d`

))− e2(Q`, B(K1:d`−1
))

)

+ b2
1:dL

(B(K)).
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Proof. Let h denote the representer of I, and let g` denote the representer of
Q`, i.e.,

I(f) = 〈f, h〉K
and

Q`(f) = 〈f, g`〉K
for every f ∈ H(K). Then the representer g of Q is given by

g = Ψ1:d1g1 +
L∑

`=2

(Ψ1:d`
−Ψ1:d`−1

)g` ∈ H(K1:dL
),

which implies Ψ1:dL
g = g. Use the orthogonal decomposition (6) for f = h−g

to obtain

e2(Q,B(K)) = ‖h− g‖2
K

= ‖Ψ1:d1(h− g1)‖2
K +

L∑

`=2

‖(Ψ1:d`
−Ψ1:d`−1

)(h− g`)‖2
K

+ ‖h−Ψ1:dL
h‖2

K .

Moreover, for ` > 1,

‖(Ψ1:d`
−Ψ1:d`−1

)(h− g`)‖2
K

= ‖Ψ1:d`
(h− g`)‖2

K − ‖Ψ1:d`−1
(h− g`)‖2

K

= e2(Q`, B(K1:d`
))− e2(Q`, B(K1:d`−1

)),

and
‖Ψ1:d1(h− g1)‖2

K = e2(Q1, B(K1:d1)).

According to Theorem 1 the squared error of the multi-level algorithm
Q can be decomposed into its squared truncation error and differences of
squared errors of the quadrature formulas Q` for integration in dimensions
d` and d`−1. Note that these differences are always non-negative.

Remark 1. In the particular case L = 1, i.e., for a single-level algorithm,
Theorem 1 yields the decomposition

e2(Q,B(K)) = b2
1:d(B(K)) + e2(Q,B(K1:d)), (8)
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which is due to [12, Thm. 1]. See [5, Lemma 8] for a counterpart for ran-
domized algorithms.

Put

m =

∫

D

∫

D

k(x, y) ρ(dx) ρ(dy)

and note that (2) implies m < ∞. Hence

b2
1:d(B(K)) =

d∏
j=1

(1 + γjm)

( ∞∏

j=d+1

(1 + γjm)− 1

)
¹

∞∑

j=d+1

γj (9)

holds for the truncation error, see [12].

Remark 2. In the particular case of equal weight quadrature formulas

Q`(f) =
1

n`

n∑̀
i=1

f(x
(`)
i )

the term e2(Q`, B(K1:d`
)) − e2(Q`, B(K1:d`−1

)) is the the difference between

square discrepancies of the same design {x(`)
1 , . . . ,x

(`)
n` } with respect to the

kernel functions K1:d`
and K1:d`−1

.

Our overall goal is to minimize the error of multi-level algorithms Q sub-
ject to a cost bound cvar

s (Q) ≤ N . While Theorem 1 provides an explicit
representation of the error, it is technically difficult to directly work with the
differences of errors for finite-dimensional integration problems. Thus we are
interested in useful upper bounds for these differences. The trivial bound

e2(Q`, B(K1:d`
))− e2(Q`, B(K1:d`−1

)) ≤ e2(Q`, B(K1:d`
))

immediately removes any advantage of the multi-level approach, but a mod-
ification of this idea works well. To this end we introduce a suitable kernel
function K ′, which induces a weaker norm than K, such that

‖(Ψ1:d`
−Ψ1:d`−1

)f‖K′ ≤ κ
1/2
` · ‖(Ψ1:d`

−Ψ1:d`−1
)f‖K

with suitable numbers κ` ≤ 1. For randomized algorithms a counterpart of
this approach was developed in [5].

For the construction of K ′ we consider another sequence γ ′ = (γ′1, γ
′
2, . . .)

of positive weights, which satisfies the conditions

γj ≤ γ′j (10)
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for every j ∈ N and
∞∑

j=1

γ′j < ∞. (11)

We use these new weights to define

K ′(x,y) =
∞∏

j=1

(1 + γ′jk(xj, yj))

for x,y ∈ X ′ with

X ′ =
{
x ∈ DN :

∞∑
j=1

γ′jk(xj, xj) < ∞
}

.

The kernel functions K and K ′ differ only in terms of the different weights
used to define them. Hence Lemma 1 applies to K ′ as well, and the projec-
tions Ψv act on H(K ′) in the same way as they act on H(K).

Let γ′u etc. be defined in the canonical way. From (10) we get γu ≤ γ′u as
well as X ′ ⊆ X . If X ′ = X then H(K) ⊆ H(K ′). In general,

if = f |X ′

defines a bounded linear mapping i : H(K) → H(K ′). Furthermore, we may
identify the sets H(kv) and H(k′v) as well as H(Kv) and H(K ′

v), since their
elements only depend on the variables xj with j ∈ v.

Theorem 2. Put κ1 = 1 and let

κ` = max
d`−1<j≤d`

γj

γ′j

for 2 ≤ ` ≤ L. Under the assumptions (2), (3), (10), and (11) the error of
the multi-level algorithm Q satisfies

e2(Q,B(K)) ≤ b2
1:dL

(B(K)) +
L∑

`=1

κ` · e2(Q`, B(K ′
1:d`

)).

Proof. In view of Theorem 1 is suffices to show that

e2(Q`, B(K1:d`
))− e2(Q`, B(K1:d`−1

)) ≤ κ` · e2(Q`, B(K ′
1:d`

))
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for ` > 1 and
e2(Q1, B(K1:d1)) ≤ e2(Q1, B(K ′

1:d1
)).

At first we determine the adjoint i∗ of i. Let f ′ =
∑

u∈U f ′u ∈ H(K ′) and
g =

∑
u∈U gu ∈ H(K) according to Lemma 1. Then

f =
∑

u∈U

γu

γ′u
f ′u ∈ H(K)

and

〈f, g〉K =
∑

u∈U
γ−1

u

〈
γu

γ′u
f ′u, gu

〉

ku

=
∑

u∈U
(γ′u)

−1 〈f ′u, gu〉ku
= 〈f ′, g〉K′ ,

i.e., i∗(f ′) = f .
Put

U1 = {u ∈ U : u ⊆ 1 : d1}
and

U` = {u ∈ U : u ⊆ 1 : d` and u 6⊆ 1 : d`−1}
for ` > 1. If f ′u = 0 for every u 6∈ U`, then

‖i∗f ′‖2
K = 〈f ′, ii∗f ′〉K′ =

∑

u∈U`

γu

γ′u
(γ′u)

−1 〈f ′u, f ′u〉ku

≤ max
u∈U`

γu

γ′u
‖f ′‖2

K′ ≤ κ` ‖f ′‖2
K′ . (12)

Now we use the notation and facts from the proof of Theorem 1. Let h′

and g′` denote the representers of I and Q`, respectively, on the space H(K ′).
Put

f ′` = (Ψ1:d`
−Ψ1:d`−1

)(h′ − g′`)

and
f` = (Ψ1:d`

−Ψ1:d`−1
)(h− g`)

for ` > 1 as well as
f ′1 = Ψ1:d1(h

′ − g′1)

and
f1 = Ψ1:d1(h− g1).
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Note that f ′` and f` represent the same functional, and therefore i∗f ′` = f`

for ` = 1, . . . , L. From (12) we get

e2(Q`, B(K1:d`
))− e2(Q`, B(K1:d`−1

)) = ‖f`‖2
K

≤ κ` · ‖f ′`‖2
K′ = κ` ·

(
e2(Q`, B(K ′

1:d`
))− e2(Q`, B(K ′

1:d`−1
))

)

≤ κ` · e2(Q`, B(K ′
1:d`

))

if ` > 1, as claimed. Analogously,

e2(Q1, B(K1:d1)) = ‖f1‖2
K ≤ ‖f ′1‖2

K′ = e2(Q`, B(K ′
1:d`

)).

The advantage of introducing the new set of weights γ′j is an upper bound
of a simpler form in Theorem 2, which is suitable for optimization under the
cost constraint cvar

s (Q) ≤ N . The disadvantage is that the upper bound is
not necessarily tight. The next section explores the choice of γ′j, L, d`, n`,
and Q` to make the upper bound as small as possible under the given cost
constraint.

4.3. Error Bounds under Strong Tractability Assumptions

In the sequel we strengthen our assumptions on the sequences γ and γ ′

of weights as well as on the reproducing kernel k. Concerning the weights we
assume that

γj ¹ j−1−2q (13)

and
γ′j = j2(q−q′) · γj (14)

with
q ≥ q′ > 0,

which implies (4), (10), and (11). Furthermore,

b2
1:d(B(K)) ¹ d−2q (15)

follows from (9) and (13).
For the finite-dimensional integration problems on the unit balls B(K ′

1:d)
we assume strong tractability, namely,

sup
d∈N

inf{e(Q,B(K ′
1:d)) : Q n-point quadrature formula} ¹ n−p′ (16)
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with p′ > 0, see, e.g., [8, 13, 16, 17, 6] as well as Section 6. Note that p′

typically depends on q′ and the kernel k.
For a vector d ∈ NL of increasing dimensions d1 ≤ . . . ≤ dL and a vector

n ∈ NL of integers n1, . . . , nL we put

U2(n,d) = d−2q
L +

L∑

`=1

n−2p′
` · d−2(q−q′)

`−1 ,

where d0 = 1, as well as

C(n,d) =
L∑

`=1

n` · ds
`.

Lemma 2. Assume (2), (3), (13), (14), and (16). For every L ∈ N and all
vectors n ∈ NL of integers and all vectors d ∈ NL of increasing dimensions
there exists a multi-level algorithm Qn,d such that

e(Qn,d, B(K)) ¹ U(n,d)

and
cvar
s (Qn,d) ¹ C(n,d).

Proof. Due to assumption (16) there exist quadrature formulas Qn`,d`
, which

use n` knots from the space X1:d`
and satisfy

e(Qn`,d`
, B(K ′

1:d`
)) ¹ n−p′

`

for ` = 1, . . . , L. Consider the multi-level algorithm

Qn,d = Qn1,d1 ◦Ψ1:d1 +
L∑

`=2

Qn`,d`
◦ (Ψ1:d`

−Ψ1:d`−1
).

Clearly, (7) yields the cost bound for Qn,d. Furthermore, (13) and (14) imply

κ` = max
d`−1<j≤d`

j−2(q−q′) = d
−2(q−q′)
`−1

for ` > 1. Observe (15) and apply Theorem 2 to obtain the error bound for
Qn,d.
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We minimize the upper error bound U(n,d) under the cost constraint
C(n,d) ≤ N , which leads to an upper bound for the minimal error for vari-
able subspace sampling. The result depends on the parameters q and q′,
which control the decay of the weights γj and γ′j, on the exponent p′ in the
tractability assumption (16), and on the exponent s, which controls the cost
of a single function evaluation.

Theorem 3. Assume (2), (3), (13), (14), and (16). Then the minimal errors
for variable subspace sampling satisfy

evar
s (N,B(K)) ¹

{
N
−p′·min

(
1,

q
p′s+q′

)
if p′s + q′ 6= q,

N−p′ · (log2 N)p′+1/2 if p′s + q′ = q.

Proof. According to Lemma 2

evar
s (N,B(K)) ≤ UN , (17)

where
UN = inf{U(n,d) : C(n,d) ≤ N}.

Hence it remains to establish suitable upper bounds for UN .
Put

η = q/(p′s + q′),

and choose

ξ ∈





]p′/(q − q′), 1/s[ if η > 1,

{1/s} if η = 1,

]p′/(p′s + q′), p′/q[ if η < 1.

Moreover, put

β =

{
1 if η ≥ 1,

1− ξq′/p′ otherwise.

We define

L =





dlog2 Ne if η > 1,

dlog2(N/ log2 N)e if η = 1,

dlog2 N/(ξ · (p′s + q′)/p′)e if η < 1,

(18)

and we define n(N) ∈ NL and d(N) ∈ NL by

n` =
⌈
2L−β·`⌉, d` =

⌈
2ξ·`⌉ (19)
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for ` = 1, . . . , L.
By definition,

C(n(N),d(N)) ³
L∑

`=1

2L−β·` · 2sξ·` = 2L ·
L∑

`=1

2(sξ−β)·`

and

U2(n(N),d(N)) ³ 2−2Lξq +
L∑

`=1

2−2p′·(L−β·`) · 2−2(q−q′)ξ·`

³ 2−2Lξq + 2−2Lp′ ·
L∑

`=1

2−2((q−q′)ξ−p′β)·`.

Assume that η > 1. Then sξ − β = sξ − 1 < 0 and therefore

C(n(N),d(N)) ³ 2L ³ N.

Furthermore, we have (q − q′)ξ − p′β = (q − q′)ξ − p′ > 0, which implies
qξ > p′ and consequently

U2(n(N),d(N)) ³ 2−2Lξq + 2−2Lp′ ³ 2−2Lp′ ³ N−2p′ .

Next, consider the case η = 1. Then sξ − β = (q − q′)ξ − p′β = 0, which
yields

C(n(N),d(N)) ³ 2L · L ³ (N/ log2 N) · log2(N/ log2 N) ³ N

as well as

U2(n(N),d(N)) ³ 2−2Lξq + 2−2Lp′ · L ³ 2−2Lp′ · L
³ (N/ log2 N)−2p′ · log2(N/ log2 N) ³ N−2p′ · (log2 N)2p′+1.

Finally, assume that η < 1. Then sξ − β = ξ(p′s + q′)/p′ − 1 > 0, which
implies

C(n(N),d(N)) ³ 2L · 2(sξ−β)·L = 2L·ξ(p′s+q′)/p′ ³ N.

Moreover, we have (q − q′)ξ − p′β = ξq − p′ < 0 and

(log2 N)p′η ≤ Lξq ≤ (log2 N)p′η + ξq,

which leads to

U2(n(N),d(N)) ³ 2−2Lξq + 2−2Lp′ · 22(p′−ξq)·L ³ 2−2Lξq ³ N−2p′η.
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Remark 3. The proof of Theorem 3 is constructive in the following sense.
Assume that γ′j ¹ j−1−2q′ permits the construction of n-point quadrature
formulas Qn,d for all n, d ∈ N, such that Qn,d uses knots from the space X1:d

and
sup
d∈N

e(Qn,d, B(K ′
1:d)) ¹ n−p′ ,

cf. (16). Then the multi-level algorithms defined by (18) and (19) yield
the upper bound for evar

s (N,B(K)) in Theorem 3. This convergence rate is
realized by focusing more sampling effort on the lower dimensions.

Remark 4. We stress that (17) is only an upper bound for the minimal
error evar

s (N,B(K)), since in its derivation we have imposed a multi-level
structure of the quadrature formulas, which effects the analysis of the cost,
and we have employed auxiliary weights, which effects the analysis of the
error. Nevertheless, we add that the upper bound for UN from the proof of
Theorem 3 is sharp, at least if q 6= p′s + q′.

For a proof of this fact let d ∈ NL with d1 ≤ . . . ≤ dL and n ∈ NL such
that C(n,d) ≤ N . Then n1 ≤ N and nLds

L−1 ≤ nLds
L ≤ N , and therefore

U(n,d) ≥ n−2p′
1 + n−2p′

L · d−2(q−q′)
L−1 + d−2q

L

≥ N−2p′ + n−2p′
L (N/nL)−2(q−q′)/s + (N/nL)−2q/s

= N−2p′ + N−2p′η · (r2q(1−1/η)/s + r2q/s
)

with
r = nL/N q′η/q.

If η < 1, then r2q(1−1/η)/s + r2q/s ≥ 1 and therefore U(n,d) ≥ N−2p′η. In any
case, U(n,d) ≥ N−2p′ .

Together with the upper bound from the proof of Theorem 3 this yields

UN ³ N
−2p′·min

(
1,

q
p′s+q′

)

if q 6= p′s + q′. In the case q = p′s + q′ we conclude that

N−2p′ ¹ UN ¹ N−2p′ · (log2 N)2p′+1.

Theorem 3 yields
λvar

s (B(K)) ≥ τvar
s (q)
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where λvar
s (B(K)) is defined in (5) and

τvar
s (q) = sup min

(
p′,

q

s + q′/p′

)
≤ min (sup p′, q/s) . (20)

Here the suprema are taken over all q′ ≤ q and p′ such that the strong
tractability assumption (16) is satisfied. This optimization is a nontrivial,
but sometimes solvable problem. In some cases, even the upper bound in
(20) is attainable and λvar

s (B(K)) = τvar
s (q), see Section 6.

Remark 5. For single-level algorithms, i.e., in the case L = 1, there is no
advantage in using auxiliary weights γ′j. Hence we take q′ = q so that (16)
becomes a strong tractability assumption for integration on the unit balls
B(K1:d). Here p′ > 0 typically depends on q and k. Accordingly

U2(n, d) = d−2q + n−2p′

and
C(n, d) = nds.

Minimizing U2(n, d) with respect to d and n given the constraint C(n, d) ≤ N
yields the following result. Under the assumptions (2), (3), (13), and (16)
we have

λfix
s (B(K)) ≥ p′′

1 + p′′s/q

for p′′ being the supremum over all p′ such that the strong tractability as-
sumption (16) is satisfied. See [12]. Again the proof is constructive in the
sense of Remark 3.

5. Lower Bounds for the Minimal Errors

To derive lower bounds for the minimal errors efix
s (N,B(K)) as well as

evar
s (N, B(K)) for the infinite-dimensional integration problem we consider

two extremal cases. Either we only take into account the truncation error
and suppose that any finite-dimensional integral can be computed exactly,
or we ignore the truncation error and only consider integration with respect
to a single variable.

In the latter case we employ the minimal error

e(n,B(k)) = inf{e(Q,B(k)) : Q n-point quadrature formula}
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for integration of functions f : D → R from the unit ball B(k) in the Hilbert
space H(k). We assume that

m =

∫

D

∫

D

k(x, y) ρ(dx) ρ(dy) > 0, (21)

which excludes that
∫

D
f(x) ρ(dx) = 0 for all f ∈ H(k).

Theorem 4. Under the assumptions (2), (3), (4), and (21) the minimal
errors satisfy

efix
s (N,B(K)) º inf

n·ds≤N

(( ∞∑

j=d+1

γj

)1/2

+ e(bN/dsc, B(k))

)

and

evar
s (N,B(K)) º

( ∞∑

j=bN1/sc+1

γj

)1/2

+ e(N, B(k)).

Proof. At first we derive the lower bound for variable subspace sampling.
Consider a quadrature rule Q with knots x1, . . . ,xn ∈ X such that cvar

s (Q) ≤
N . Then Q formally is a single-level algorithm with {x1, . . . ,xn} ⊆ X1:d for
d = bN1/sc, and therefore (8) is applicable. Observe that (9) and (21) imply

b2
1:d(B(K)) ³

∞∑

j=d+1

γj.

Finally, n ≤ N and therefore

e(Q,B(K1:d)) ≥ γ
1/2
1 · e(Q,B(k{1})) ≥ γ

1/2
1 · e(N, B(k)).

For fixed subspace sampling cfix
s (Q) ≤ N implies {x1, . . . ,xn} ⊆ X1:d with

n · ds ≤ N . Now we proceed as previously.

In [10, Thm. 3] a more sophisticated analysis is used to obtain a lower
bound for e∗s(N,B(K)).
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6. An Application

We consider the Lebesgue measure ρ on D = [0, 1] together with the
kernel function

k(x, y) = min(x, y)

for x, y ∈ D. Clearly (2) is satisfied, and (3) holds for the nominal value
c = 0. Furthermore, we assume a matching lower bound in (13), i.e.,

γj ³ j−1−2q.

It is well known that
e(n,B(k)) ³ n−1

for the corresponding one-dimensional integration problem.
From Theorem 4 we get the following facts, which correspond to lower

bounds for minimal errors.

Corollary 1. We have

λfix
s (B(K)) ≤ q

q + s

and
λvar

s (B(K)) ≤ min
(q

s
, 1

)
.

Strong tractability results for the corresponding finite-dimensional inte-
gration problems with respect to the uniform distribution on [0, 1]d are es-
tablished in [8, 17], see also [15]. We take auxiliary weights γ′j according to

(14). Since γ′j ³ j−1−2q′ with q′ > 0, the strong tractability assumption (16)
is satisfied for every

p′ < min(1, q′ + 1/2),

and the corresponding n-point quadrature formulas may be chosen as rank-1
lattice rules, see [8].

Now we turn to the optimization problem (20) how to select the param-
eters of the corresponding multi-level algorithms. In the case

0 < q < s/2

we choose q′ arbitrarily close to zero to obtain p′ arbitrarily close to 1/2 and

τvar
s (q) =

q

s
.
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In the case
s/2 ≤ q < s + 1/2

we choose

q′ =
q − s/2

s + 1

to obtain p′ arbitrarily close to (q + 1/2)/(s + 1) and finally

τvar
s (q) ≥ sup

0<q′≤q
min

(
1, q′ + 1/2,

q

s + q′/ min(1, q′ + 1/2)

)
=

q + 1/2

s + 1
.

In the case
q ≥ s + 1/2

we choose
q′ = 1/2

to obtain p′ arbitrarily close to one and

τvar
s (q) = 1.

The latter analysis and similar arguments for single-level algorithms, see
Remark 5, imply the following facts, which correspond to upper bounds for
the minimal errors. These upper bounds are achieved constructively, see
Remark 3 and [8].

Corollary 2. We have

min

(
q

q + s
,

q

2q/(2q + 1) + s

)
≤ λfix

s (B(K))

and

min

(
q

s
,
q + 1/2

s + 1
, 1

)
≤ λvar

s (B(K)).

It is interesting to compare Corollary 1 and Corollary 2 with the following
upper and lower bounds for λ∗s(B(K)), i.e., with lower and upper bounds for
the minimal error e∗s(N,B(K)), see [10, p. 18].

Theorem 5 (Kuo et al. (2009)). We have

max

(
q

q + 1
, min

(
q

q + s
,

q

2q/(2q + 1) + s

))
≤ λ∗s(B(K))

≤ min

(
q

min(s, 1)
, 1

)
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Let us consider the particular case s = 1. Then we have

λfix
1 (B(K)) =

q

q + 1

if q ≥ 1/2, while we only know that

q

2q/(2q + 1) + 1
≤ λfix

1 (B(K)) ≤ q

q + 1

otherwise. Hence the single-level algorithm according to Remark 5 is optimal
for fixed subspace sampling in the case q ≥ 1/2 and close to being optimal
for q < 1/2, since the fraction of the lower and upper bound for λfix

s (B(K))
is at least 0.93 for q ∈ ]0, 1/2[. For variable subspace sampling

λvar
1 (B(K)) = min (q, 1) (22)

for |q − 1| ≥ 1/2, which shows that the multi-level algorithm according to
Remark 3 is optimal in this case. For |q − 1| < 1/2 we only know that

q + 1/2

2
≤ λvar

1 (B(K)) ≤ min (q, 1) (23)

with a significant gap between the upper and the lower bound. Still vari-
able subspace sampling is superior to fixed subspace sampling for all q > 0.
Finally, by Theorem 5,

q

q + 1
≤ λ∗1(B(K)) ≤ min (q, 1) . (24)

The corresponding upper bound N−q/(q+1) for the minimal error e∗1(N, B(K))
is achieved constructively by so-called changing dimension algorithms intro-
duced in [10]. The bound is always larger than the corresponding error bound
for a suitable multi-level algorithm, and it is close to or even coincides with
the upper error bound for a suitable single-level algorithm. Combining (22),
(24), and λvar

1 (B(K)) ≤ λ∗1(B(K)) we obtain

λvar
1 (B(K)) = λ∗1(B(K)) = min (q, 1) , if |q − 1| ≥ 1/2,

q + 1/2

2
≤ λvar

1 (B(K)) ≤ λ∗1(B(K)) ≤ min (q, 1) , if |q − 1| ≥ 1/2.

Thus we have optimality of the multi-level algorithm even in the cost model
from [10] for |q− 1| ≥ 1/2, and in the case |q− 1| < 1/2 we get an improved

lower bound λ∗1(B(K)) ≥ q+1/2
2

in (24). See Figure 1 for an illustration.
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Figure 1: Upper and lower bounds for the exponents λ†1(B(K)) in the case K = min.

We stress, however, that for every fixed q > 0

lim
s→∞

λvar
s (B(K)) = 0,

while
inf
s>0

λ∗s(B(K)) ≥ q

q + 1
> 0.

Consequently, for large values of s, the changing dimension algorithm to-
gether with the cost model from [10] outperforms variable subspace sampling.

Niederreiter (T, d)-nets may serve as well as building blocks for the multi-
level construction. In fact, if q ≥ q′ > 1/2 then the corresponding equal
weight quadrature formulas yield any exponent

p′ < min(1, q′/2 + 1/4)

28



in the strong tractability estimate (16), see [17]. Exploiting this range of
parameters in the optimization problem (20) we obtain

τvar
s (q) ≥ min

(
q

s + 1
,
q + 1/2

s + 2
, 1

)
.

Due to Corollary 2 this bound is suboptimal as long as q < s + 3/2. For
larger values of q, however, Niederreiter (T, d)-nets together with the multi-
level construction achieve optimality, see Corollary 1.

Remark 6. Although the above discussion focuses on ρ as the uniform dis-
tribution on D = [0, 1], the results derived in the previous sections can also
be applied to the case where ρ is the Gaussian distribution on D = R, as
suggested by the option pricing example. See [17, 7] for relevant kernels, k,
and strong tractability results for this case.

Remark 7. The lattice and net designs discussed previously have the ad-
vantage of being extensible in both dimension and sample size. This allows
one to use parts of one large design for each level of the multi-level algorithm.
Specifically, one can remove the superscript (`) labeling the design points in
Remark 2 and re-arrange the terms to arrive at an equivalent formula that
uses fewer arithmetic operations.

To illustrate this fact assume n1 > n2 > · · · > nL > nL+1 = 0, and put
d0 = 0, which implies f(x1:d0 , c) = 0 for every f ∈ H(K) and every x ∈ X .
Then the multi-level algorithm Q satisfies

Q(f) =
L∑

`=1

1

n`

n∑̀
i=1

(
f((xi)1:d`

, c)− f((xi)1:d`−1
, c)

)

=
L∑

`=1

L∑

k=`

nk∑
i=nk+1+1

1

n`

(
f((xi)1:d`

, c)− f((xi)1:d`−1
, c)

)

=
L∑

k=1

nk∑
i=nk+1+1

k∑

`=1

1

n`

(
f((xi)1:d`

, c)− f((xi)1:d`−1
, c)

)

=
L∑

k=1

nk∑
i=nk+1+1

(
1

nk

f((xi)1:dk
, c) +

k−1∑

`=1

(
1

n`

− 1

n`+1

)
f((xi)1:d`

, c)

)

=
L∑

k=1


 1

nk

nk∑
i=nk+1+1

f((xi)1:dk
, c) +

k−1∑

`=1

n`+1 − n`

n` · n`+1

nk∑
i=nk+1+1

f((xi)1:d`
, c)


 .
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We observe that for each point xi ∈ X of the design with n`+1 < i ≤ n` one
only uses the first d` component. Moreover,

cvar
s (Q) ≤

L∑

`=1

n` · ds
`,

cf. (7). The savings here does not affect order of operations required for the
multi-level algorithm but will have an affect on leading constants.
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