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COMPACTLY SUPPORTED SHEARLETS ARE
OPTIMALLY SPARSE

GITTA KUTYNIOK∗ AND WANG-Q LIM †

Abstract. Cartoon-like images, i.e., C2 functions which are smooth apart from a C2 disconti-
nuity curve, have by now become a standard model for measuring sparse (non-linear) approximation
properties of directional representation systems. It was already shown that curvelets, contourlets,
as well as shearlets do exhibit (almost) optimally sparse approximation within this model. How-
ever, all those results are only applicable to band-limited generators, whereas, in particular, spatially
compactly supported generators are of uttermost importance for applications.

In this paper, we now present the first complete proof of (almost) optimally sparse approximations
of cartoon-like images by using a particular class of directional representation systems, which indeed
consists of compactly supported elements. This class will be chosen as a subset of shearlet frames –
not necessarily required to be tight – with shearlet generators having compact support and satisfying
some weak moment conditions.

Key words. Curvilinear discontinuities, edges, nonlinear approximation, optimal sparsity,
shearlets, thresholding, wavelets
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1. Introduction. In computer vision, edges were detected as those features gov-
erning an image while separating smooth regions in between. About 10 years ago,
mathematicians started to design models of images incorporating those findings aim-
ing at designing representation systems which – in such a model – are capable of
resolving edges in an optimally sparse way. However, customarily, at that time an
image was viewed as an element of a compact subset of Lp characterized by a given
Besov regularity with the Kolmogorov entropy of such sets identifying lower bounds
for the distortion rates of encoding-decoding pairs in this model. Although wavelets
could be shown to behave optimally [2] as an encoding methodology, Besov models
are clearly deficient since edges are not adequately captured. This initiated the intro-
duction of a different model, called cartoon-like model (see [5, 19, 1]), which revealed
the suboptimal treatment of edges by wavelets.

The introduction of tight curvelet frames in 2004 by Candés and Donoho [1], which
provably provide (almost) optimally sparse approximations within such a cartoon-like
model can be considered a milestone in applied harmonic analysis. One year later,
contourlets were introduced by Do and Vetterli [4] which similarly derived (almost)
optimal approximation rates. In the same year, shearlets were developed by Labate,
Weiss, and the authors in [17] as the first directional representation system with allows
a unified treatment of the continuum and digital world similar to wavelets, while also
providing (almost) optimally sparse approximations within such a cartoon-like model
[11].

In most applications, spatial localization of the analyzing elements of an encoding
system is of uttermost importance both for a precise detection of geometric features as
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2 G. KUTYNIOK AND WANG-Q LIM

well as for a fast decomposition algorithm. However, none of the previously mentioned
results cover this situation. In fact, the proofs which were provided do by no means
extend to this crucial setting.

In this paper, we now present the first complete proof of (almost) optimally
sparse approximations of cartoon-like images by using a particular class of directional
representation systems, which indeed consist of compactly supported elements. This
class will be chosen as a subset of shearlet frames – not necessarily required to be
tight – with shearlet generators having compact support and satisfying some weak
moment conditions. Interestingly, our proof is very different from all previous ones
caused by the extensive exploration of the compact support of the shearlet generators
and the lack of directional vanishing moments.

1.1. A Suitable Model for Images: Cartoon-Like Images. Intuitively,
cartoons are smooth image parts separated from other areas by an edge. After a series
of initial models [5, 19], the first complete model of cartoons has been introduced in
[1], and this is what we intend to use also here. The basic idea is to choose a closed
boundary curve and then fill the interior and exterior part with C2 functions (see
Figure 1.1).

Fig. 1.1. Example of a cartoon-like image.

Let us now be more precise, and introduce STAR2(ν), a class of indicator func-
tions of sets B with C2 boundaries ∂B and curvature bounded by ν, as well as E2(ν),
a class of cartoon-like images. For this, in polar coordinates, we let ρ(θ) → [0, 1]2 be
a radius function and define the set B by

B = {x ∈ R
2 : |x| ≤ ρ(θ), x = (|x|, θ) in polar coordinates}.

In particular, the boundary ∂B of B is given by the curve

β(θ) =

(
ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
, (1.1)

and the class of boundaries of interest to us are defined by

sup |ρ
′′

(θ)| ≤ ν, ρ ≤ ρ0 < 1. (1.2)

The following definition now introduces the notions STAR2(ν) and E2(ν) from [1].
As it is custom, we denote the space of continuously differentiable functions on [0, 1]2

with compact support by C0([0, 1]2).
Definition 1.1. For ν > 0, the set STAR2(ν) is defined to be the set of all

B ⊂ [0, 1]2 such that B is a translate of a set obeying (1.1) and (1.2). Further, E2(ν)
denotes the set of functions f ∈ L2(R2) of the form

f = f0 + f1χB,
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where f0, f1 ∈ C2
0 ([0, 1]2), B ∈ STAR2(ν), and ‖f‖C2 =

∑
|α|≤2 ‖D

αf‖∞ ≤ 1.

1.2. Optimal Sparsity of a Directional Representation System. The
‘quality’ of the performance of a (directional) representation system with respect
to cartoon-like images is typically measured by taking a non-linear approximation
viewpoint. More precisely, given a cartoon-like image f ∈ E2(ν) and a (directional)
representation system (σi)i∈I which forms an orthonormal basis, the chosen measure
is the asymptotic behavior of the best N -term (non-linear) approximation error in L2

norm in the number of terms N , i.e.,

‖f − fN‖
2
2 =

∥∥∥f −
∑

i∈IN

〈f, σi〉σi

∥∥∥
2

2
as N → ∞,

where (〈f, σi〉)i∈IN are the N largest coefficients 〈f, σi〉 in magnitude. Wavelet bases
exhibit the approximation rate

‖f − fN‖
2
2 ≤ C ·N−1 as N → ∞.

However, Donoho proved in [6] that the optimal rate which can be achieved under
some restrictions on the representation system as well as on the selection procedure
of the approximating coefficients is

‖f − fN‖
2
2 ≤ C ·N−2 as N → ∞.

It was a breakthrough in 2004, when Candés and Donoho introduced the tight curvelet
frame in [1] and proved that this system indeed does satisfy

‖f − fN‖2
2 ≤ C ·N−2 · (logN)3 as N → ∞,

where again the approximation fN was generated by the N largest coefficients in
magnitude. Although the optimal rate is not completely achieved, the log-factor is
typically considered negligible compared to the N−2-factor, wherefore the term ‘al-
most optimal’ has been adopted into the language. This result is even more surprising
taking into account that in case of a tight frame the approximation by the N largest
coefficients in magnitude does not even always yield the best N -term approximation.

1.3. (Compactly Supported) Shearlet Systems. The directional represen-
tation system of shearlets has recently emerged and rapidly gained attention due to
the fact that – in contrast to other proposed directional representation systems –
shearlets provide a unified treatment of the continuum and digital world similar to
wavelets. We refer to, e.g., [9, 15] for the continuum theory, [16, 8, 18] for the digital
theory, and [10, 7] for recent applications.

Shearlets are scaled according to a parabolic scaling law encoded in the parabolic
scaling matrices A2j or Ã2j , j ∈ Z, and exhibit directionality by parameterizing slope
encoded in the shear matrices Sk, k ∈ Z, defined by

A2j =

(
2j 0

0 2j/2

)
or Ã2j =

(
2j/2 0
0 2j

)

and

Sk =

(
1 −k
0 1

)
,
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respectively.
To ensure an (almost) equal treatment of the different slopes, which is evidently

of significant importance for practical applications, we partition the frequency plane
into the following four cones C1 – C4:

Cι =






{(ξ1, ξ2) ∈ R
2 : ξ1 ≥ 1, |ξ2/ξ1| ≥ 1} : ι = 1,

{(ξ1, ξ2) ∈ R
2 : ξ2 ≥ 1, |ξ1/ξ2| ≤ 1} : ι = 2,

{(ξ1, ξ2) ∈ R
2 : ξ1 ≤ −1, |ξ2/ξ1| ≥ 1} : ι = 3,

{(ξ1, ξ2) ∈ R
2 : ξ2 ≤ −1, |ξ1/ξ2| ≤ 1} : ι = 4,

and a centered rectangle

R = {(ξ1, ξ2) ∈ R
2 : ‖(ξ1, ξ2)‖∞ < 1}.

For an illustration, we refer to Figure 1.2(a).

C = C1

C2

C3

R

C4

(a) (b)

Fig. 1.2. (a) The cones C1 – C4 and the centered rectangle R in frequency domain. (b) The
tiling of the frequency domain induced by a (cone-adapted) shearlet system.

The rectangle R corresponds to the low frequency content of a signal and is
customarily represented by translations of some scaling function. Anisotropy comes
into play when encoding the high frequency content of a signal which corresponds
to the cones C1 – C4, where the cones C1 and C3 as well as C2 and C4 are treated
separately as can be seen in the following

Definition 1.2. For some sampling constant c > 0, the (cone-adapted) shearlet
system SH(c;φ, ψ, ψ̃) generated by a scaling function φ ∈ L2(R2) and shearlets ψ, ψ̃ ∈
L2(R2) is defined by

SH(c;φ, ψ, ψ̃) = Φ(c, φ) ∪ Ψ(c, ψ) ∪ Ψ̃(c, ψ̃),

where

Φ(c, φ) = {φm = φ(· − cm) : m ∈ Z
2},

Ψ(c, ψ) = {ψj,k,m = 23j/4ψ(SkA2j · −cm) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z
2},

and

Ψ̃(c, ψ̃) = {ψ̃j,k,m = 23j/4ψ̃(STk Ã2j · −cm) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z
2}.

The reader should keep in mind that although not indicated by the notation, the
functions φm, ψj,k,m, and ψ̃j,k,m all depend on the sampling constant c. For the sake
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of brevity, we will often write ψλ and ψ̃λ, where λ = (j, k,m) index scale, shear, and
position. For later use, we further let Λj be the indexing sets of shearlets in Ψ(c, ψ)

and Ψ̃(c, ψ̃) at scale j, respectively, i.e.,

Ψ(c, ψ) = {ψλ : λ ∈ Λj, j = 0, . . . ,∞} and Ψ̃(c, ψ̃) = {ψ̃λ : λ ∈ Λj , j = 0, . . . ,∞}.

Finally, we define

Λ =

∞⋃

j=0

Λj and Λ̃ =

∞⋃

j=0

Λ̃j .

The tiling of frequency domain induced by SH(c;φ, ψ, ψ̃) is illustrated in Figure
1.2(b). From this illustration, the anisotropic footprints of shearlets contained in
Ψ(c, ψ) and Ψ̃(c, ψ̃) can clearly be seen. However, the reader should notice that the
tiling indicated here is based on the essential support and not the exact support of
the analyzing elements, since our focus will be on shearlet systems associated with
spatially compactly supported generators. The corresponding anisotropic footprints of
shearlets in spatial domain are of size 2−j/2 times 2−j. A beautiful intuitive extensive
explanation of why it is conceivable that such a system – based on parabolic scaling –
exhibits optimal sparse approximation of cartoon-like images, is provided in [1], and
we would like to refer the reader to this paper. The main idea is to count the number
of shearlets intersecting the discontinuity curves, which is ‘small’ compared to the
number of such wavelets, due to their anisotropic footprints.

Certainly, we naturally ask the question when SH(c;φ, ψ, ψ̃) does form a frame for
L2(R2). The wavelet literature provides various necessary and sufficient conditions

for Φ(c, φ) to form a frame for L2({f ∈ L2(R2) : supp(f̂) ⊆ R}), also when φ is
compactly supported in spatial domain. Although not that well-studied as wavelets
yet, several answers are also known for the question when Ψ(c, ψ) forms a frame for

L2({f ∈ L2(R2) : supp(f̂) ⊆ C1 ∪ C3}),

and we refer to results in [9, 14, 3, 13]. Since Ψ(c, φ) and Ψ̃(c, ψ̃) are linked by a simple
rotation of 90o, these results immediately provide conditions for Ψ̃(c, ψ̃) to constitute
a frame for

L2({f ∈ L2(R2) : supp(f̂) ⊆ C2 ∪ C4}).

Very recent results in [12] even focus specifically on the case of spatially compactly
supported shearlets – of uttermost importance for application due to their superior
localization. For instance, in [12], the following special class of compactly supported
shearlet frames for L2(R2) was constructed: The generating shearlets ψ and ψ̃ were
chosen separable, i.e., of the form ψ1(x1) · ψ2(x2) and ψ1(x2) · ψ2(x1), respectively,
where ψ1 is wavelet and ψ2 a scaling function both associated with some carefully
chosen low pass filter. Intriguingly, our main result in this paper (Theorem 1.3)
proves as a corollary that this class of compactly supported shearlet frames provides
(almost) optimally sparse approximations of cartoon-like images. We refer to [12] for
the precise statement.

Combining those thoughts, we can attest that frame properties of SH(c;φ, ψ, ψ̃)
including spatially compactly supported generators are already quite well studied.
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1.4. Optimally Sparse Approximation of Cartoon-Like Images by Shear-
lets. The concept of optimally sparse approximation of cartoon-like images of general
(directional) representation systems was already discussed in Section 1.2. However,
the attentive reader will have realized that only the situation of tight frames was stud-
ied whereas here we intend to consider sparse approximations by arbitrary frames.
Hence this situation deserves a careful commenting.

Let SH(c;φ, ψ, ψ̃) be a shearlet frame for L2(R2), which for illustrative purposes
for a moment we denote by SH(c;φ, ψ, ψ̃) = (σi)i∈I , say. Is it well-known that a frame
is associated with a canonical dual frame, which in this case we want to call (σ̃i)i∈I .
Then we define the N -term approximation fN of a cartoon-like image f ∈ E2(ν) by
the frame SH(c;φ, ψ, ψ̃) to be

fN =
∑

i∈IN

〈f, σi〉σ̃i,

where (〈f, σi〉)i∈IN are the N largest coefficients 〈f, σi〉 in magnitude. As in the tight
frame case, this procedure does not always yield the best N -term approximation, but
surprisingly even with this ‘crude’ selection procedure – in the situation of spatially
compactly supported generators – we can prove an (almost) optimally sparse approx-
imation rate as our main result shows.

Theorem 1.3. Let c > 0, and let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported. Sup-
pose that, in addition, for all ξ = (ξ1, ξ2) ∈ R

2, the shearlet ψ satisfies

(i) |ψ̂(ξ)| ≤ C1 · min(1, |ξ1|α) · min(1, |ξ1|−γ) · min(1, |ξ2|−γ) and

(ii)
∣∣∣ ∂
∂ξ2

ψ̂(ξ)
∣∣∣ ≤ |h(ξ1)| ·

(
1 + |ξ2|

|ξ1|

)−γ

,

where α > 5, γ ≥ 4, h ∈ L1(R), and C1 is a constant, and suppose that the shearlet
ψ̃ satisfies (i) and (ii) with the roles of ξ1 and ξ2 reversed. Further, suppose that
SH(c;φ, ψ, ψ̃) forms a frame for L2(R2).

Then, for any ν > 0, the shearlet frame SH(c;φ, ψ, ψ̃) provides (almost) optimally
sparse approximations of functions f ∈ E2(ν), i.e., there exists some C > 0 such that

‖f − fN‖
2
2 ≤ C ·N−2 · (logN)

3
as N → ∞,

where fN is the nonlinear N-term approximation obtained by choosing the N largest
shearlet coefficients of f .

Condition (i) can be interpreted as both a condition ensuring (almost) separable
behavior as well as a first order moment condition along the horizontal axis, hence
enforcing directional selectivity. This condition ensures that the support of shearlets
in frequency domain is essentially of the form indicated in Figure 1.2(b).

Condition (ii) combined with a modified version of condition (ii) by leaving out
the derivative – this being implied by condition (i) – can be viewed as a generalization,
thereby weakening, of a second order directional vanishing moment condition, which
is crucial for having fast decay of the shearlet coefficients when the corresponding
shearlet ψλ intersects the discontinuity curve. For the precise definition of directional
vanishing moments, we refer to [4].

Notice also that intriguingly, the – the ‘true’ optimality destroying – log-factor
has the same exponent as in the curvelet-, contourlet-, and shearlet-result on (almost)
optimally sparse approximation.
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1.5. Prior Work and Our Contribution. In 2004, Candés and Donoho [1]
achieved a breakthrough when introducing tight curvelet frames, which provide (al-
most) optimally sparse approximations of cartoon-like images (functions in E2(ν)).
The main outline of their proof is to break [0, 1]2 into smaller cubes and then sepa-
rately analyze the curvelet coefficients essentially centered in the smooth part of the
model and those essentially centered on the discontinuity curve. For both sets of
coefficients their weak-ℓ2/3 norm is estimated; the estimate for the ‘non-smooth part’
also requiring the usage of the Radon transform.

A year later, Do and Vetterli [4] introduced contourlets and proved similar sparsity
results for those. However, although their work includes contourlets with compact
support, their construction is fully based on discrete filter banks so that directional
selectivity is problematic. Because of this fact, infinite directional vanishing moments
had to be artificially imposed in order to achieve (almost) optimal sparsity. However,
this is impossible for any function with compact support to satisfy. Hence, similar to
curvelets, optimal sparsity is only proven for band-limited contourlets.

In 2005, shearlets were introduced as the first directional representation system
ensuring a unified treatment of the continuum and digital world by Labate, Weiss,
and the authors in [17]. One year later, Labate and Guo proved (almost) optimally
sparse approximations of cartoon-like images for the at that time customarily utilized
shearlet frames [11], which are band-limited such as curvelets. The proof the authors
provided follows the proof in [1] very closely step by step.

Concluding, although those pioneering studies deserve all our credit, these re-
sults are far from including the important class of directional representation systems
consisting of compactly supported functions.

The main contribution of this paper is to provide the first complete proof of (al-
most) optimally sparse approximations of cartoon-like images using a directional rep-
resentation system consisting of compactly supported functions. Our proof is indeed
very different from all previous ones caused by the necessary extensive exploration of
the compact support of the shearlet generators, the only similarity being the breaking
of [0, 1]2 into smaller cubes and the separate consideration of shearlet coefficients now
being exactly contained – in contrast to being essentially contained for all other sys-
tems – in the smooth part and those which intersect the discontinuity curve. Previous
results all require moment conditions along the direction of the discontinuity curve
– thereby requiring vanishing moments along infinitely many directions asymptoti-
cally in scale –, which is trivially satisfied for band-limited generators. Intriguingly, a
weaker version of directional vanishing moments, even only in one direction and the
shearing taking care of the remaining directions, is sufficient for our analysis.

1.6. Outline. In Section 2, we present the overall structure of the proof, the
results of the analysis of shearlet coefficients being contained in the smooth part and
those which intersect the discontinuity curve, and – based on these results – state
the proof of Theorem 1.3. The proofs of the results on the behavior of shearlet
coefficients in the smooth and non-smooth part are then carried out in Sections 3 and
4, respectively.

2. Architecture of the Proof of Theorem 1.3. We now detail the general
structure of the proof of Theorem 1.3, starting by introducing useful notions and
explaining the blocking into smaller boxes and splitting into the smooth and non-
smooth part. Then the main results concerning the analysis of shearlet coefficients
being entirely contained in the smooth part and those intersecting the discontinuity
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curve will be presented followed by the proof of Theorem 1.3 based on those.

2.1. General Organization. Let now SH(c;φ, ψ, ψ̃) satisfy the hypotheses of
Theorem 1.3, and let f ∈ E2(ν). Further, we let A denote the lower frame bound of
SH(c;φ, ψ, ψ̃).

We first observe that, without loss of generality, we might assume the scaling index
j to be sufficiently large, since f as well as all frame elements in the shearlet frame
SH(c;φ, ψ, ψ̃) are compactly supported in spatial domain, hence a finite number does
not contribute to the asymptotic estimate we aim for. In particular, this means that
we do not need to consider frame elements from Φ. Also, we are allowed to restrict
our analysis to shearlets ψj,k,m, since the frame elements ψ̃j,k,m can be handled in a
similar way.

Our main concern will be to derive appropriate estimates for the shearlet coeffi-
cients {〈f, ψλ〉 : λ ∈ Λ} of f . Letting |θ(f)|n denote the nth largest shearlet coefficient
〈f, ψλ〉 in absolute value and exploring the frame property of SH(c;φ, ψ, ψ̃), we con-
clude that

‖f − fN‖
2
2 ≤

1

A

∑

n>N

|θ(f)|2n,

for any positive integer N . Thus, for the proof of Theorem 1.3, it suffices to show
that

∑

n>N

|θ(f)|2n ≤ C ·N−2 · (logN)
3

as N → ∞. (2.1)

To derive the anticipated estimate in (2.1), for any shearlet ψλ, we will study two
separate cases:

• Case 1. The compact support of the shearlet ψλ does not intersect the bound-
ary of the set B, i.e., supp(ψλ) ∩ ∂B = ∅.

• Case 2. The compact support of the shearlet ψλ does intersect the boundary
of the set B, i.e., supp(ψλ) ∩ ∂B 6= ∅.

Notice that this exact distinction is only possible due to the spatial compact support
of all shearlets in the shearlet frame.

In the sequel – since we are concerned with an asymptotic estimate – for simplicity
we will often simply use C as a constant although it might differ for each estimate.
Also all the results in the sequel are independent on the sampling constant c > 0,
wherefore we now fix it once and for all.

2.2. The Smooth and the Non-Smooth Part. To illustrate which conditions
on ψ required by Theorem 1.3 are utilized for the decay estimates of the different cases,
in this section we do not make any initial assumptions on ψ.

Let us start with the smooth part, which is the easier one to handle. Dealing
with this part allows us to consider some g ∈ C2

0 ([0, 1]2) and estimate its shearlet
coefficients. This is done in the following proposition. Notice that the hypothesis on
ψ of the following result is implied by condition (i) in Theorem 1.3.

Proposition 2.1. Let g ∈ C2
0 ([0, 1]2), and let ψ ∈ L2(R2) be compactly supported

and satisfy

|ψ̂(ξ)| ≤ C1 · min(1, |ξ1|
α) · min(1, |ξ1|

−γ) · min(1, |ξ2|
−γ) for all ξ = (ξ1, ξ2) ∈ R

2,
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where γ > 3, α > γ + 2, and C1 is a constant. Then, there exists some C > 0 such
that

∑

n>N

|θ(g)|2n ≤ C ·N−2 as N → ∞.

Thus, in this case, optimal sparsity is achieved. The proof of this proposition is
given in Section 3.

Next, we turn our attention to the non-smooth part, in particular, to estimating
those shearlet coefficients whose spatial support intersects the discontinuity curve.
For this, we first need to introduce some new notations. For any scale j ≥ 0 and any
grid point p ∈ Z

2, we let Qj,p denote the dyadic cube defined by

Qj,p = [−2−j/2, 2−j/2]2 + 2−j/2p.

Further, let Qj be the collection of those dyadic cubes Qj,p which intersect ∂B, i.e.,

Qj = {Qj,p : Qj,p ∩ ∂B 6= ∅, p ∈ Z
2}.

Of interest to us is also the set of shearlet indices, which are associated with shearlets
intersecting the discontinuity curve inside some Qj,p ∈ Qj , i.e., for j ≥ 0 and p ∈ Z

2

with Qj,p ∈ Qj , we will consider the index set

Λj,p = {λ ∈ Λj : supp(ψλ) ∩ Qj,p ∩ ∂B 6= ∅}.

Finally, for j ≥ 0, p ∈ Z
2, and 0 < ε < 1, we define Λj,p(ε) to be the index set

of shearlets ψλ, λ ∈ Λj,p, such that the magnitude of the corresponding shearlet
coefficient 〈f, ψλ〉 is larger than ε and the support of ψλ intersects Qj,p at the jth
scale, i.e.,

Λj,p(ε) = {λ ∈ Λj,p : |〈f, ψλ〉| > ε},

and we define Λ(ε) to be the index set for shearlets so that |〈f, ψλ〉| > ε across all
scales j, i.e.,

Λ(ε) =
⋃

j,p

Λj,p(ε).

The expert reader will have noticed that in contrast to the proofs in [1] and [11], which
also split the domain into smaller scale boxes, we do not apply a weight function to
obtain a smooth partition of unity. In our case, this is not necessary due to the spatial
compact support of the frame elements.

As mentioned at the beginning of this section, we may assume that j is sufficiently
large. Given some scale j ≥ 0 and position p ∈ Z

2 for which the associated cube Qj,p

satisfies Qj,p ∈ Qj . Then the set

Sj,p =
⋃

λ∈Λj,p

supp(ψλ)

is contained in a cubic window of size C ·2−j/2 by C ·2−j/2, hence is of asymptotically
the same size as Qj,p. Thus, we are facing the following two cases (see also Figure
2.1):
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• Case 2a. The edge curve ∂B can be parameterized by (E(x2), x2) with E ∈
C2([0, 1]) inside Sj,p such that, for any λ ∈ Λj,p, there exists some x̂ =
(x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying |E′(x̂2)| <∞.

• Case 2b. The edge curve ∂B can be parameterized by (x1, E(x1)) with E ∈
C2([0, 1]) inside Sj,p such that, for any λ ∈ Λj,p, there exists some x̂ =
(x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂1) = 0.

Case 2b deserves a closer look. Here, we assume that for any λ ∈ Λj,p, there
exists some x̂ = (x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂1) = 0. It seems that
we would need to assume that there exists some λ ∈ Λj,p and some x̂ = (x̂1, x̂2) ∈
Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂1) = 0. However, all other indices λ ∈ Λj,p can
be treated as belonging to Case 2a. Therefore, WLOG we can assume that the edge
curve is a horizontal line inside Sj,p, and hence any shearlet intersects the edge curve
in some point x̂ with E′(x̂1) = 0.

(a) (b)

Fig. 2.1. (a) A part of the curve ∂B satisfying Case 2a. Several shearlets ψλ, λ ∈ Λj,p, are
indicated with associated feasible points x̂ ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying |E′(x̂2)| < ∞. (b) A
part of the curve ∂B satisfying Case 2b. Several shearlets ψλ, λ ∈ Λj,p, are indicated with associated
feasible points x̂ ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂1) = 0.

For both cases, we now derive estimates on the absolute value of the associated
shearlet coefficients. The proofs of both propositions are contained in Section 4.

In Case 2a, the following estimate can be derived. Notice that this estimate
depends on the difference in slope between the analyzing shearlet and the tangent
along the curve at x̂. Here the power of shearlets comes into play, which allows us to
modify the shear parameter of the shearlet in order to position it on the tangent of
the curve. Further, we remark that the hypothesis on ψ is implied by condition (i)
(for ℓ = 0) and condition (ii) (for ℓ = 1) of Theorem 1.3.

Proposition 2.2. Let ψ ∈ L2(R2) be compactly supported and satisfy

∣∣∣∣
∂ℓ

∂ξℓ2
ψ̂(ξ)

∣∣∣∣ ≤ |h(ξ1)| ·

(
1 +

|ξ2|

|ξ1|

)−γ

, (2.2)

where γ ≥ 4, h ∈ L1(R) and ℓ = 0, 1. For j ≥ 0 and p ∈ Z
2, assume that Qj,p satisfies

Case 2a. Hence, for any λ ∈ Λj,p, there exists some x̂ = (x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ) ∩
∂B satisfying E′(x̂2) = s · 2−j/2 for some s ∈ R. Then, for all f ∈ E2(ν), there exists
some C > 0 such that

|〈f, ψλ〉| ≤ C ·

(
2−3j/4

|k − s|3
+

2−7j/4

|k − s|2

)
.

In Case 2b, we derive the following estimate. The smoothness of ψ̂ follows from
the compact support condition, and the moment condition follows from condition (i)
in Theorem 1.3. Let us briefly think about this: Letting ξ2 be fixed, condition (i)
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immediately implies ψ̂(0, ξ2) = 0. Then, by applying Taylor expansion, it follows that

ψ̂(ξ1, ξ2) = ∂ψ̂
∂ξ1

(0, ξ2) · ξ1 + O(ξ21), and, again by condition (i), we have ψ̂(ξ1,ξ2)
ξ1

→ 0

as ξ1 → 0, hence ∂ψ̂
∂ξ1

(0, ξ2) = 0. This procedure can now be continued.

Proposition 2.3. Let ψ ∈ L2(R2) be compactly supported and satisfy

∫

R

xℓ1 · ψ(x1, x2)dx1 = 0 for all x2 ∈ R and ℓ = 0, 1. (2.3)

For j ≥ 0 and p ∈ Z
2, assume that Qj,p satisfies Case 2b. Hence, for any λ ∈ Λj,p,

there exists some x̂ = (x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂2) = 0. Then,
for all f ∈ E2(ν), there exists some C > 0 such that

|〈f, ψλ〉| ≤ C · 2−11j/4.

2.3. Proof of Theorem 1.3. Let f ∈ E2(ν). We first observe that, by Propo-
sition 2.1, we can neglect those shearlet coefficients whose spatial support of the
associated shearlet does not intersect the discontinuity curve.

To estimate the remaining shearlet coefficients, we need to analyze their decay
properties. For this, let j ≥ 0 be sufficiently large and let p ∈ Z

2, be such that the
associated cube satisfies Qj,p ∈ Qj . We note that all sets supp(ψλ) with λ ∈ Λj,p are
completely included in Sj,p. Therefore weights as in [1] and [11] are not required here.

We will now deal with Case 2a and Case 2b separately.

Case 2a. Let the edge curve ∂B can be parameterized by (E(x2), x2) with E ∈
C2([0, 1]) inside Sj,p such that, for any λ ∈ Λj,p, there exists some x̂ = (x̂1, x̂2) ∈
Qj,p ∩ supp(ψλ) ∩ ∂B satisfying E′(x̂2) = s · 2−j/2 for some s ∈ R.

We first show that WLOG the slope s can be replaced by a universal constant
valid for any λ ∈ Λj,p. For this, consider two distinct points (x̂1, x̂2) and (ŷ1, ŷ2) in Sj,p
such that E′(x̂2) = s·2−j/2 and E′(ŷ2) = ŝ·2−j/2 with s 6= ŝ. Since E ∈ C2([0, 1]) and
– as already mentioned before – Sj,p is contained in a cubic window of size C ·2−j/2 by
C ·2−j/2, we obtain |s− ŝ| ≤ C. Thus |s− ŝ| is independent on j so that we can replace
the slopes by a uniform constant which for simplicity we also denote by s. Hence, we
now assume that any λ ∈ Λj,p, there exists some x̂ = (x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ)∩ ∂B
satisfying E′(x̂2) = s · 2−j/2 for some s ∈ R independent on λ.

Letting ε > 0, our goal will now be to estimate first |Λj,p(ε)| and then |Λ(ε)|.
WLOG we might assume ‖ψ‖1 ≤ 1, which implies

|〈f, ψλ〉| ≤ 2−3j/4.

Hence, for estimating |Λj,p(ε)|, it is sufficient to restrict our attention to scales j ≤
4
3 log2(ε

−1).
We now consider two different cases dependent on the range of values for the

slope E′(x̂2) = s · 2−j/2. The situation that the slope of the edge curve is sufficiently
large so that s ≥ C · 2j for some constant C will be studied in the second subcase
we analyze below. The first subcase handles the situation that the slope of the edge
curve satisfies s ≤ C · 2j.

Subcase 2−3j/4

|k−s|3 ≥ 2−7j/4

|k−s|2 . In this case, by Proposition 2.2, |〈f, ψλ〉| > ε implies

|k − s| ≤ C · ε−1/3 · 2−j/4.
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Observing that, for each shear index k,

|{λ = (j, k,m) : λ ∈ Λj,p}| ≤ C · (|k − s| + 1),

we conclude

|Λj,p(ε)| ≤ C ·
∑

k∈Kj(ε)

(|k − s| + 1) ≤ C · ε−2/3 · 2−j/2, (2.4)

where Kj(ε) = {k ∈ Z : |k − s| ≤ C · ε−1/3 · 2−j/4}.

Subcase 2−3j/4

|k−s|3 < 2−7j/4

|k−s|2 . In this case, again by Proposition 2.2, |〈f, ψλ〉| > ε

implies

|k − s| ≤ C · ε−1/2 · 2−7j/8.

We now split this subcase into two cases (coined ‘subsubcases’) dependent on the
behavior of this estimate with respect to 2j/2, which becomes important due to the
existence of some constant C such that

#(Qj) ≤ C · 2j/2. (2.5)

Subsubcase ε−1/2 · 2−7j/8 < 2j/2. First, this implies

j >
4

11
log2(ε

−1). (2.6)

Secondly, we can then estimate |Λj,p(ε)| by

|Λj,p(ε)| ≤ C ·
∑

k∈Kj(ε)

(|k − s| + 1) ≤ C · ε−1 · 2−7j/4 ≤ C · ε−1/2 · 2−3j/8, (2.7)

where Kj(ε) = {k ∈ Z : |k − s| ≤ C · ε−1/2 · 2−7j/8}.
Subsubcase ε−1/2 · 2−7j/8 ≥ 2j/2. First,

j ≤
4

11
log2(ε

−1). (2.8)

Using

|Λj,p| ≤ C · 2j, (2.9)

for some C, we then derive the following coarse estimate for |Λj,p(ε)| given by

|Λj,p(ε)| ≤ C · 2j , (2.10)

which will be sufficient for our purposes.
Summarizing Case 2a, by (2.4), (2.6)–(2.10), and again (2.5),

|Λ(ε)| ≤ C ·




4

3
log

2
(ε−1)∑

j=0

2j/2(ε−2/3 · 2−j/2) +

4

3
log

2
(ε−1)∑

j= 4

11
log

2
(ε−1)

2j/2(ε−1/2 · 2−3j/8)

+

4

11
log

2
(ε−1)∑

j=0

2j/2 · 2j



 (2.11)

≤ C · ε−2/3 · log2(ε
−1). (2.12)
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Having estimated |Λ(ε)|, we are now ready to prove our claim. Set N = |Λ(ε)|,
i.e., the total number of shearlets ψλ such that the magnitude of the corresponding
shearlet coefficient 〈f, ψλ〉 is larger than ε. By (2.11), the value ε can be written as a
function of the total number of coefficients N :

ε(N) ≤ C ·N−3/2 · (logN)3/2, for sufficiently large N > 0.

This implies that

|θ(f)|N ≤ C ·N−3/2 · (logN)3/2.

Hence,

∑

n>N

|θ(f)|2n ≤ C ·N−2 · (logN)3 for sufficiently large N > 0,

which proves (2.1).

Case 2b. Let the edge curve ∂B can be parameterized by (x1, E(x1)) with E ∈
C2([0, 1]) inside Sj,p such that, for any λ ∈ Λj,p, there exists some x̂ = (x̂1, x̂2) ∈
Qj,p∩supp(ψλ)∩∂B satisfying E′(x̂1) = 0. Let 0 < ε < 1. Again, we aim to estimate
|Λ(ε)|.

For this, suppose that |〈f, ψλ〉| > ε. Then, by Proposition 2.3, we have 2−11j/4 >
ε, and hence

j <
4

11
log2(ε

−1).

By (2.9), we can conclude that

|Λ(ε)| ≤ C ·

4

11
log(ε−1)∑

j=0

2j/2 · 2j ≤ C · ε−2/3.

This immediately implies (2.1).
The proof of Theorem 1.3 is finished.

3. Analysis of Shearlet Coefficients Associated with the Smooth Part.
In this section, we will prove Proposition 2.1. For this, we first prove a result, which
shows that, provided that the shearlet ψ satisfies certain decay conditions, even with
strong weights such as (24j)j the system Ψ(c, ψ) forms a Bessel-like sequence for
C2

0 ([0, 1]2).
In the following we will use the notation rj ∼ sj for rj , sj ∈ R, if C1 · rj ≤ sj ≤

C2 · rj with constants C1 and C2 independent on the scale j.
Lemma 3.1. Let g ∈ C2

0 ([0, 1]2), and let ψ ∈ L2(R2) satisfy

|ψ̂(ξ)| ≤ C1 · min(1, |ξ1|
α) · min(1, |ξ1|

−γ) · min(1, |ξ2|
−γ) for all ξ = (ξ1, ξ2) ∈ R

2,

where γ > 3, α > γ + 2, and C1 is some constant. Then, there exists some C > 0
such that

∞∑

j=0

∑

|k|≤⌈2j/2⌉

∑

m∈Z2

24j|〈g, ψj,k,m〉|2 ≤ C ·

∥∥∥∥
∂2

∂x2
1

g

∥∥∥∥
2

2

.
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The proof of this lemma will explore the following result from [12], which we state
here for the convenience of the reader.

Proposition 3.2. [12] Let η ∈ L2(R2), and let ψ ∈ L2(R2) satisfy

|ψ̂(ξ)| ≤ C1 · min(1, |ξ1|
α) · min(1, |ξ1|

−γ) · min(1, |ξ2|
−γ) for all ξ = (ξ1, ξ2) ∈ R

2,

where α > γ > 3 and C1 is some constant. Then, there exists some C > 0 such that

∞∑

j=0

∑

|k|≤⌈2j/2⌉

∑

m∈Z2

|〈η, ψj,k,m〉|2 ≤ C · ‖η‖2
2.

Proof. (Proof of Lemma 3.1). By the assumption on ψ, the parameters α and γ
can be chosen such that

|ψ̂(ξ)| ≤ C1 · min(1, |ξ1|
α) · min(1, |ξ1|

−γ) · min(1, |ξ2|
−γ) for all ξ = (ξ1, ξ2) ∈ R

2,

where α > γ > 3. Now, let γ ∈ L2(R2) be chosen to satisfy

∂2

∂x2
1

γ = ψ.

Then a straightforward computation shows that γ satisfies the hypotheses of Propo-
sition 3.2. Using integration by parts,

∣∣∣∣
〈
∂2

∂x2
1

g, γj,k,m

〉∣∣∣∣
2

= 24j|〈g, ψj,k,m〉|2,

hence, by Proposition 3.2,

∞∑

j=0

∑

|k|≤⌈2j/2⌉

∑

m∈Z2

24j |〈g, ψj,k,m〉|2 =

∞∑

j=0

∑

|k|≤⌈2j/2⌉

∑

m∈Z2

∣∣∣∣
〈
∂2

∂x2
1

g, γj,k,m

〉∣∣∣∣
2

< C ·

∥∥∥∥
∂2

∂x2
1

g

∥∥∥∥
2

2

.

The proof is complete.
This now enables us to derive Proposition 2.1 as a corollary.
Proof. (Proof of Proposition 2.1). Let N > 0, and set

Λ̃j = {λ ∈ Λj : supp(ψλ) ∩ supp(g) 6= ∅}, j > 0,

i.e., Λ̃j is the set of indices in Λj associated with shearlets whose support intersects
the support of g. Then we have

NJ =
∣∣∣
J−1⋃

j=0

Λ̃j

∣∣∣ ∼ 22J ,

and thus, there exists a positive integer j0 > 0 satisfying

N ∼ Nj0 ∼ 22j0 . (3.1)
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Hence, there exists some C > 0 such that

∞∑

j0=1

24j0
∑

n>N

|θ(g)|2n ≤ C ·
∞∑

j0=1

∞∑

j=j0

∑

k,m

24j0 |〈g, ψj,k,m〉|2

= C ·
∞∑

j=1

∑

k,m

|〈g, ψj,k,m〉|2




j∑

j0=1

24j0


 .

By Lemma 3.1, this yields

∞∑

j0=1

24j0
∑

n>N

|θ(g)|2n ≤ C ·
∞∑

j=1

∑

k,m

24j |〈g, ψj,k,m〉|2 <∞.

We conclude from this, by again employing (3.1), that

∑

n>N

|θ(g)|2n ≤ C · (22j0)−2 ≤ C ·N−2,

which completes the proof.

4. Analysis of Shearlet Coefficients Associated with the Discontinuity
Curve. We note that the notion ∼ will be utilized with the same meaning as indicated
at the beginning of Section 3.

4.1. Proof of Proposition 2.2. Let (j, k,m) ∈ Λj,p, and choose x̂ = (x̂1, x̂2) ∈
Qj,p ∩ supp(ψλ) ∩ ∂B to satisfy E′(x̂2) = s · 2−j/2 for some s ∈ R. By transla-
tion symmetry, WLOG we can assume that the edge curve satisfies E(0) = 0 with
(x̂1, x̂2) = (0, 0). Further, since condition (2.2) is independent on the translation pa-
rameter m, it does not play a role in our analysis. Hence we can choose it as fitting,
which we indicate by renaming it to m0.

Let f ∈ E2(ν). By exploiting the shearing property of shearlets, we have

|〈f, ψj,k,m0
〉| = |〈DS−sj

f, ψj,k−s,m0
〉|,

where sj = s · 2−j/2. This forces the tangent to the edge curve for DS−sj
f to have

slope 0 at the origin. Hence, we can assume that E(0) = 0 and E′(0) = 0 with k − s

being the new shear index. From now on, we assume that k−s ≥ 0, and set k̂ = k−s.
The case k − s < 0 can be handled similarly.

We now consider the smallest parallelogram P in the support of the shearlet
ψj,k̂,m0

, which entirely contains the discontinuity curve x1 = E(x2) (see Figure 4.1).

Letting d be the length of one of vertical sides of P , we have 2−j/d ∼ k̂/2j/2, hence

d ∼
2−j/2

k̂
.

On the other hand, the horizontal diameter of P is at most C · d2, where C only
depends on smoothness of the curve x1 = E(x2). Therefore, the volume of P satisfies

|P| ≤ C ·
2−3j/2

k̂3
,
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which in turn implies

|〈f, ψj,k̂,m0
〉| ≤ C · 23j/4 · ‖f‖∞ · ‖ψ‖∞ ·

2−3j/2

k̂3
≤ C′ · k̂−3 · 2−3j/4.

Hence, WLOG the curve E can be replaced by the line x1 = 0. Summarizing, it
suffices to estimate 〈f, ψj,k̂,m0

〉, where

f = f0χΩ, Ω = {(x1, x2) ∈ R
2 : x1 > 0}, and f0 ∈ C2

0 ([0, 1]2),

with
∑

|α|≤2 ‖D
αf0‖∞ ≤ 1. This is illustrated in Figure 4.1.

∼ 2−j/2

P

∼ 2−j

∼ 2
−j/2

k̂

∼ 2
−j

k̂2

Fig. 4.1. A shearlet ψ
j,k̂,m0

intersecting the edge curve x1 = E(x2) with m0 chosen close to

the origin. The right hand side shows a magnification of the parallelogram P.

Now, again by translation symmetry, we may assume that ∂(suppψj,k̂,m0
) in-

tersects the origin. This implies that one side of the boundary ∂(suppψj,k̂,m0
) is

asymptotically a part of the line

L = {(x1, x2) : x2 = (2j/2/k̂) · x1}

with slope 2j/2/k̂, as described in Figure 4.2. Applying the Taylor expansion for f at
each point lying on the line L, we obtain

f(x1, x2) = a(x1) + b(x1)

(
x2 −

2j/2

k̂
· x1

)
+ c(x1, x2)

(
x2 −

2j/2

k̂
· x1

)2

,

where a(x1), b(x1) and c(x1, x2) are all bounded functions. This implies (compare
also an illustration of the area of integration in Figure 4.2)

|〈f, ψj,k̂,m0
〉| =

∣∣∣∣∣∣

∫ C1·
k̂

2j

0

∫ 2
j/2

k̂
·x1+C2·

2
−j/2

k̂

2
j/2

k̂
·x1

f(x1, x2)ψj,k̂,m0
(x1, x2) dx2dx1

∣∣∣∣∣∣
(4.1)

≤ C · 23j/4 ·

∣∣∣∣∣

∫ C1·
k̂

2j

0

I1(x1) + I2(x1) + I3(x1) dx1

∣∣∣∣∣ , (4.2)
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where

I1(x1) =

∣∣∣∣∣∣

∫ C2·
2
−j/2

k̂

0

Tβ

(
2−3j/4ψj,k̂,m0

(x1, x2)
)
dx2

∣∣∣∣∣∣

I2(x2) =

∣∣∣∣∣∣

∫ C2·
2
−j/2

k̂

0

x2 · Tβ
(
2−3j/4ψj,k̂,m0

(x1, x2)
)
dx2

∣∣∣∣∣∣

I3(x2) =

∣∣∣∣∣∣

∫ C2·
2
−j/2

k̂

0

x2
2 · Tβ

(
2−3j/4ψj,k̂,m0

(x1, x2)
)
dx2

∣∣∣∣∣∣
,

where Tβ is the translation operator defined by Tβ(f) = f(·−β) and β ∈ R is chosen

to be β = (0,−(2j/2/k̂) · x1).

∼ 2
−j/2

k̂

∼ k̂
2j

∼ 2−j/2

L

∼ 2−j

Fig. 4.2. A shearlet ψ
j,k̂,m0

intersecting the edge curve x1 = 0 with m0 chosen such that

supp(ψj,k̂,m0
) intersects the positive x2 axis and ∂(suppψj,k̂,m0

) intersects the origin. The illus-

tration also displays the integration area for (4.1).

We first estimate I1(x1). We observe that, since

{(x1, x2) ∈ R
2 : ψj,k̂,m0

(x1, x2) 6= 0} ⊂ [0, C2 · (2
−j/2/k̂)] for a fixed x1 > 0,

WLOG, for any x1 > 0, the interval [0, C2 · (2
−j/2/k̂)] for the range of the integration

in I1(x1) can be replaced by R (see also Figure 4.2). Therefore, we have

I1(x1) =

∣∣∣∣
∫

R

2−3j/4ψj,k̂,m0
(x1, x2)dx2

∣∣∣∣ =

∣∣∣∣
∫

R

2−3j/4ψ̂j,k̂,m0
(ξ1, 0) · e2πiξ1dξ1

∣∣∣∣ . (4.3)

Now

2−3j/4 · |ψ̂j,k̂,m0
(ξ1, ξ2)| = 2−3j/2 · |ψ̂(2−jξ1, 2

−j/2ξ2 + 2−j k̂ξ1)|.

and hence, by hypothesis (2.2),

2−3j/4 · |ψ̂j,k̂,m0
(ξ1, 0)| ≤ 2−j/2 · |2−jh(2−jξ1)| · k̂

−γ . (4.4)
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By (4.3) and (4.4), it follows that

I1(x1) ≤ C ·
2−j/2

k̂γ
for some C > 0. (4.5)

Next, we estimate I2(x1). We have

I2(x1) ≤

∣∣∣∣
∫

R

2−3j/4x2ψj,k̂,m0
(x1, x2)dx2

∣∣∣∣ +
2j/2

k̂
· |x1| ·

∣∣∣∣
∫

R

2−3j/4ψj,k̂,m0
(x1, x2)dx2

∣∣∣∣
= S1 + S2.

To estimate S1, observe that, by (2.2),

S1 =
1

2π

∣∣∣∣
∫

R

2−3j/4

(
∂

∂ξ2
ψ̂j,k̂,m0

)
(ξ1, 0)e2πiξ1x1dξ1

∣∣∣∣

≤
1

2π

∫

R

(2−j · h(2−jξ1)) · 2
−j · k̂−γdξ1. (4.6)

By (4.5) and the fact that 0 ≤ x1 ≤ C1 ·
k̂
2j , the second term S2 can be estimated as

S2 ≤ C ·

(
2j/2

k̂
|x1|

)
·

1

2j/2 · k̂γ
≤ C ·

(
C12

−j/2
)
·

1

2j/2 · k̂γ
≤

C

2j · k̂γ
. (4.7)

Concluding from (4.6) and (4.7), we obtain

I2(x1) ≤ S1 + S2 ≤
C

2j · k̂γ
. (4.8)

Finally, we estimate I3(x1). Notice that 2−3j/4Tβ(ψj,k̂,m0
(x1, x2)) is bounded,

hence

I3(x1) ≤ C ·

∣∣∣∣∣

∫ C2

k̂2
j/2

0

x2
2 dx2

∣∣∣∣∣ ≤
C

23j/2 · k̂3
. (4.9)

Summarizing, by (4.2), (4.5), (4.8), and (4.9),

|〈f, ψj,k̂,m0
〉| ≤ C · 23j/4 ·

∫ k̂

2j C1

0

(
1

2j/2 · k̂γ
+

1

23j/2 · k̂3

)
dx1

≤ C

(
1

23j/4 · k̂γ−1
+

1

27j/4 · k̂2

)
.

The proposition is proved.

4.2. Proof of Proposition 2.3. Applying similar arguments as in the proof of
Proposition 2.2, WLOG the curve x2 = E(x1) can be replaced by the x1-axis. Again,
translation symmetry allows to move the center of the shearlet ψλ and the point x̂
into the origin of the spatial domain. For an illustration, we refer to Figure 4.3.

Further, we utilize that the shearing operation Sk preserves vanishing moments
along the x1 axis. This can be seen as follows. For ℓ = 0, 1 and for a fixed x2 ∈ R, the
function x1 7→ (x1 − kx2)

ℓ is a polynomial of degree less than or equal to ℓ, hence, by
condition (2.3) on the number of vanishing moments on ψ, we have

∫

R

xℓ1ψ(Sk(x1, x2)
T )dx1 =

∫

R

(x1 − kx2)
ℓψ(x1, x2)dx1 = 0 for all k ∈ R. (4.10)
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∼ 2−j

∼ 2−j/2

Fig. 4.3. A shearlet ψ
j,k̂,m0

intersecting the edge curve x2 = 0 with m0 chosen such that

supp(ψj,k̂,m0
) intersects the positive x1 axis and ∂(suppψj,k̂,m0

) intersects the origin. This illus-

tration displays the integration area for the proof of Proposition 2.3.

Employing Taylor expansion and integration (compare Figure 4.3) similar to the
proof of Proposition 2.2, we finally obtain

|〈f, ψj,k̂,m0
〉| ≤ C · 23j/4 ·

∫ C2·2
−j/2

0

∫ C1·2
−j

0

x2
1dx1dx2 ≤ C · 2−11j/4,

and the proposition is proved.
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[6] E. Novak and H. Woźniakowski. Approximation of Infinitely Differentiable Multi-
variate Functions Is Intractable. Preprint 6, DFG-SPP 1324, January 2009.

[7] J. Ma and G. Plonka. A Review of Curvelets and Recent Applications. Preprint 7,
DFG-SPP 1324, February 2009.

[8] L. Denis, D. A. Lorenz, and D. Trede. Greedy Solution of Ill-Posed Problems: Error
Bounds and Exact Inversion. Preprint 8, DFG-SPP 1324, April 2009.

[9] U. Friedrich. A Two Parameter Generalization of Lions’ Nonoverlapping Domain
Decomposition Method for Linear Elliptic PDEs. Preprint 9, DFG-SPP 1324, April
2009.

[10] K. Bredies and D. A. Lorenz. Minimization of Non-smooth, Non-convex Functionals
by Iterative Thresholding. Preprint 10, DFG-SPP 1324, April 2009.

[11] K. Bredies and D. A. Lorenz. Regularization with Non-convex Separable Con-
straints. Preprint 11, DFG-SPP 1324, April 2009.
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