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On the stability of the hyperbolic cross
discrete Fourier transform

Lutz Kämmerer† Stefan Kunis†‡

A straightforward discretisation of problems in high dimensions often leads to
an exponential growth in the number of degrees of freedom. Sparse grid approx-
imations allow for a severe decrease in the number of used Fourier coefficients to
represent functions with bounded mixed derivatives and the fast Fourier transform
(FFT) has been adapted to this thin discretisation. We show that this so called
hyperbolic cross FFT suffers from an increase of its condition number for both
increasing refinement and increasing spatial dimension.

Key words and phrases : trigonometric approximation, hyperbolic cross, sparse
grid, fast Fourier transform

2010 AMS Mathematics Subject Classification : 65T40, 65T50, 42A15, 15A60

1 Introduction

A straightforward discretisation of problems in d spatial dimensions with 2n grid points in
each coordinate leads to an exponential growth 2dn in the number of degrees of freedom.
Even an efficient algorithm like the d-dimensional fast Fourier transform (FFT) uses C2dndn
floating point operations. This is labelled as the curse of dimensions and the use of sparsity
has become a very popular tool in such situations. For moderately high dimensional problems
the use of sparse grids and the approximation on hyperbolic crosses has led to problems of
total size Cd2nnd−1. Moreover, the approximation rate hardly deteriorates for functions in
an appropriate scale of spaces of dominating mixed smoothness, see e.g. [12, 14, 9, 8, 11, 2,
10, 13]. The FFT has been adapted to this thin discretisation as hyperbolic cross fast Fourier
transform (HCFFT), which uses Cd2nnd floating point operations, in [1, 7, 6], see also [5] for
a recent generalisation to arbitrary spatial sampling nodes and [4] for the associated Matlab
toolbox.

In this paper, we consider the numerical stability of the hyperbolic cross discrete Fourier
transform, which of course limits the stability of a particular and potentially fast algorithm
like the HCFFT. While the ordinary discrete Fourier transform is up to some constant a
unitary transform and thus has condition number one, its hyperbolic cross version suffers

†Chemnitz University of Technology, Faculty of Mathematics, {kaemmerer,kunis}@mathematik.tu-
chemnitz.de

‡Helmholtz Zentrum München, Institute for Biomathematics and Biometry
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n�d 2 3 4 5 6 7 8 9 10

1 2.00 3.73 6.34 9.90 · 100 1.44 · 101 1.99 · 101 2.65 · 101 3.40 · 101 4.25 · 101

2 3.24 9.49 22.84 4.71 · 101 8.72 · 101 1.49 · 102 2.41 · 102 3.72 · 102 5.52 · 102

3 5.15 19.43 60.79 1.58 · 102 3.57 · 102 7.34 · 102 1.40 · 103 2.51 · 103 4.29 · 103

4 8.08 36.21 135.74 4.26 · 102 1.15 · 103 2.78 · 103 6.14 · 103 1.26 · 104 2.45 · 104

5 12.53 63.85 272.26 1.01 · 103 3.17 · 103 8.82 · 103 2.22 · 104 5.16 · 104 1.12 · 105

6 19.21 108.72 518.01 2.17 · 103 7.80 · 103 2.46 · 104 6.98 · 104 1.81 · 105 4.38 · 105

Table 1.1: Condition number of the hyperbolic cross discrete Fourier transform.

from an increase of its condition number for both increasing refinement n and increasing
spatial dimension d. We illustrate this behaviour in Table 1.1, which shows that already for
spatial dimension d = 9 and a refinement n = 4 the HCFFT looses four digits of accuracy
for a worst case input. As a rule of thumb for fixed dimension, the condition number at least
doubles whenever the refinement is increased by two.

The paper is organised as follows: After introducing the necessary notation and collecting
basic facts about the hyperbolic cross and related sets, we discuss the interpolation of functions
by trigonometric polynomials. By convenience, we use the term “ordinary Fourier matrix”
for the full grid case and reserve the short hand “Fourier matrix” for the hyperbolic cross and
sparse grid case. We start by the interpolation on a full grid which leads to a trigonometric
polynomial of an appropriate multi-degree and give the well known formulation as discrete
Fourier transform, i.e., as matrix vector product with the ordinary inverse Fourier matrix.
Subsequently, we consider the interpolation on the sparse grid which leads to a trigonometric
polynomial on the hyperbolic cross. Since the interpolation operator has a Boolean sum
decomposition, the associated inverse Fourier matrix allows for two similar decompositions
in ordinary inverse Fourier matrices as well. In particular, this yields upper bounds for the
norm of these inverse Fourier matrices, cf. Lemmata 2.3 and 2.5. We proceed by computing
the Fourier coefficients of the Lagrange interpolant, interpolating one at the origin and zero
at all other sparse grid nodes in Section 2.3 - which yields lower bounds for the norm of
these inverse Fourier matrices. The main results of this paper are estimates on the norms of
the Fourier matrices and their inverses in Theorems 3.1 and 4.1 for fixed spatial dimension
and fixed refinement, respectively. These results are refined in Lemmata 3.4 and 4.4 for
d = 2 and n = 1, respectively. All theoretical results are illustrated by a couple of numerical
experiments. Finally, we conclude our findings in Section 5.

2 Prerequisite

Throughout this paper let the spatial dimension d ∈ N and a refinement n ∈ N0 be given. We
denote by Td ∼= [0, 1)d the d-dimensional torus and consider Fourier series f : Td → C, f(x) =∑

k∈Zd f̂ke2πikx with Fourier coefficients f̂k ∈ C. The space of trigonometric polynomials Πj ,
j ∈ Nd

0, consists of all such series with Fourier coefficients supported on Ĝj = ×dl=1Ĝjl ,
Ĝj = Z ∩ (−2j−1, 2j−1], i.e., f : Td → C,

f(x) =
∑

k∈Ĝj

f̂ke2πikx.

A well adapted spatial discretisation of trigonometric polynomials relies on the full spatial grid
Gj = ×dl=1Gjl , Gj = 2−j(Z ∩ [0, 2j)). If all refinements are equally set to jl = n, l = 1, . . . , d,
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this yields 2dn degrees of freedom in frequency as well as in spatial domain.

2.1 Hyperbolic cross and sparse grid

For functions of appropriate smoothness, it is much more effective to restrict the frequency
domain to the hyperbolic cross

Hd
n :=

⋃
‖j‖1=n

j∈Nd
0

Ĝj = {k ∈ Ĝj : ‖j‖1 = n} ⊂ Ĝn × . . .× Ĝn ⊂ Zd, (2.1)

see Figure 2.1(a). This leads to the space Πhc
n of trigonometric polynomials on the hyperbolic

cross, i.e., f : Td → C,
f(x) =

∑
k∈Hd

n

f̂k e2πikx.

Here, an appropriate spatial discretisation is given by the sparse grid

Sdn :=
⋃
‖j‖1=n

j∈Nd
0

Gj = {x ∈ Gj : ‖j‖1 = n} ⊂ Gn × . . .×Gn ⊂ Td, (2.2)

see Figure 2.1(b). For notational convenience, we set Hd
−1 := Sd−1 := Ĝ−1 := G−1 := ∅. An

−64 −48 −32 −16 0 16 32 48 64
−64

−48

−32

−16

0

16

32

48

64

(a) Hyperbolic cross H2
7 ⊂ Z2.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) Sparse grid S2
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Figure 2.1: Two dimensional hyperbolic cross and corresponding sparse grid.

immediate consequence of (2.1) is the partition

Hd
n =

n⋃
s=0

Hd−1
n−s × (Ĝs \ Ĝs−1). (2.3)

We proceed by two lemmata on the cardinality of the hyperbolic cross and related sets.

Lemma 2.1. For d, n ∈ N, we have the cardinality estimates
∣∣Hd

0

∣∣ =
∣∣Sd0 ∣∣ = 1,

|Sdn| = |Hd
n| =

min(n,d−1)∑
j=0

2n−j
(
n
j

)(
d− 1
j

)
=

{
2nnd−1

2d−1(d−1)!
+O(2nnd−2) for fixed d ≥ 2

dn

n! +O(dn−1) for fixed n,
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and

∣∣∣Hd
n \Hd

n−1

∣∣∣ =



d−1∑
j=0

2n−j−1n+ j

n− j

(
n− 1
j

)(
d− 1
j

)
, for n ≥ d

n−1∑
j=0

2n−j−1n+ j

n− j

(
n− 1
j

)(
d− 1
j

)
+

(
d− 1
n

)
, for n < d.

In particular, this yields

i)
∣∣Hd

n \Hd
n−1

∣∣ ≥ 2nnd−1

2d(d−1)!
−O(2nnd−2) for fixed d ∈ N and n ≥ d, and

ii) |H2
0 \H2

−1| = 1 and |H2
n \H2

n−1| = (n+ 3)2n−2 for n > 0 and d = 2.

Proof. The cardinality estimate for the hyperbolic cross and the sparse grid is well known
and can be found for example in [7]. Regarding the set differences, we only consider n < d
since the other case follows analogously. Due to Hd

n−1 ⊂ Hd
n, we compute

|Hd
n| − |Hd

n−1| =
n∑
j=0

2n−j
(
n
j

)(
d− 1
j

)
−
n−1∑
j=0

2n−1−j
(
n− 1
j

)(
d− 1
j

)

=
n−1∑
j=0

2n−1−j
(
d− 1
j

)(
2
(
n
j

)
−
(
n− 1
j

))
+
(
d− 1
n

)

=
n−1∑
j=0

2n−1−j
(
d− 1
j

)
n+ j

n− j

(
n− 1
j

)
+
(
d− 1
n

)
.

The asymptotic estimate i) can be seen from the summand j = d − 1, ii) can be computed
explicitly.

Lemma 2.2. Let d ∈ N, n ∈ N0, and k ∈ Zd be given and set `(k) :=
{
l : k ∈ Hd

l \Hd
l−1

}
.

Then we have

∣∣∣{m ∈ Nd
0 : ‖m‖1 = n and k ∈ Ĝm}

∣∣∣ =


(
n− `(k) + d− 1

d− 1

)
`(k) ≤ n,

0 otherwise.

Proof. First note that each k ∈ Zd allows for exactly one l ∈ Nd
0 with kj ∈ Ĝlj \ Ĝlj−1,

j = 1, . . . , d. Moreover, this multi-index fulfils ‖l‖1 = `(k) and thus k ∈ Ĝm if and only if
mj = lj + rj , rj ≥ 0, j = 1, . . . , d. In summary, we obtain∣∣∣{m ∈ Nd

0 : ‖m‖1 = n and k ∈ Ĝm}
∣∣∣ =

∣∣∣{r ∈ Nd
0 : ‖r‖1 = n− `(k)}

∣∣∣ ,
from which the assertion follows by simple combinatorics.
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2.2 Operators and associated matrices

Interpolation operators typically take samples at certain sampling nodes and construct a
function from a particular linear space which can be represented by its expansion coefficients.
Hence, the linear map from sample values to expansion coefficients and vice versa is given by
a matrix which is of interest. We start by reviewing the classical trigonometric interpolation
on the full grid. For d ∈ N, j ∈ Nd

0, and continuous functions f ∈ C(Td), we define the
interpolation operator Ij : C(Td)→ Πj by the conditions

Ijf(x) = f(x), x ∈ Gj .

Clearly, we have Ij = Ij1 ⊗ . . .⊗ Ijd and

Ijf(x) =
∑

k∈Ĝj

f̂j,ke2πikx, f̂j,k =
1

2‖j‖1
∑

x∈Gj

f(x)e−2πikx.

Moreover, the discrete Fourier coefficients coincide with the Fourier coefficients for trigono-
metric polynomials of multi-degree 2j , i.e., f̂j,k = f̂k, k ∈ Ĝj , for f ∈ Πj . In matrix vector
notation, i.e.,

f̂ j = (f̂j,k)k∈Ĝj
∈ C|Ĝj |, f = (fx)x∈Gj

= (f(x))x∈Gj
∈ C|Gj |,

we have

f̂ j = F−1
j f , F−1

j =
1
|Ĝj |

(e−2πikx)k∈Ĝj ,x∈Gj
,

where
F j := (e2πikx)x∈Gj ,k∈Ĝj

= F j1 ⊗ . . .⊗ F jd

denotes the ordinary Fourier matrix.
Next, we turn to the trigonometric interpolation on the sparse grid, see the monograph

[3] for an introduction. In what follows, the interpolation operator allows for a Boolean sum
decomposition which is used for analysing the associated Fourier matrix. For d ∈ N, n ∈ N0,
and continuous functions f ∈ C(Td), we define the interpolation operator Ldn : C(Td)→ Πhc

n

by the conditions
Ldnf(x) = f(x), x ∈ Sdn.

This time, we have
Ldn =

⊕
j∈Nd

0
‖j‖1=n

Ij

and
Ldnf(x) =

∑
k∈Hd

n

f̂ke2πikx, f̂ = (F d
n)−1f ,

for all trigonometric polynomials on the hyperbolic cross f ∈ Πhc
n , where

F d
n := (e2πikx)x∈Sd

n,k∈Hd
n
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denotes the Fourier matrix and we drop the superscript for d = 1. Moreover, the interpolation
operator fulfils the well known relation

Ldn =
n∑
j=0

In−j ⊗ Ld−1
j −

n−1∑
j=0

In−1−j ⊗ Ld−1
j (2.4)

which gives rise to the following result.

Lemma 2.3. Let d ∈ N, d ≥ 2, and n ∈ N0, then the inverse Fourier matrices fulfil ‖F−1
n ‖22 =

2−n and

‖(F d
n)−1‖2 ≤

n∑
j=0

‖F−1
n−j‖2‖(F d−1

j )−1‖2 +
n−1∑
j=0

‖F−1
n−1−j‖2‖(F d−1

j )−1‖2.

Proof. Each individual summand In−j ⊗ Ld−1
j in (2.4) takes samples only from the set

Gn−j ×Sd−1
j ⊂ Sdn as its input and produces a certain trigonometric polynomial with Fourier

coefficients supported only on the set Ĝn−j ×Hd−1
j ⊂ Hd

n. For subsequent use, let X ⊂ Sdn,

Y ⊂ Hd
n, the restriction matrix P d

n(X) ∈ R|X|×|Sd
n| and the extension matrix Qd

n(Y ) ∈
R|Hd

n|×|X|,

(P d
n(X)f)x = fx, x ∈ X, (Qd

n(Y )f̂)k =

{
f̂k k ∈ Y,
0 k ∈ Hd

n \ Y,
be given. Thus, the inverse Fourier matrix allows for the representation

(F d
n)−1 =

n∑
j=0

Qd
n(Ĝn−j ×Hd−1

j )
(
F−1
n−j ⊗ (F d−1

j )−1
)

P d
n(Gn−j × Sd−1

j )

−
n−1∑
j=0

Qd
n(Ĝn−1−j ×Hd−1

j )
(
F−1
n−1−j ⊗ (F d−1

j )−1
)

P d
n(Gn−1−j × Sd−1

j ).

Since the restriction and extension matrices have norms bounded by one, the triangle inequal-
ity yields the assertion.

Example 2.4. The decomposition of the previous Lemma, for d = 2 and n = 1, is

(F 2
1)−1 =

1
2

0 1 1
1 −1 0
1 0 −1


= Q2

1(Ĝ1 × Ĝ0)
(
F−1

1 ⊗ F−1
0

)
P 2

1(G1 ×G0)

+ Q2
1(Ĝ0 × Ĝ1)

(
F−1

0 ⊗ F−1
1

)
P 2

1(G0 ×G1)

−Q2
1(Ĝ0 × Ĝ0)

(
F−1

0 ⊗ F−1
0

)
P 2

1(G0 ×G0)

=
1
2

1 1 0
1 −1 0
0 0 0

+
1
2

1 0 1
0 0 0
1 0 −1

−
1 0 0

0 0 0
0 0 0


which yields by the triangle inequality the norm estimate

1 = ‖(F 2
1)−1‖2 ≤ ‖(F 1

1)−1‖2 + ‖(F 1
1)−1‖2 + ‖(F 1

0)−1‖2 =
1√
2

+
1√
2

+ 1 = 1 +
√

2.

Moreover, we have the following result for sums of interpolation operators of a specific level.
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Lemma 2.5. For d ∈ N, n ∈ N0, let the matrices Σd
n−l ∈ C|H

d
n−l|×|S

d
n−l|, l = 0, . . . ,min(n, d−

1) be given by

Σd
n−l =

∑
j∈Nd

0
‖j‖1=n−l

Qd
n−l(Ĝj)F−1

j P d
n−l(Gj),

where the restriction matrices P d
n−l and the extension matrices Qd

n−l are given as in Lemma
2.3. Then, the inverse Fourier matrix allows for the decomposition

(F d
n)−1 =

min(n,d−1)∑
l=0

(−1)l
(
d− 1
l

)
Qd
n(Hd

n−l)Σ
d
n−lP

d
n(Sdn−l).

In particular, this yields the norm estimate

‖(F d
n)−1‖ ≤ 2−

n
2

min(n,d−1)∑
l=0

(
d− 1
l

)(
n− l + d− 1

d− 1

)
2

l
2 .

Proof. We define the operator σdn : C(Td)→ Πhc
n ,

σdn =
∑
j∈Nd

0
‖j‖1=n

Ij ,

which fulfils the recursion

σdn =
n∑
l=0

∑
j∈Nd−1

0
‖j‖1=l

In−l ⊗ Ij =
n∑
l=0

In−l ⊗ σd−1
l .

Moreover, the interpolation operator obeys L1
n = In = σ1

n and the relation

Ldn =
min(n,d−1)∑

l=0

(−1)l
(
d− 1
l

)
σdn−l

which is proven by induction over d ∈ N using (2.4) in

Ldn =
n∑
j=0

In−j ⊗ Ld−1
j −

n−1∑
j=0

In−1−j ⊗ Ld−1
j

=
min(n,d−2)∑

l=0

n∑
j=l

(−1)l
(
d− 2
l

)
In−j ⊗ σd−1

j−l

−
min(n−1,d−2)∑

l=0

n−1∑
j=l

(−1)l
(
d− 2
l

)
In−1−j ⊗ σd−1

j−l

=
min(n,d−2)∑

l=0

(−1)l
(
d− 2
l

)
σdn−l −

min(n,d−1)∑
l=1

(−1)l−1

(
d− 2
l − 1

)
σdn−l

7



=


∑n

l=0(−1)l
(
d− 1
l

)
σdn−l, n ≤ d− 2

∑d−2
l=0 (−1)l

(
d− 1
l

)
σdn−l + (−1)d−1σdn−d+1, n ≥ d− 1

=
min(n,d−1)∑

l=0

(−1)l
(
d− 1
l

)
σdn−l.

Since Σd
n and (F d

n)−1 are the matrix representations of the operators σdn and Ldn, respectively,
the assertion follows. The norm estimate finally is due to

‖(F d
n)−1‖2 ≤

min(n,d−1)∑
l=0

(
d− 1
l

)∥∥∥Σd
n−l

∥∥∥
2

and

‖Σd
n‖2 ≤

∑
j∈Nd

0
‖j‖1=n

‖F−1
j ‖2 = 2−

n
2

(
n+ d− 1
d− 1

)
.

2.3 A Lagrange interpolant

We proceed by applying the decomposition from Lemma 2.5 to a particular vector of samples
in order to get a lower bound for the norm of the inverse Fourier matrix. The specific samples
belong to the Lagrange interpolant, interpolating one at the origin and zero at all other sparse
grid nodes. We have the following estimates on its Fourier coefficients.

Lemma 2.6. Let d ∈ N, n ∈ N0, and e ∈ R|Sd
n|,

ex =

{
1, for x = 0,
0, for x ∈ Sdn \ {0},

denote the first unit vector. The Fourier coefficient vector ê = (F d
n)−1e ∈ C|Hd

n| fulfils

êk = 2−n
min(n−`(k),d−1)∑

l=0

(−2)l
(
d− 1
l

)(
n− l − `(k) + d− 1

d− 1

)
.

In particular, we have

i) êk = 2−n for k ∈ Hd
n \Hd

n−1,

ii) êk = `(k)−n+1
2n for d = 2, and

iii) |ê0| ≥
∣∣ dn

n!2n −O(dn−1)
∣∣ for fixed n ∈ N0 and d > n.
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Proof. The individual summands in the decomposition of Lemma 2.5 can be computed for
l = 0, . . . ,min(n, d− 1), j ∈ Nd

0, ‖j‖1 = n− l, and k ∈ Ĝj explicitly as

(F−1
j P d

n−l(Gj)P d
n(Sdn−l)e)k = 2l−n.

Denoting by 1 = (1, . . . , 1)> ∈ R2n−l
the vector of all ones, this yields

((F d
n)−1e)k =


min(n,d−1)∑

l=0

(−1)l
(
d− 1
l

)
Qd
n(Hd

n−l)
∑
j∈Nd

0
‖j‖1=n−l

Qd
n−l(Ĝj)2l−n1


k

= 2−n
min(n,d−1)∑

l=0

(−2)l
(
d− 1
l

) ∣∣∣{j ∈ Nd
0 : ‖j‖1 = n− l and k ∈ Ĝj}

∣∣∣
= 2−n

min(n−`(k),d−1)∑
l=0

(−2)l
(
d− 1
l

)(
n− l − `(k) + d− 1

d− 1

)

where the last equality follows from Lemma 2.2. We evaluate this sum for the special cases
i)-iii). Since k ∈ Hd

n \Hd
n−1 yields `(k) = n, the above sum contains only one summand for

l = 0 and i) follows. The second assertion, i.e. d = 2, follows for n = `(k) from i) and for
n > `(k), the above sum yields

êk =
n− `(k) + 1

2n
− n− `(k)

2n−1
=
`(k)− n+ 1

2n
.

Finally, we show iii) by

|ê0| =
1
2n

∣∣∣∣∣
n∑
l=0

(−2)l
(
d− 1
l

)(
n− l + d− 1

d− 1

)∣∣∣∣∣
=

1
n!2n

∣∣∣∣∣
n∑
l=0

(
n
l

)
(−2)l(d− l) · . . . · (d− l + n− 1)

∣∣∣∣∣
=

∣∣∣∣ dnn!2n
−O(dn−1)

∣∣∣∣ .

3 Fixed spatial dimension

Our main result on the norms of the Fourier matrix and its inverse are given for fixed spatial
dimension in this section, while the discussion of fixed refinement and increasing dimension
is postponed to Section 4. After the above preparation, we are ready to prove the following
asymptotic estimates.
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Theorem 3.1. Let the spatial dimension d ∈ N, d ≥ 2, be fixed. For n ∈ N, n ≥ d, the
following bounds are valid

1√
2d−1(d− 2)!

2nn
d−2
2 −O(2nn

d−3
2 ) ≤ ‖F d

n‖2 ≤
1

2d−1(d− 1)!
2nnd−1 +O(2nnd−2)

and

1

2
d
2

√
(d− 1)!

n
d−1
2

2
n
2

−O
(

2−
n
2 n

d−2
2

)
≤ ‖(F d

n)−1‖2 ≤
(
√

2 + 1)d−1

(d− 1)!
nd−1

2
n
2

+O
(

2−
n
2 nd−2

)
.

Proof. The upper bound for the norm of the Fourier matrix easily follows from ‖F d
n‖2 ≤

‖F d
n‖F = |Hd

n| and the first relation in Lemma 2.1. Moreover, let f̂ ∈ R|Hd
n|,

f̂k1,k2,...,kd
=

{
2−

n
2 k2 = . . . = kd = 0,

0 otherwise,

and f = F d
nf̂ be given, then ‖f̂‖2 = 1 and

fx1,...,xd
= 2−

n
2

2n−1∑
k1=−2n−1+1

e2πikx = 2−
n
2

2n−1∑
k1=−2n−1+1

e2πik1x1 =

{
2

n
2 x1 = 0,

0 otherwise.

Thus, the lower bound for the norm of the Fourier matrix is due to ‖F d
n‖22 ≥ ‖f‖22 = 2n|Sd−1

n |.
The upper estimate for the inverse Fourier matrix is due to Lemma 2.3 and an induction

argument over d ∈ N. For d = 1 and all n ∈ N0 we have ‖(F n)−1‖2 = 2−
n
2 and using the

Boolean sum decomposition, we proceed inductively by

‖(F d
n)−1‖2 ≤

n∑
j=0

‖(F n−j)−1‖2‖(F d−1
j )−1‖2 +

n−1∑
j=0

‖(F n−1−j)−1‖2‖(F d−1
j )−1‖2

≤ (
√

2 + 1)d−2

(d− 2)!2
n
2

 n∑
j=0

(j + d− 2)d−2 +
√

2
n−1∑
j=0

(j + d− 2)d−2


≤ (
√

2 + 1)d−1

(d− 2)!2
n
2

∫ n+1

0
(j + d− 2)d−2dj

≤ (
√

2 + 1)d−1(n+ d− 1)d−1

(d− 1)!2
n
2

.

Finally, consider the first unit vector e = (1, 0, . . . , 0)> ∈ R|Hd
n| whose Fourier coefficient

vector ê = (F d
n)−1e fulfils

‖(F d
n)−1‖22 ≥ ‖ê‖22 ≥

∑
k∈Hd

n\Hd
n−1

|êk|2 =
|Hd

n \Hd
n−1|

22n
≥ nd−1

2n2d(d− 1)!
−O(2−nnd−2).

due to Lemmata 2.6(i) and 2.1(i).
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Figure 3.1: Lower order term of the norms and asymptotic bounds for the Fourier matrix and
its inverse for spatial dimension d = 3 and increasing refinement n, cf. Theorem
3.1.

Corollary 3.2. For fixed spatial dimension d ∈ N and increasing n ∈ N, the condition number
of F d

n scales approximately like the
√
|Hd

n|, more precisely the following bounds are valid

Ω(2
n
2 n

2d−3
2 ) ≤ cond2F

d
n ≤ O(2

n
2 n2d−2).

The growth of the condition number with increasing refinement is illustrated in the following
Figure 3.2. Beyond the estimate from Corollary 3.2, the condition number increases at higher
rates for refinements that are small compared to the spatial dimension.
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Figure 3.2: Condition number of the Fourier matrix and its inverse for fixed spatial dimension
and increasing refinement n. We expect log cond2F

d
n ≈ 1

2 log |Hd
n| for large n,

cf. Corollary 3.2.
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Improvements for d = 2

Theorem 3.1 can be refined for the two dimensional case. In particular, we present an identity
for the norm of the Fourier matrix and non asymptotic bounds on the norm of the inverse
Fourier matrix. However note, that our numerical results in Table 3.1 indicate that the upper
bound is not order optimal, see also Figure 3.1(b) for the three dimensional case. We start
with the following simple auxiliary result.

Lemma 3.3. For n ∈ N the following identity is fulfilled

n∑
k=1

(k + 3)2k−2(k + 1− n)2 = 2n(n− 1) + 2− (n− 1)2.

Proof. Summation by parts yields
n∑
k=1

k2k−2 = n2n−1 − 1
2
−

n∑
k=2

2k−2 = 2n−1(n− 1) +
1
2
,

and analogously
n∑
k=1

k22k−2 = 2n−1(n2 − 2n+ 3)− 3
2
,

n∑
k=1

k32k−2 = 2n−1(n3 − 3n2 + 9n− 13) +
13
2
,

which yields the assertion.

Lemma 3.4. For n ∈ N the estimates from Theorem 3.1 can be refined to

‖F 2
n‖2 = 2n,

√
n− 1
2

n
2

≤ ‖(F 2
n)−1‖2 ≤

(
√

2 + 1)n+ 1
2

n
2

.

Proof. Let f̂ ∈ C|H2
n|, ‖f̂‖2 = 1, be arbitrary and set ĝ ∈ C22n

to

ĝk1,k2 =

{
f̂k1,k2 (k1, k2)> ∈ H2

n,

0 (k1, k2)> ∈ Ĝn,n \H2
n.

Moreover, let f = F 2
nf̂ and g = F n ⊗ F nĝ, then

‖F 2
nf̂‖22 =

∑
x∈S2

n

|fx|2 =
∑

x∈S2
n

|gx|2 ≤
∑

x∈Gn,n

|gx|2 = ‖F n ⊗ F nĝ‖22 = ‖F n ⊗ F n‖22 = 4n.

The three remaining estimates follow along the same lines as in Theorem 3.1. The lower
bound for the Fourier matrix is due to ‖F 2

n‖22 ≥ 2n|S1
n| = 4n. The upper estimate for the

inverse Fourier matrix follows from

‖(F 2
n)−1‖2 ≤

n∑
j=0

‖F−1
j ‖2‖F−1

n−j‖2 +
n−1∑
j=0

‖F−1
j ‖2‖F−1

n−1−j‖2 =
n+ 1

2
n
2

+
n

2
n−1

2

.

Finally, the lower bound on the inverse Fourier matrix uses again the first unit vector e =
(1, 0, . . . , 0)> ∈ R|H2

n| which yields in conjunction with Lemmata 2.6(ii), 2.1(ii), and 3.3∥∥(F 2
n)−1

∥∥2

2
≥

n∑
l=0

∑
k∈H2

l \H
2
l−1

|êk|2 =
(n− 1)2 +

∑n
l=1(l + 3)2l−2(l − n+ 1)2

22n
=

2n(n− 1) + 2
22n

.

from which the last assertion easily follows.
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n 4 5 6 7 8 9 10 11 12

‖(F 2
n)−1‖2 0.500 0.388 0.298 0.226 0.171 0.128 0.096 0.071 0.053
√
n−1

2
n
2

0.433 0.354 0.280 0.217 0.165 0.125 0.094 0.070 0.052

(
√

2+1)n+1

2
n
2

2.664 2.311 1.935 1.582 1.270 1.004 0.786 0.609 0.468

Table 3.1: Matrix norms of (F 2
n)−1 and their bounds from Lemma 3.4.

Remark 3.5. Note that the upper bound on the Fourier matrix is improved by an order
of magnitude for d = 2, but the applied technique gives the suboptimal estimates ‖F d

n‖2 ≤
‖⊗d

l=1 F n‖2 = 2
nd
2 for d > 2.

4 Fixed refinement

The second main result on the norms of the Fourier matrix and its inverse are given for fixed
refinement and increasing dimension.

Theorem 4.1. Let the refinement n ∈ N be fixed. For spatial dimension d ∈ N, d ≥ n, the
following bounds are valid

dn√
2n!
−O(dn−

1
2 ) ≤ ‖F d

n‖2 ≤
dn

n!
+O(dn−1)

and
dn

n!2n
−O(dn−1) ≤ ‖(F d

n)−1‖2 ≤
(
2 +
√

2
)n
dn

n!2n
+O(dn−1).

Proof. The upper bound on the Fourier matrix can be shown as in Theorem 3.1, i.e., ‖F d
n‖2 ≤

‖F d
n‖F = |Hd

n| and by using the first relation in Lemma 2.1. Now, let f̂ ∈ R|Hd
n|, f̂k = 1, be

given and set f = F d
nf̂ . Using the partition (2.3) of the hyperbolic cross and the shorthand

notations

k> = (k1k
>
1 ) = (k>0 k>n ), k1 ∈ Z, k1 ∈ Zd−1, k0 ∈ Zn, kn ∈ Zd−n,

x> = (x1x
>
1 ) = (x>0 x>n ), x1 ∈ T, x1 ∈ Td−1, x0 ∈ Tn, xn ∈ Td−n,

G̃j =
(
Ĝj1 \ Ĝj1−1

)
× . . .×

(
Ĝjn \ Ĝjn−1

)
⊂ Zn, j ∈ Nn

0 ,

we obtain

fx =
∑

k∈Hd
n

e2πikx =
n∑

j1=0

∑
k1∈Ĝj1

\Ĝj1−1

e2πik1x1
∑

k1∈Hd−1
n−j1

e2πik1x1

=
n∑
l=0

∑
j∈Nn

0
‖j‖1=l

∑
k0∈G̃j

e2πik0x0
∑

kn∈Hd−n
n−l

e2πiknxn .
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Since x ∈ Sdn implies x ∈ Gj with j ∈ Nd
0 and ‖j‖1 = n, at most n components of j are

nonzero. Hence, at most n components of x ∈ Sdn are nonzero and without loss of generality
let xn = (xn+1 . . . xd)> = 0. In conjunction with the estimates

∑
k0∈G̃0

e2πik0x0 = 1,

∣∣∣∣∣∣∣∣∣
∑
j∈Nn

0
‖j‖1=l

∑
k0∈G̃j

e2πik0x0

∣∣∣∣∣∣∣∣∣ ≤ Cn, 1 ≤ l ≤ n, x0 ∈ Tn,

with some constant Cn independent of d, the sample values finally obey

|fx| ≥ |Hd−n
n | − Cn

n∑
l=1

|Hd−n
n−l | =

dn

n!
−O(dn−1)

for all x ∈ Sdn. Thus ‖f‖22 ≥ (dn/n!)3−O(d3n−1) and the lower bound on the Fourier matrix
follows from ‖F d

n‖2 ≥ ‖f‖2/‖f̂‖2.
Applying Lemma 2.5, yields the following upper bound on the inverse matrix

‖(F d
n)−1‖2 ≤

1
2

n
2

n∑
l=0

(
d− 1
l

)(
n− l + d− 1

d− 1

)
2

l
2

=
1

n!2
n
2

n∑
l=0

(
n
l

)
(d− l + n− 1) · · · (d− l)2 l

2

≤ (d+ n− 1)n

n!2
n
2

n∑
l=0

(
n
l

)
2

l
2

=

(
2 +
√

2
)n
dn

n!2n
+O(dn−1).

Finally, the lower bound on the inverse Fourier matrix uses again the first unit vector
e = (1, 0, . . . , 0)> ∈ R|Hd

n| whose zeroth Fourier coefficient ê0, ê = (F d
n)−1e, yields

‖(F d
n)−1‖2 ≥ ‖ê‖2 ≥ ê0 ≥

dn

n!2n
−O(dn−1)

due to Lemma 2.6(iii).

Corollary 4.2. For fixed refinement n ∈ N and increasing spatial dimension d ∈ N, the
condition number of F d

n scales approximately like the |Hd
n|2, more precisely the following

identity is valid

cond2F
d
n = Θ(d2n).

The growth of the condition number with increasing refinement is illustrated in the following
Figure 4.1. Beyond the estimate from Corollary 4.2, the condition number increases at slightly
lower rates for spatial dimensions that are small compared to the refinement.
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Figure 4.1: Condition number of the Fourier matrix and its inverse for fixed refinement and
increasing spatial dimension d. We expect log cond2F

d
n ≈ 2 log |Hd

n| for large d,
cf. Corollary 4.2.

Improvements for n = 1

Theorem 4.1 can be refined for the case n = 1. In particular, we give a representation of the
Fourier matrix and its inverse as rank-2 perturbation of a multiple of the identity matrix.
This gives precise information on the eigenvalues and thus on the norms of the matrices in
Lemma 4.3. We start with the following observations for the hyperbolic cross and the sparse
grid.

Hd
1 =

{
k0,k1, . . . ,kd ∈ Zd

}
=




0

...

0

 ,


1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
...
0
0
1




,

Sd1 = 1
2H

d
1 , and |Hd

1 | = |Sd1 | = d+ 1. Moreover, for all k ∈ Hd
1 and x ∈ Sd1 holds

kx = k>x =

{
1
2 for k = 2x 6= 0
0 otherwise;

e2πikx =

{
−1 for k = 2x 6= 0
1 otherwise;

and thus the Fourier matrix is given by

F d
1 =


1 1 . . . 1

1 −1
. . .

...
...

. . . . . . 1
1 . . . 1 −1

 = −2Id+1 + UU>, U =


√

2 1
0 1
...

...
0 1

 . (4.1)

Regarding the inverse HCFFT and the computational complexity of this Fourier transform,
we obtain
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Lemma 4.3. For fixed refinement n = 1 and spatial dimension d ∈ N, the inverse Fourier
matrix (F d

1)−1 ∈ R(d+1)×(d+1) allows for the decomposition

(F d
1)−1 = −1

2
Id+1 − V W>, V =


−d−3

2 −1
2

1 0
...

...
1 0

 , W =


−1

2 −d−3
2

0 1
...

...
0 1

 .

Moreover, the matrix vector multiplication with F d
1 and its inverse take at most 3d + O(1)

floating point operations.

Proof. Due to

U>U =
(

2
√

2√
2 d+ 1

)
, (I2 −

1
2
U>U)−1 =

(
0 − 1√

2

− 1√
2
−d−1

2

)−1

=
(
d− 1 −

√
2

−
√

2 0

)
,

the Sherman Morrison Woodbury formula yields

(F d
1)−1 = −1

2
Id+1 −

1
4
U

(
d− 1 −

√
2

−
√

2 0

)
U> = −1

2
Id+1 −

1
4


2(d− 3) −2 . . . −2
−2 0 . . . 0
...

...
...

−2 0 . . . 0


and thus the assertion. The complexity estimate easily follows, since the multiplication with
U> or W> takes d+O(1), the multiplication with U or V takes O(1), and the addition with
the scaled input vector takes 2d+O(1) floating point operations.

Lemma 4.4. For d ∈ N, d ≥ 2, the estimates from Theorem 4.1 can be refined to

d− 1 ≤ ‖F d
1‖2 ≤ d,

d− 1
2
≤ ‖(F d

1)−1‖2 ≤
d

2
.

Proof. For n = 1 the Fourier matrix and its inverse are symmetric and thus it suffices to
compute their extremal eigenvalues. Due to the decomposition (4.1), we have

‖F d
1‖2 = −2 + λmax(U>U) = −2 +

d+ 3
2

+

√(
d+ 3

2

)2

− 2d

and in conjunction with Lemma 4.3 also

‖(F d
1)−1‖2 =

1
2

+ λmax(V >W ) =
1
2

+
d− 3

4
+

√(
d− 3

4

)2

+
d

4

from which the assertions easily follow.
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5 Summary

We have shown that the condition number of the hyperbolic cross discrete Fourier transform
scales approximately like the square root of the total problem size for fixed spatial dimension
and like the square of the total problem size for fixed refinement. In particular, this limits the
stability of the hyperbolic cross fast Fourier transform such that a significant loss in accuracy
sets in already for moderate spatial dimensions and refinements. Besides standard techniques,
we used a Boolean sum decomposition of the associated inverse Fourier matrix which might
be of independent interest for the numerical analysis of other sparse grid decompositions.
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[6] E. Novak and H. Woźniakowski. Approximation of Infinitely Differentiable Multi-
variate Functions Is Intractable. Preprint 6, DFG-SPP 1324, January 2009.

[7] J. Ma and G. Plonka. A Review of Curvelets and Recent Applications. Preprint 7,
DFG-SPP 1324, February 2009.

[8] L. Denis, D. A. Lorenz, and D. Trede. Greedy Solution of Ill-Posed Problems: Error
Bounds and Exact Inversion. Preprint 8, DFG-SPP 1324, April 2009.

[9] U. Friedrich. A Two Parameter Generalization of Lions’ Nonoverlapping Domain
Decomposition Method for Linear Elliptic PDEs. Preprint 9, DFG-SPP 1324, April
2009.

[10] K. Bredies and D. A. Lorenz. Minimization of Non-smooth, Non-convex Functionals
by Iterative Thresholding. Preprint 10, DFG-SPP 1324, April 2009.

[11] K. Bredies and D. A. Lorenz. Regularization with Non-convex Separable Con-
straints. Preprint 11, DFG-SPP 1324, April 2009.
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