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Inversion of the noisy Radon transform on SO(3)

by Gabor frames and sparse recovery principles

Paula Cerejeiras∗ Milton Ferreira† Uwe Kähler∗ Gerd Teschke‡

Abstract

The inversion of the one-dimensional Radon transform on the rotation group SO(3)
is an ill-posed inverse problem that can be applied to X-ray tomography with poly-
crystalline materials. This paper is concerned with the development of a method to
stably approximate the inverse of the noisy Radon transform on SO(3). The proposed
approach is composed by basic building blocks of the coorbit theory on homogeneous
spaces, Gabor frame constructions and variational principles for sparse recovery. The
performance of the �nally obtained iterative approximation is studied through several
experiments.

Keywords: Radon transform on SO(3), X-ray tomography, Gabor frames, coorbit theory,
sparse recovery, crystallography

1 Introduction

The Radon transform on SO(3) becomes an instrument in crystallographic texture analysis
as it relates the crystallographic orientation density function (ODF) and its experimentally
accessible pole density functions (PDFs), see [25, 4]. Therefore, the determination of a
suitable ODF from pole intensity data can be done through the inversion of the Radon
transform on SO(3). Several inversion methods (mostly ad hoc procedures) have been
studied in the past, see e.g. [5, 17, 18, 24]. To our knowledge an important contribution
with mathematical rigor in this �eld was given by [16] in which a Fourier slice theorem
for the Radon transform on SO(3) characterizing the Radon transform as a multiplication
operator in Fourier space was elaborated. The authors of [16] present a fast algorithm
for the evaluation of the discrete inverse Radon transform in SO(3) based on fast Fourier
techniques on the two-dimensional sphere S2 and the rotational group SO(3).

The procedure presented in this paper is completely di�erent and goes as follows. We
consider the Radon transform R as a map between L2(S3) and L2(S2×S2) (which is in this
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setting an ill-posed operator). To numerically compute an approximation to the solution of
the inverse problem Rf = g, we have to establish a suitable and reasonable expansion for f .
Assuming sparsely localized orientation density functions (and also hoping to achieve some
technical operability), we focus on Gabor system expansions for L2(S3). This also allows
us to work with a spherical grid (becoming the translates) of the window function, which is
given in terms of the binary icosahedral group (given by the vertices of the 600-cell). Such a
distribution seems to us suitably adapted to the study of ODF's which are invariant under
a certain point group (subgroup of the orthogonal group) determined by the crystal under
study. In order to establish such a localized Fourier system on S3, we shall involve the
machinery of group representation theory. The construction of associated function spaces
and suitable discretizations in them (i.e. the construction of frames) requires a certain
concept of function spaces. Here we shall rely on the coorbit theory as it was developed
in [8, 7]. With these concepts at hand, we then address the problem of computing an
approximate solution of the linear inverse problem. Unfortunately, the function g is in
many practical situations not exactly given but only a noisy version gδ of g with ‖g−gδ‖ ≤
δ is available. Consequently, due to the ill-posedness of R we are therefore faced with
regularization issues. To stabilize the inversion process, we propose an iterative procedure
that will emerge by the minimization of a residual based variational formulation of the
inversion problem. This variational formulation also involves some sparsity constraints
leading to thrifty expansions of the ODF. The minimization procedure is close to techniques
that were proposed [11, 12, 13, 26] and [9, 27].

The organization of the paper is as follows. In Section 2 we establish the analytical
framework that seems to be well-suited for the problem of inverting the Radon transform
on SO(3). In particular, we de�ne the Gabor transform, its admissibility, corresponding
coorbit spaces, atomic decompositions and frames. In Section 3 we focus on the problem
of stably approximating the inverse of the Radon transform on SO(3). Due to the curse of
dimensionality, we discuss very e�cient approximation techniques as well as thrifty strate-
gies for the computation of the sti�ness matrix entries. The section is closed by solving
several christallographic problems (synthetic examples). The Annex contains material on
the algebra of quaternions.

2 Preliminaries and analytical framework

Within this section we setup the analytical framework from which we assume that is suited
for our problem of inverting the Radon transform on SO(3). We start by introducing a
group theoretical signal analysis approach, namely the Gabor transform on SO(3), and
verify by classical techniques that this transform acts isometrically between L2(S3) and
L2(Spin(4)×R3). Due to nice localization properties the Gabor transform is well suited for
expanding localized functions on L2(S3). In order to construct Gabor systems on L2(S3),
we brie�y review the concept of coorbit theory on homogeneous spaces that was developed
in [7, 8]. The coorbit theory was primarily designed to describe the much broader concept
of Banach spaces on the basis of square integrable group representations. But even the
restriction to Hilbert spaces is very helpful for our purposes as it furnishes the underlying
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function space L2(S3) with frames for adequately expanding the functions. Proceeding
this way we have ansatz systems at our disposal that allow sparse representations (e�cient
through localization) of ODF functions that we aim to recover and feasible discretizations
of the Radon transform operator.

2.1 Gabor transform on L2(SO(3))

In order to establish Gabor analysis for the Hilbert space L2(SO(3)), we �rst have to
identify a suitable phase space G (substitute to the Weyl-Heisenberg group) for the Ga-
bor transform on L2(SO(3)). To relate the Gabor transform image space L2(G) with
L2(SO(3)), we need to construct a group representation of G into the group of unitary
operators on L2(SO(3)). This group representation should be preferably square inte-
grable ensuring that the associated Gabor transform is an isometry between L2(SO(3))
and L2(G).

Let us �rst �nd a suitable charaterization of SO(3). There are many coordinate systems
and set of parameters for describing the set of rotations in R3. The coordinate system is
typically chosen in dependance on the underlying application. For our purpose, we consider
instead of SO(3) its double covering group Spin(3), which is di�eomorphic to the simplectic
group Sp(1) of the unit quaternions (3−sphere). For details we refer to the Annex A.2.
With this description, we can now follow the ideas of Torrésani, see [28], and construct a
version of the windowed Fourier transform on the sphere. Since the usual Fourier transform
is generated by translations and modulations, we need similar transformations on the
sphere. A natural candidate is the Euclidean group G := E(4) = Spin(4) n R4. The group
operation in G reads as

(s1, p1) ◦ (s2, p2) = (s1s2, p1 + s1p2s1) (1)

and the inverse element of (s1, p1) is

(s1, p1)−1 = (s1,−s1p1s1), (2)

where s1 denotes the conjugate element of s1 ∈ Spin(4) (see [14]). As a natural analogue
to the Schrödinger representation of the Weyl-Heisenberg group on L2(Rn), we can de�ne
the representation of G on L2(S3) :

U(s, p)f(q) := ei〈p,q〉f (sqs)

with q ∈ S3. Recall that a unitary representation of a locally compact group G on a
Hilbert space is a homomorphism U from G into the group of unitary operators U(L2(S3))
on L2(S3) which is continuous with respect to the strong operator topology. It is easy to
check that U is a homomorphism,

U(s1, p1) [U(s2, p2)f(q)] = U(s1, p1)
[
ei〈p2,q〉f(s2qs2)

]
= ei〈p1,q〉ei〈p2,s1qs1〉f(s2 s1qs1s2)
= ei〈p1+s1p2s1,q〉f(s1s2qs1s2)
= U((s1, p1) ◦ (s2, p2))f(q).
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As already mentioned is [28], this representation is not square-integrable. To overcome this
integrability problem we have to consider U restricted to suitably chosen subgroup H of
G. One natural candidate for H is given by the stability group H = {(0, (0, 0, 0, p4)) ∈ G :
p4 ∈ R} of G. The following constructions substantially depend on the choice of the section
σ of the principal bundle Π : G→ G/H. We chose the �at section σ(s, p) with p = (p, 0),
where p = (p1, p2, p3) ∈ R3, which is su�cient for our purpose. Then, X = G/H carries
the G−invariant measure dµ(x) = dµ(sx)dpx, where x = (sx, px). It remains to verify that
U is indeed strictly square integrable modulo (U, σ). Therefore, we have to prove that
there exists a window functions ψ ∈ L1(S3) such that

Vψf(s, p) = 〈f, U(σ(s, p)−1)ψ〉 (3)

=
∫
S3

e−i〈sps,q〉ψ(sqs)f(q)dSq

=
∫
S3

ei〈p,sqs〉ψ(sqs)f(q)dSq (4)

is an isometry. This can be shown by applying techniques of [8, 28].

Lemma 1 (admissibility and isometry) Assume that the window ψ ∈ L1(S3)∩L2(S3)
is such that supp(ψ) ⊆ S3

+ = {q ∈ H : ||q|| = 1 ∧ q0 > 0}, where q0 denotes the real part of
the unit quaternion q (see Annex A.1),

0 6= Cψ = 64π5

∫ 2π

0

∫ π

0

∫ π/2

0

|ψ(q(θ, α, φ))|2

cosφ
dφ dα dθ <∞. (5)

Then the map

f ∈ L2(S3) 7→ 1√
Cψ

Vψf ∈ L2(Spin(4)× R3)

is an isometry, i.e.∫
Spin(4)×R3

|Vψf(s, p)|2 dµ(s) dp = Cψ

∫
S3

|f(q)|2dSq.

Proof: By a simple substitution we obtain

||Vψf ||2 =
∫
Spin(4)

∫
R3

∣∣∣∣∫
S3

ei〈p,sqs〉ψ(sqs)f(q)dSq

∣∣∣∣2 dp dµ(s)

=
∫
Spin(4)

∫
R3

∣∣∣∣∫
S3

ei〈p,q〉ψ(q)f(sqs)dSq

∣∣∣∣2 dp dµ(s).

Let q = Λ(θ, α, φ), θ ∈ [0, 2π[, α ∈ [0, π[ and φ ∈ [0, π[, where Λ denotes the map from
spherical to cartesian coordinates de�ned by

Λ(θ, α, φ) =


q0 = cosφ
q1 = cosα sinφ
q2 = sin θ sinα sinφ
q3 = cos θ sinα sinφ

. (6)
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Let also v : S3
+ → B3 denote the projection map from the upper hemisphere S3

+ onto the
unit ball B3 (in R3) obtained by the change of variable t = sinφ in (6) and cutting the
real component q0. Consequently,∫

S3

ei〈p,q〉ψ(q)f(sqs)dSq

=
∫
B3

ei〈x(t,θ,α),p〉ψ(v−1(x(t, θ, α)))f(sv−1(x(t, θ, α))s)
dt√

1− t2
dθ dα

= F
(
ψ(v−1(·))√

1− t2
f(sv−1(·)s)

)
(p),

where p = (p1, p2, p3), and F denotes the Fourier transform on R3. Applying Plancherel's
Theorem yields∥∥∥∥F (ψ(v−1(·))√

1− t2
f(sv−1(·)s)

)∥∥∥∥2

L2(R3)

= (2π)3

∥∥∥∥ψ(v−1(·))√
1− t2

f(sv−1(·)s)
∥∥∥∥2

L2(B3)

.

Returning to the unit sphere S3 by setting φ = arcsin t, we obtain

||Vψf ||2 = 8π3

∫
Spin(4)

∫
S3

+

|ψ(Λ(θ, α, φ))|2

cosφ
|f(sΛ(θ, α, φ)s)|2 dφ dα dθ dµ(s).

By Fubini's theorem and using the invariance of the measures dµ(s) (see [28]) we get

||Vψf ||2 = 8π3

∫
S3

+

|ψ(Λ(θ, α, φ))|2

cosφ

∫
Spin(4)

|f(sΛ(θ, α, φ)s)|2 dµ(s) dφ dα dθ

= 8π3

∫
S3

+

|ψ(Λ(θ, α, φ))|2

cosφ
8π2||f ||2L2(S3) dφ dα dθ

= 64π5

∫
S3

+

|ψ(Λ(θ, α, φ))|2

cosφ
dφ dα dθ ||f ||2L2(S3).

If ψ ful�lls (5), then ψ is called admissible with respect to σ. In this case, (ψ, σ) is called
a strictly admissible pair.

As a consequence, the proposed windowed Fourier transform can be inverted by its
adjoint V ∗ψ/

√
Cψ.

Corollary 1 (reconstruction) Any f ∈ L2(S3) can be reconstructed by

f(q) =
1
Cψ

∫
Spin(4)

∫
R3

Vψf(s, p)e−i〈sps,q〉ψ(sqs) dp dµ(s).
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2.2 Reproducing kernel Hilbert space and frame theory

To keep notations and technicalities of the coorbit space theory at some reasonable level,
we only sketch the main ingredients and review the main conditions that need to be veri�ed
for our speci�c situation.

Assume that (ψ, σ) is a strictly admissible pair. In order to establish frames in L2(S3),
the coorbit theory restricted to Hilbert spaces suggests the following proceeding. We �rst
have to establish a correspondence principle between L2(S3) and an associated reproducing
kernel Hilbert space (as a subspace of L2(Spin(4) × R3)). Then a suitable discretization
{xi}i∈I ⊂ Spin(4)× R3 must be chosen that enables the derivation of frames.

Let us de�ne the kernel function

R(l, h) = 〈ψ,U(σ(h)σ(l)−1)ψ〉 = Vψ(U(σ(l)−1)ψ)(h)

and the reproducing kernel Hilbert space

M2 := {F ∈ L2(Spin(4)× R3) : 〈F,R(h, ·)〉 = F} .

The following correspondence principle holds true, see [8].

Proposition 1 (correspondence principle) Let U be a square integrable representation
of the Euclidean group Spin(4)nR4 mod (H,σ) with a strictly admissible pair (ψ, σ). Then
Vψ is a bijection of L2(S3) onto the reproducing kernel Hilbert spaceM2.

The next step is to derive frames for this space. The major tool in [7, 8] is the construction
of a bounded partition of unity corresponding to some U-dense and relatively separated
sequence {xi}i∈I ⊂ X that represents then our desired discretization. A sequence {xi}i∈I
is called U-dense if

⋃
i∈I σ(xi)U ⊃ σ(X) for some relatively compact neighbourhood U of

the identity e ∈ Spin(4) n R3 with non-void interior and is called relatively separated, if
supj∈I ]{i ∈ I : σ(xi)L ∩ σ(xj)L 6= ∅} ≤ CL for all compact subsets L ⊂ Spin(4)× R3. It
can be proved that there always exist such sequences {xi}i∈I for all locally compact groups,
all closed subspaces H and all relatively compact neighbourhoods U of e with non-void
interior. Note that the subsets Xi := {x ∈ X : σ(x) ∈ σ(xi)U} clearly form a covering of
X with uniformly �nite overlap.

In [7] a judicious discretization for the rotations/translations was suggested due to an
Euler angle parametrization of the sphere (but no speci�c choice was made, just conditions
were veri�ed). In there, the discrete frequencies were obtained by a straightforward uniform
spacing of the Euclidean space. However, in the present case of Spin(4) that would imply
dealing with 6 parameters. Due to the high computational cost involved one is forced to
implement a reduction of our parameter space to Spin(3) ≡ S3. This reduction will be
described in the next section.

In this paper, we propose to obtain a translation grid by applying a direct spherical
discretization method that was elaborated in [21]. This method yields a `fair' grid, i.e.,
a near-uniformly spaced spherical grid (up to certain precision of the uniform spacing).
To obtain the spherical grid points, a subdivision scheme is developed that is based on
the spherical kinematic mapping. This goes as follows: In a �rst step an elliptic linear
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congruence is discretized by the icosahedral discretization of the unit sphere S3. Then the
resulting lines of the elliptic three-space are discretized such that the di�erence between the
maximal and minimal elliptic distance between neighbouring grid points becomes minimal.

Assume the grid is chosen as mentioned above and ful�lls the requirements. Then the
problem arises under which conditions a function f has an atomic decomposition and the
set {U(σ(xi))ψ : i ∈ I} forms a frame. To answer this question, we have to de�ne the oscU
kernel

oscU (l, h) := sup
u∈U
|〈ψ,U(σ(l)σ(h)−1)ψ − U(u−1σ(l)σ(h)−1)ψ〉L2(S3)| .

On the basis of oscU we have the following two major statements at our disposal, see [7, 8].

Theorem 1 (atomic decomposition) Assume that the relatively compact neighborhood
U of the identity in Spin(4)× R3 can be chosen so small such that∫

X
oscU (l, h)dµ(l) < γ and

∫
X
oscU (l, h)dµ(h) < γ (7)

with γ < 1. Let {xi}i∈I be a U-dense, relatively separated family. Then L2(S3) has the
following atomic decomposition: if f ∈ L2(S3), then there exists a sequence c = (ci)i∈I
such that f can be represented as

f =
∑
i∈I

ciU(σ(xi))ψ ,

where c ∈ `2 and ‖c‖`2 ≤ A‖f‖L2(S3). If c ∈ `2, then f =
∑

i∈I ciU(σ(xi))ψ ∈ L2(S3) and
‖f‖L2(S3) ≤ B‖c‖`2 .

Theorem 2 (frames) Impose the same assumptions as in Theorem 1 with∫
X
oscU (l, h)dµ(l) <

η

Cψ
and

∫
X
oscU (l, h)dµ(h) <

η

Cψ
(8)

with η < 1. Then the set
{ψi := U(σ(xi))ψ : i ∈ I}

is a frame for L2(S3). This means that

1. f ∈ L2(S3)⇔ {〈f, ψi〉}i∈I ∈ `2,

2. there exists constants 0 < A ≤ B <∞ such that

A‖f‖L2(S3) ≤ ‖{〈f, ψi〉}i∈I‖`2 ≤ B‖f‖L2(S3) ,

3. there exists a bounded, linear synthesis operator S : `2 → L2(S3)
such that S({〈f, ψi〉}i∈I) = f .
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2.3 Veri�cation of frame conditions

In order to establish the statements in Theorems 1 and 2 we have to verify conditions (7)
and (8). Before that, to simplify the technicalities and later therewith the computational
complexity, we reduce the number of parameters in X = Spin(4) × R3 (nine parameters)
through restricting ourselves to zonal window functions. Thus, we can consider the fac-
torization of Spin(4) by Spin(3), i.e. Spin(4)/Spin(3) ' S3; which allows to to consider
L2(S3 × R3).

Let us now exemplify by checking condition (7) in Theorem 1. Note that condition (8)
in Theorem 2 can be veri�ed analogously and is therefore omitted. Let h = (s1, p), l =
(s2, r) ∈ G/H with p = (p1, p2, p3, 0) and r = (r1, r2, r3, 0) be given. Then, by (2) and (1)
we have

σ(h)σ(l)−1 = (s1, p) ◦ (s2,−s2rs2) = (s1s2, p− s1s2rs2s1).

Let the neighborhood of e be given by Uε := {u = (su, pu) : su ∈ Cε, pu ∈ [−ε, ε]3} ⊂
S3 × R3, with Cε = {Λ(θ, α, φ) : θ ∈ [0, 2π), α ∈ [0, π), φ ∈ [0, επ)} a spherical ε-cap. The
sampling grid {xi}i∈I can be speci�ed by xi = xi(m,n) = (sm, pn), where the sm correspond
to the grid points generated with the above mentioned algorithm elaborated in [21] and
the pn are uniformly spaced points in R3. For each chosen ε the sampling density can be
accordingly adjusted (on S3 by the subdivision scheme in [21] and in R3 simply by a �ner
and �ner spacing) such that Xi = {x ∈ X : σ(x) ∈ σ(xi)U} forms a covering of X that
is U-dense and relatively separated. To show that the oscillation condition can be made
small enough we proceed similar as in [8]. With the help of

σ(h)σ(l)−1u = (s1s2su, p− s1s2(r − pu)s2s1)

we obtain∫
S3

(U(σ(l)σ(h)−1)ψ(q)ψ(q)− U(σ(l)σ(h)−1u)ψ(q)ψ(q)) dSq

=
∫
S3

(ei〈q,p−s1s2rs2s1〉ψ(s2s1qs1s2)ψ(q)− ei〈q,p−s1s2(r−pu)s2s1〉 ψ(s2s1suqsus1s2)ψ(q)) dSq

=
∫
S3

+

ei〈q,p−s1s2rs2s1〉
[
(ψ(s2s1qs1s2)− ψ(s2s1suqsus1s2))ψ(q)+(

1− ei〈q,s1s2pus2s1〉ψ(s2s1suqsus1s2)ψ(q)
)]

dSq

leading to

oscU (l, h) ≤ sup
u∈U

∣∣∣∣∣
∫
S3

+

ei〈q,p−s1s2rs2s1〉 (ψ(s2s1qs1s2)− ψ(s2s1suqsus1s2))ψ(q) dSq

∣∣∣∣∣
+ sup
u∈U

∣∣∣∣∣
∫
S3

+

ei〈q,p−s1s2rs2s1〉
(

1− ei〈q,s1s2pus2s1〉
)
ψ(s2s1suqsus1s2)ψ(q) dSq

∣∣∣∣∣ .
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To bound I :=
∫
X oscU (l, h)dµ(h) we apply the latter estimate and achieve

I ≤
∫
S3

(I1 + I2) dµ(s1)

where

I1 :=
∫

R3

sup
u∈U

∣∣∣∣∣
∫
S3

+

ei〈q,p−s1s2rs2s1〉 [ψ(s2s1qs1s2)− ψ(s2s1suqsus1s2)]ψ(q) dSq

∣∣∣∣∣ dp,
and

I2 :=
∫

R3

sup
u∈U

∣∣∣∣∣
∫
S3

+

ei〈q,p−s1s2rs2s1〉
(

1− ei〈q,s1s2pus2s1〉
)
ψ(s2s1suqsus1s2)ψ(q) dSq

∣∣∣∣∣ dp.
We �rst consider I1. Projecting q onto the unit ball B3 yields

I1 :=
∫

R3

sup
u∈U

∣∣∣∣∫
B3

ei〈x(t,θ,α),p〉e−i〈x(t,θ,α),s1s2rs2s1〉 [ψ(s2s1v
−1(x(t, θ, α))s1s2)

−ψ(s2s1suv
−1(x(t, θ, α))sus1s2)

]
ψ(x(t, θ, α))

dt√
1− t2

dθ dα

∣∣∣∣ dp.
Introducing the functions

g(t, θ, α) =

{
e−i〈x(t,θ,α),s1s2rs2s1〉

√
ψ(x(t,θ,α))√

1−t2 , t ∈ [0, 1], θ ∈ [−π, π], α ∈ [0, π[,
0, otherwise,

and

wsu(t, θ, α) =



[
ψ(s2s1v

−1(x(t, θ, α))s1s2) t ∈ [0, 1], θ ∈ [−π, π], α ∈ [0, π[,
−ψ(s2s1suv

−1(x(t, θ, α))sus1s2)
]

×
√
ψ(x(t, θ, α)),

0, otherwise,

we can rewrite I1 as

I1 =
∫

R3

sup
u∈U

∣∣∣∣∫ ∞
−∞

∫ π

0

∫ π

−π
ei〈x(t,θ,α),p〉wsu(t, θ, α)g(t, θ, α) dθ dα dt

∣∣∣∣ dp
≤

∫
R3

sup
u∈U

∣∣(F(wsu) ∗ Fg)(p)
∣∣ dp

≤
∫

R3

sup
u∈U

∫
R3

|(F(wsu)(ξ)||Fg((p)− ξ)|dξ dp. (9)

Observe that wsu has compact support. Now, if we choose ψ smooth enough, i.e. wsu ∈
Ck(R3), k ≥ 4, and g ∈ L1, then limsu→idw

(k)
su = 0 and by dominated convergence we have

that
lim
su→id

||w(k)
su ||L1 = 0.
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This also implies that
lim
su→id

||F(w(k)
su )||L∞ = 0.

Therefore, by using
F(w(k)

su )(ξ) = (−iξ)kF(wsu)(ξ)

we have
|F(w(k)

su )(ξ)| ≤ (1 + |ξ|)−kc(su), (10)

where c(su) denotes a continuous function with limsu→id c(su) = 0. Inserting (10) into (9),
we obtain

I2 ≤
∫

R3

sup
u∈U

c(su)
∫

R3

(1 + |ξ|)−r|Fg(p− ξ)|dξ dp

≤ ||F(g)||L1 sup
su∈Cε

c(su)
∫

R3

(1 + |ξ|)−rdξ

≤ C sup
su∈Cε

c(su).

This expression becomes arbitrary small for su�cient small ε. The second integral I2 can be

treated in the same way. In this case the function wpu is given by
(
1− ei〈ω,s1s2pus2s1〉

)√
ψ(q).

Imposing the same regularity condition on ψ as done in the estimate of I1 one can apply
similar arguments.

3 Inversion of the X-ray transform

This section is concerned with the determination of the orientation density function f
(ODF) of a polycrystalline specimen from given pole intensity data. The major assump-
tion is that f can be su�ciently well represented by spherical Gabor frames as they were
introduced in the previous section. Then the remaining task is to solve a discretized op-
erator equation, i.e., to determine the synthesis coe�cients (or the atomic representation)
of f . As the data are allowed to be noisy (which is for any practical measurement process
impossible to avoid), the Radon or X-ray operator must be considered between L2(S3) and
L2(S2 × S2) and is, therefore, ill-posed (and not as the operator properties suggest as a
map with negative order between Sobolev spaces (see [3])). Consequently we are therefore
faced with regularization issues, i.e., the inversion procedure must be stabilized against the
in�uence of the noise.

3.1 Crystallography and the spherical X-ray transform

The orientation of an individual crystal is assumed to be unique and given by the rota-
tion q ∈ SO(3) which maps the specimen referential system Ks into coincidence with a
coordinate system Kc �xed to the crystal, q : Ks 7→ Kc. Hence the coordinates of the
initial direction represented by x ∈ S2 ⊂ R3 (w.r.t. the crystal coordinate system Kc) will
be related to the ones of the �nal direction represented by y ∈ S2 (w.r.t. the coordinate
system Ks) by y = qxq.With other words we assume that a crystal is uniquely determined
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by its invariance group (crystallographic group) G ⊂ O(3)× T (3). We are here interested
in the part which corresponds to a subgroup (point group) Gp := G/T (3) ⊂ O(3). A
nonnegative, integrable (possibly normalized) function

f : O(3)/Gp 7→ R+

is called an orientation density function (ODF). The determination of such an ODF is
called quantitative texture analysis. The ODF f can only be measured in an indirect way
via the pole density function P̃ (x, y) = 1

2 ((Rf)(x, y) + (Rf)(−x, y)) , there is, by means
of two spherical X-ray transforms of the orientation density function f ([25], [6]). The
principle problem consists in how to determine the ODF from the measurements (pole
�gures).

De�nition 1 [Spherical X-ray transform] [6]) Let f be a L1(S3) function. We de�ne the
spherical X-ray transform of f as the mean over all rotations q mapping the direction
x ∈ S2 into y ∈ S2 and we write

(Rf)(x, y) :=
1

2π

∫
{q∈S3:y=qxq}

f(q)dq

=
1

2π

∫ 2π

0
f(q(x, y, t))dt,

where q(x, y, t) =
(

cos η2 + x×y
‖x×y‖ sin η

2

)
cos t+ x+y

‖x+y‖ sin t, with η = arccos(〈x, y〉), denotes
the great circle in S3 of all unit quaternions q which rotates x ∈ S2 into y ∈ S2.

Note that the invariant Haar measure in (11) is uniquely de�ned by the assumption
that the measurements should be independent of the choices of the coordinate systems
Kc,Ks.

3.2 Inversion by accelerated steepest descent and `1-projections

In this section, we address the problem of computing an approximation to a solution of
the linear problem R(f) = g, where R denotes the X-ray transform. The operator R is
an integral operator and therefore R(f) belongs to a certain smoothness (Sobolev) space.
But usually we deal with noisy data gδ instead of g. Consequently, we only can assume
R : L2(S3)→ L2(S2 × S2), at most.

The function f is often referred to as a probabilistic density function on L2(S3). In
typical practical situations only noisy data gδ with ‖g − gδ‖ ≤ δ are available. Therefore,
we are faced with the problem of ill-posedness (in the sense of a discontinuous dependence
of the solution on the data) and therefore with regularization issues.

The goal is to propose an iterative procedure for deriving an approximation to the
solution of our inverse problem. To this end, we start by providing an adequate represen-
tation of the solution to be reconstructed. Our preference is on a Gabor frame for L2(S3)
and was established in the previous section. Let Λ be the countable index set representing
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the frame grid and let the Gabor frame be denoted by Ψ = {ψλ : λ ∈ Λ} ⊂ L2(S3). An
individual Gabor atom indexed by the multi-index λ is of the form

ψλ(q) = ψ(n,m)(q) = U(sn, pm)ψ(q) = ei〈q,pm〉ψ(s̄nqsn) .

In this notation n and m are also multi-indices. For Ψ we may consider the operator

F : L2(S3)→ `2(Λ) via f 7→ {〈f, ψλ〉}λ∈Λ

with adjoint

F ∗ : `2(Λ)→ L2(S3) via c 7→
∑
λ∈Λ

cλψλ .

Therefore, the inverse problem can be recast as follows: �nd a sequence c ∈ `2(Λ) such
that

R(F ∗c) = g.

Note that due to the overcompleteness of Ψ, c need not to be unique. Since the data
might be inexact (no equality between R(f) and gδ), we focus on minimizing the Gaussian
discrepancy

D(c) := ‖gδ −R(F ∗c)‖2L2(S2×S2) .

In this application we can assume that the solution c to be reconstructed has a sparse
expansion, i.e. c has only a few nonvanishing coe�cients or can be nicely approximated
by a small number of coe�cients. One well-understood approach to involve this sparsity
constraint is given by adding an `1 penalty term to the Gaussian discrepancy leading to

D(c) + γ‖c‖`1(Λ) .

The treatment of such functionals is not di�cult to handle and was elaborated and suc-
cessfully applied in several papers, see, e.g., [10, 11, 12, 13, 26]. However, the resulting
iteration is known to converge usually quite slow and a detailed analysis of the character-
istic dynamics of the corresponding thresholded Landweber iteration has shown that the
algorithm converges initially relatively fast, then it overshoots the `1 penalty, and it takes
very long to re-correct back. To circumvent this �external� detour it was proposed in [9, 27]
to force the iterates to remain within a particular `1 ball BK := {x ∈ `2; ‖x‖`1(Λ) ≤ K}.
This leads to the constrained minimization approach

min
c∈BK

D(c) . (11)

To accelerate the resulting iteration we may apply techniques from standard linear steepest
descent methods which is the use of adaptive step lengths. Therefore, a minimization of
(11) results in a projected iteration with step length control,

cn+1
λ = PK

(
cnλ +

βn

r
FR∗(y −R(F ∗cn))

)
. (12)

12



The convergence of this method relies on a proper step length parameter rule for βn. With
respect to a sequence {cn}n∈N the parameter βn must be chosen such that

(B1) β̄ := sup{βn;n ∈ N} <∞ and inf{βn;n ∈ N} ≥ 1
(B2) βn‖R(F ∗cn+1)−R(F ∗cn)‖2 ≤ r‖cn+1 − cn‖2 ∀n ≥ n0

are ful�lled, where the constant r is an upper bound for ‖RF ∗‖2. Practically, the imple-
mentation of the proposed projected steepest descent algorithm is as follows

Given operator R, some initial guess c0, and K (sparsity constraint `1-ball BK)

Initialization ‖RF ∗‖2 ≤ r,
set q = 0.9 (as an example)

Iteration for n = 0, 1, 2, . . . until a preassigned precision / maximum number of
iterations

1. βn = C ·
√

D(x0)
D(xn) , C ≥ 1 (greedy guess)

2. cn+1 = PK

(
cn + βn

r FR
∗(y −R(F ∗(cn)))

)
;

3. verify (B2): βn‖R(F ∗cn+1)−R(F ∗cn)‖2 ≤ r‖cn+1 − cn‖2

if (B2) is satis�ed increase n and go to 1.
otherwise set βn = q · βn and go to 2.

end

When performing the iteration (12) the main operating expense is due to computation and
application of FR∗RF ∗. Therefore, an adaptive variant of the full iteration by involving
adaptive matrix vector multiplications could signi�cantly reduce the numerical complexity.
Unfortunately, the matrix FR∗RF ∗ belongs neither to the Ja�ard nor to the Lemarie
class. Therefore, so far established adaptive strategies for operator equations cannot be
applied in a straightforward way as done in the Euclidean situation, see [23]. Nevertheless,
e�cient strategies for computing the matrix entries are possible and allow thrifty linear
approximation techniques.

3.3 E�cient computation of matrix entries

In this section we discuss the e�cient calculation of the matrix FR∗RF ∗. Its entries read
as

〈Rψm,n, Rψm′,n′〉L2(S2×S2) =
∫
S2

∫
S2

Rψm,n(x, y)Rψm′,n′(x, y) dy dx. (13)

In order to simplify the practical calculations we will consider ψ a zonal window function
with support on the spherical cap Uh = {q ∈ S3 : q0 ≥ h}, for some h ∈]0, 1[. As an
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immediate consequence the parameter space is reduced to X = S3 × R3 and the action
sqs, s ∈ Spin(4) can be replaced by the left translation action on S3 de�ned by sq, where
s ∈ S3. This is a left transitive action on S3 such that the rotations from Spin(3) around
a point q ∈ S3 are left out (see Annex A.2). In this way the X-Ray transform of our atoms
is given by

Rψm,n(x, y) =
1

2π

∫ 2π

0
ei〈q(x,y,t),pm〉ψ (snq(x, y, t)) dt , (14)

with sn ∈ S3 and pm ∈ R3.
In order to reduce the computational cost of (13) we will look now for symmetry

properties of Rψm,n. Since

Rψm,n(x, y) =
1

2π

∫ 2π

0
ei〈q(x,y,t),pm〉ψ (snq(x, y, t)) dt (15)

=
1

2π

∫ π

−π
ei〈q(x,y,t),pm〉ψ (snq(x, y, t)) dt (16)

then it is easy to see that Rψm,n(−x,−y) = Rψm,n(x, y). Therefore, the inner products
(13) reduce to

〈Rψm,n, Rψm′,n′〉L2(S2×S2) = 2
∫
S2

+

∫
S2

+

Rψm,n(x, y)Rψm′,n′(x, y) dy dx

+2
∫
S2

+

∫
S2
−

Rψm,n(x, y)Rψm′,n′(x, y) dy dx , (17)

where S2
+ and S2

− represents the upper (x3 ≥ 0) and lower (x3 ≤ 0) hemispheres respec-
tively.

The standard parametrization of great circles of S3 by q(x, y, t) as given in De�nition
1 has a singularity in y = −x, that is, if y = −x this parametrization is not well de�ned.
Moreover, the gradient of q(x, y, t) increases rapidly in a neighborhood of y = −x. To
overcome this problem we will make a reparametrization of the great circles q(x, y, t). By
[20] we can reparametrize the great circle q(x, y, t) introducing a vector v ∈ S2 in the
following way:

q(x, y, t) = q4v(t)q3 , (18)

where

i) q3 is any �xed quaternion such that q3xq3 = v, with an arbitrarily given v ∈ S2;

ii) v(t) = cos t/2 + v sin t/2 ∈ S3 such that v(t)vv(t) = v;

iii) q4 ∈ S3 is any �xed quaternion such that q4vq4 = y.

Choosing q4 = y+v
||y+v|| and q3 = x+v

||x+v|| the new parametrization (18) is given by

q(x, y, t) =
y + v

||y + v||
(cos t+ v sin t)

x+ v

||x+ v||
. (19)
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Thus, we will consider the following integrals:

I1 =
∫
S2

+

∫
S2

+

Rψm,n(x, y)Rψm′,n′(x, y) dy dx, (20)

I2 =
∫
S2

+:x1≥0

∫
S2
−

Rψm,n(x, y)Rψm′,n′(x, y) dy dx, (21)

I3 =
∫
S2

+:x1≤0

∫
S2
−

Rψm,n(x, y)Rψm′,n′(x, y) dy dx. (22)

For each integral we will consider the new parametrization (19) with v ∈ S2 chosen such
that the singularities x = −v and y = −v are far away from the region of integration.

For I1 we choose v = (0, 0, 1), for I2 we choose v =
(√

2
2 , 0,−

√
2

2

)
and for I3 we choose

v =
(
−
√

2
2 , 0,−

√
2

2

)
. Therefore, the inner products (17) are given by

〈Rψm,n, Rψm′,n′〉L2(S2×S2) = 2 I1 + 2 I2 + 2 I3 . (23)

This leaves us with one major problem: How to calculate e�ciently an integral of type∫
ei<k,q(θ,φ,α,β,t)>f(q(θ, φ, α, β, t))dαdβdθdφdt (24)

with k = (k1, . . . , k4), q = (q1, . . . , q4), qi : R5 7→ R which is a multidimensional integral of
highly oscillatory type.

There are several methods in the literature, such as Fillon-type or Leray-type methods.
But applying these method we have to overcome one problem. Usually, in these methods
the exponent is linear, while here it is non-linear. An attempt to linearize it could work,
but would create a huge number of individual integrals to compute which is di�cult to
implement.

The way out is to use so-called adaptive multiscale local Fourier bases (see [1], [2] [19]).
These bases are generalizations of Malvar-Coifman-Meyer (MCM) wavelets. The basic
idea is to use so-called bell functions bi which provide a partition of unity, i.e. we have a
subdivision of our interval [0, 2π] intoM subintervals Ii where each bell function is de�ned
in three adjacent intervals and given by

bi(x) =


1
2(1 +

∑i−1
l=0 gl sin((n+ 1)πx) −1

2 ≤ x ≤
1
2

1
2(1 +

∑i−1
l=0(−1)lgl cos((n+ 1)πx) 1

2 ≤ x ≤
3
2

0 otherwise

Hereby, gl are solutions of a linear systems and tabulated in [19]. As remarked before, we
have

∑M
i=1 bi(x) = 1.

These bell functions allow us to introduce our local Fourier basis by

uln(θ, φ, α, β, t) = C l1n1
(α)C l2n2

(β)C l3n3
(θ)C l4n4

(φ)C l5n5
(t)

with C lini(·) = bli(·)
(

2
ali+1−ali

)1/2
sin
((
ni + 1

2

)
π
·−ali

ali+1−ali

)
.
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Application of these LFB's means that we have to calculate the Fourier coe�cients

An,l =
∫
ei<k,q(θ,φ,α,β,t)>uln(θ, φ, α, β, t)dαdβdθdφdt

Bn,l =
∫
f(q(θ, φ, α, β, t))uln(θ, φ, α, β, t)dαdβdθdφdt,

separately. The integral is then given by
∑

n,lAn,lBn,l.
The calculation of the Fourier coe�cients can be done either by corrected trapezoidal

rule/Richardson interpolation (taking into account the support of the bell functions, but
we have to be careful with the number of points we need, see [1], table 2 on page 7) or by
FFT (see [19]). Presently, we prefer to use FFT.

Furthermore, we need to study the sparsity condition by Averbuch, et al., for both Bn,l
and An,l to determine how many coe�cients are really required (see, [1], pg. 14-19). Let
us consider our integral in the more shortened form∫

ei<k,q(φi)>f(φi)dφ1 . . . dφ5.

For simpli�cation we write just φi for all our variables. To apply our method we develop
our kernel in terms of LFB's:∫

ei<k,q(φi)>C1(φ1) . . . C5(φ5)dφ1 . . . dφ5. (25)

Following the same ideas as in [2] we can study the sparsity of this development. The
principal condition for the sparsity considerations is that∣∣∣∣∣ ∂|µ|

∂φµ1
1 . . . ∂φµ5

5

q(φ1, . . . , φ5)

∣∣∣∣∣ ≤ C, (26)

i.e. the derivatives of order |µ| are bounded. Let us �rst remark that our function q
satis�es for each subdivision the above condition, but with a constant C which will go to
in�nity when the total degree for the derivatives goes to in�nity, i.e. getting worse with
each derivation. Furthermore, we remark that we need at least two points per oscillation,
i.e. N = 10ν ( for simpli�cation we consider ν oscillations in all directions otherwise the
number of oscillations depends on the direction φi). That will result in

√
N =

√
10
√
ν bell

functions.
Now, using as rescaling for the bells the maximum frequency, i.e. ν = maxi=1,2,3 ki we

get via linearization for the coe�cients (25)∫
ei<k,q(φi)>C1(φ1) . . . C5(φ5)dφ1 . . . dφ5

≈ ei
∑3
l=1(

∑3
i=1 kiqi(φ

∗)−
∑3
i=1 ki

∂qi
∂φl

(φ∗)φ∗l )
∫
e
i
∑3
i=1 ki

∂qi
∂φ1

(φ∗))φ1

×ei(
∑3
i=1 ki

∂qi
∂φ2

(φ∗)),φ2e
i(

∑4
i=1 ki

∂qi
∂φ3

(φ∗))φ3e
i
∑4
i=1 ki

∂qi
∂φ4

(φ∗))φ4

e
i
∑4
i=1 ki

∂qi
∂φ5

(φ∗))φ5C1(φ1)C2(φ2)C3(φ3)C4(φ4)C5(φ5)dφ1dφ2dφ3dφ4dφ5
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We will collect all the exponentials together and denote the residual term (incl. Hessian)
of the linearization by Hνk,k′ (φ1,··· ,φ5). Using the rescaling of [1] (it corresponds to an
independent a�ne transformation in each variable!) we can view our integral as the Fourier
transform of

β(φ1, · · · , φ5) = b(φ1)b(φ2)b(φ3)b(φ4)b(φ5)eiH
νk,k′ (φ1,··· ,φ5)

.

Now, we prove that there exists a constant K such that∣∣Hν
k,k′(φ1, · · · , φ5)

∣∣ ≤ K
and ∣∣∣∣∣ ∂|µ|Hν

k,k′

∂φµ1
1
· · · ∂φµ5

5

(φ1, · · · , φ5)

∣∣∣∣∣ ≤ K

(
√
ν)|µ|

.

If the �rst is true then we obtain the second estimate from the rescaling and the fact
that at each derivative of qi a

√
ν comes out. With other words the residual (Hessian) has

a gradient of order O
(

1√
ν

)
.

This now allows us to get the result of Averbuch, et. al. ( [2], pag.18) in our case:

|β̂(ξ1, . . . , ξ5)| ≤ C1

1 + maxi |ξi||µ|
.

What is left is to take a closer look at the �rst estimate in our case. This estimate
follows immediately from estimating the derivatives of the parametrization (c.f. (19))

q(x, y, t) =
y + v

||y + v||
(cos t+ v sin t)

x+ v

||x+ v||
.

Here we have to take into account the di�erent nature of x, y on one side and t on the
other. By straightforward calculations we get∥∥∥∥ ∂µq(x, y, t)

∂x1
µ1 . . . ∂y1

µ4 . . . ∂tµ7

∥∥∥∥ ≤ Cµ
‖x+ v‖µ1+µ2+µ3‖y + v‖µ4+µ5+µ6

.

Let us remark that the denominator is always bounded, but the bound grows with µ, since
in the case of (20) we get the estimates ‖y+ v‖ ≥ 1/2 and ‖x+ v‖ ≥ 1/2, whereas for (21)
and (22) we have ‖y + v‖ ≥ 2−

√
2 and ‖x+ v‖ ≥ 2−

√
2.

For the practical implementation we are interested in the second derivatives. Here we
can obtain a better estimate than above by directly using a suitable system of spherical
coordinates x = x(θ, φ) and y = y(α, β). The maximum will be reached by the derivatives
∂2q
∂φ2 and ∂2q

∂β2 (c.f. (24)). For these derivatives we get∣∣∣∣∣∣∣∣ ∂2q

∂φ2

∣∣∣∣∣∣∣∣ ≤ 3| − v1 cos θ cosφ− v2 sin θ cosφ+ v3 sinφ|2

||v + x(θ, φ)||4

+
|v1 cos θ sinφ+ v2 sin θ sinφ+ v3 cosφ|

||v + x(θ, φ)||2
+

+2
| − v1 cos θ cosφ− v2 sin θ cosφ+ v3 sinφ|

||v + x(θ, φ)||3
+

1
||v + x(θ, φ)||
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Figure 1: Section of the radial Gabor atom ψ.

and ∣∣∣∣∣∣∣∣ ∂2q

∂β2

∣∣∣∣∣∣∣∣ ≤ 3| − v1 cosα cosβ − v2 sinα cosβ + v3 sinβ|2

||v + y(α, β)||4

+
|v1 cosα sinβ + v2 sinα sinβ + v3 cosβ|

||v + y(α, β)||2
+

+2
| − v1 cosα cosβ − v2 sinα cosβ + v3 sinβ|

||v + y(α, β)||3
+

1
||v + y(α, β)||

.

3.4 Christallography and numerical experiments

For the numerical experiments we �rst have to specify the analyzing Gabor atoms. In the
present example we limit ourselves to radial functions over the real axis where ψ is de�ned
by

ψ(q) = cos6(2.6 arccos(q0)),
√

3
2
≤ q0 ≤ 1,

see Figure 1. If q = Λ(θ, α, φ), θ ∈ [0, 2π[, α ∈ [0, π[ and φ ∈ [0, π], where Λ is de�ned as
in (6) then the Gabor atom reads as

ψ(θ, α, φ) = cos6(2.6φ),
π

6
≤ φ ≤ π

2
.

The corresponding admissibility constant is

Cψ = 64π5

∫ 2π

0

∫ π

0

∫ π/2

0

|ψ(q(θ, α, φ))|2

cosφ
dφ dα dθ ≈ 17.54532476π7 ≈ 52992.
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The overlapping of the corresponding frame system is as follows. The Gabor atom is
de�ned on the spherical cap

U√3
2

=

{
q ∈ S3 : q0 ≥

√
3

2

}
.

This cap is centered on the real axis and has a size of π
6 radians. The spatial grid on S3

is �xed by the vertices of the 600-cell. This provides us with several advantages. Firstly,
the vertices of the 600-cell represent a discrete subgroup of unit quaternions, the binary
icosahedral group, a double covering of the icosahedral group. While the group itself is not
crystallographic, several crystallographic groups are subgroups of this group, like the cyclic
groups generated by the various elements or D3. Secondly, �ner but still quasi-uniform
grids can be created starting from this grid by subdivision schemes [21]. As the distance
between two neighboring vertices of the 600-cell is π

5 then the overlapping between two
caps is about 2π

15 . This gives a ratio of
4
5 between the overlapping chosen and the maximum

overlapping coincident with the distance between two neighboring vertices of the 600-cell.
For the frequency grid we prefer the 3−dimensional grid 3Z3 ∪ {(0, 0, 0)} and for the
rotation grid we use the 120 vertices of the 600-cell. For the numerical experiment we
choose a (synthetic) example of an ODF with orthorhombic crystal symmetry and triclinic
symmetry for the specimen. The ODF itself is simulated in terms of our Gabor system.
Based on our grid and the proposed symmetry the vector c representing the coe�cients of
the ODF has to be sparse. The numerical experiment is now organized as follows. First we
simulate data by choosing a vector c that has only zero entries except at labels 1, 46, 47,
48, 49, 50, 51, 120 the entries are one. The related pole �gure is visualized in Figure 2. To
simulate measurements we derive R(F ∗c). To evaluate the reconstruction capacities of the
proposed algorithm (12) especially with respect to noisy data, we add in three individual
experiments noise with di�erent levels. Proceeding this way, we obtain data with relative
errors of 0, 5, and 10 percent. The reconstruction results and the corresponding pole �gures
are illustrated in Figures 3, 4, 5, 6, 7, and 8.
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Figure 2: Pole �gures for the crystal con�guration.
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Figure 3: Reconstruction process of iteration (12), relative error of 0.0 percent.
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Figure 4: Pole �gures for the reconstructed crystal con�guration with relative error of 0.0
percent.

22



Figure 5: Reconstruction process of iteration (12), relative error of 5.19 percent.
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Figure 6: Pole �gures for the reconstructed crystal con�guration with relative error of 5.19
percent.
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Figure 7: Reconstruction process of iteration (12), relative error of 10.21 percent.
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Figure 8: Pole �gures for the reconstructed crystal con�guration with relative error of
10.21 percent.
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A The algebra of quaternions

A.1 De�nitions

The algebra of quaternions H is a four-dimensional real associative division algebra with
unit 1 spanned by the elements {e1, e2, e3} endowed with the relations

e2
1 = e2

2 = e2
3 = −1,

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e1e3 = −e3e1 = e2.

This algebra is a non-commutative �eld. The real and imaginary parts of a given quaternion

q = x01 + x1e1 + x2e2 + x3e3

are de�ned as Re(q) = q0 := x0, and Im(q) = ~q := x1e1 + x2e2 + x3e3. Therefore, in
contrast to complex numbers, ~q is not a real number. We have then natural embeddings
of the real numbers and of R3 into quaternions given by

x0 ∈ R→ x01 ∈ H and (x1, x2, x3) ∈ R3 → x1e1 + x2e2 + x3e3 ∈ H.

Moreover, we have the identi�cations H ≡ R4, ImH ≡ R3, ReH ≡ R, where ImH is the
three dimensional space of imaginary quaternions, and H = R⊕ R3.

There is a suitable conjugation on H, given by

q = x0 + ~q → q = x0 − ~q

and satisfying to the involution property qp = p q. The Euclidean scalar product is de�ned
on H = R4 by < q, p >= Re(qp) = 1

2(qp+ pq) and the corresponding norm ‖q‖2 =< q, q >
veri�es ‖qp‖ = ‖q‖ ‖p‖. The quaternionic multiplication can be expressed in terms of the
usual scalar and vector product on ImH ≡ R3 by

qp = (q0 + ~q)(p0 + ~p) = q0p0 − ~q · ~p+ q0~p+ p0~q + ~q × ~p.

A.2 Rotations in R3 and R4

The set of unitary quaternions S3 = {q ∈ H, ‖q‖ = 1} is a group under multiplication.
It can be interpreted also as a group of linear maps p ∈ H → qp which preserves the
(H-valued) hermitian product p|q = pq and it is usually called the symplectic group Sp(1).
The action of Sp(1) on H given by ρ̂(q) : H → H, ρ̂(q)p = qpq, q ∈ Sp(1) preserves the
Euclidean scalar product on R4, it stabilizes R ⊂ H and its orthogonal complement ImH.
Also, we de�ne the automorphic groups SO(3) and SO(4) as

SO(3) = {T ∈ Aut(H) : (T~q) · (T~p) = ~q · ~p, ~q, ~p ∈ R3 ≡ ImH},

and
SO(4) = {Q ∈ Aut(H) :< Qq,Qp >=< q, p >, q, p ∈ H}.
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The restriction of the action of the group Sp(1) on R3 = ImH is a representation
of Sp(1) by rotations and it induces a homomorphism ρ̂ : Sp(1) → SO(3) which can be
shown to be the universal covering of the group SO(3) ' Sp(1)/Z2. Hence Sp(1) is also
isomorphic to Spin(3).

Finally, the map ρ : Sp(1) × Sp(1) → SO(4), (u, v) → ρ(u, v)(q) = uqv preserves the
Euclidean norm in R4, that is,

‖uqv‖2 = Re(uqv uqv) = Re(uqv vqu) = Re(qq) = ‖q‖2.

Therefore, we have a homomorphism of Sp(1)× Sp(1). Moreover, it can be shown that ρ
de�nes a two-fold covering of the special orthogonal group SO(4) and so, we have Spin(4) ≡
Sp(1)× Sp(1).
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Correction. Preprint 26, DFG-SPP 1324, August 2009.
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