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MULTI-LEVEL MONTE CARLO ALGORITHMS FOR
INFINITE-DIMENSIONAL INTEGRATION ON RN

FRED J. HICKERNELL, THOMAS MÜLLER-GRONBACH, BEN NIU, AND KLAUS RITTER

Abstract. We study randomized algorithms for numerical integration with respect
to a product probability measure on the sequence space RN. We consider integrands
from reproducing kernel Hilbert spaces, whose kernels are superpositions of weighted
tensor products. We combine tractability results for finite-dimensional integration with
the multi-level technique to construct new algorithms for infinite-dimensional integration.
These algorithms use variable subspace sampling, and we compare the power of variable
and fixed subspace sampling by an analysis of minimal errors.

1. Introduction

We study numerical integration with respect to probability measures µ on infinite-
dimensional spaces X, and we are particularly interested in randomized (Monte Carlo)
algorithms, which use variable subspace sampling. Such algorithms may sample an inte-
grand f : X → R in a hierarchy X1 ⊂ X2 ⊂ · · · ⊂ X of finite-dimensional subspaces, and
the cost per evaluation at any point x ∈ ⋃∞

i=1 Xi is defined by inf{dim(Xi) : x ∈ Xi}. This
cost model has recently been introduced in Creutzig et al. (2009) and is generalized in
Kuo et al. (2009), where the cost may depend in any way on the underlying dimensions
of subspaces.

Creutzig et al. (2009) have studied integration on separable Banach spaces X and the
class F of Lipschitz continuous integrands f with Lipschitz constant at most one. In the
present paper we focus on much smaller classes F , and we assume that µ is a product
measure on the sequence space RN. More precisely, we consider a probability measure ρ
on a Borel subset D ⊆ R, and µ is the corresponding product measure on the space DN.
We wish to compute integrals

I(f) =

∫

DN
f(x) µ(dx), f ∈ F.

Infinite-dimensional quadrature problems of the latter kind arise, e.g., for stochastic
processes X = (Xt)t∈T with a series expansion Xt =

∑∞
j=1 ξj · ej(t), where (ej)j∈N is a se-

quence of deterministic functions on T and (ξj)j∈N is an i.i.d. sequence of random variables
with distribution ρ on D. For integrable functionals ϕ on the path space E(ϕ(X)) = I(f)
with

f(x) = ϕ

( ∞∑
j=1

xj · ej

)
.

An important example is given by the Karhunen-Loève expansion of a zero mean Gaussian
process X, in which case the functions ej form an orthogonal system in L2(T ) with∑∞

j=1 ‖ej‖2
L2(T ) < ∞, and ρ is the standard normal distribution on D = R.
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In a common computational approach the series expansion of X is truncated and
the infinite-dimensional integral E(ϕ(X)) is approximated by a finite-dimensional in-
tegral E(ϕ(

∑s
j=1 ξj · ej + e)) with a suitably chosen dimension s and with a shift by

e = E(ξ1)·
∑∞

j=s+1 ej. The latter integral is then approximated by means of a deterministic

or randomized (Monte Carlo) algorithm. Accordingly, ϕ is sampled (evaluated) at a finite
number of deterministically or randomly chosen points from a fixed finite-dimensional
affine subspace span{e1, . . . , es} + e, which amounts to sampling of f at points from the
finite-dimensional subspace {x ∈ RN : xs+1 = xs+2 = · · · = E(ξ1)}. Any sampling regime
of this kind is called fixed subspace sampling.

Recently, multi-level algorithms have been employed for finite- as well as for infinite-
dimensional integration, starting with Heinrich (1998, 2001) and Giles (2008a, 2008b).
Further references include Avikainen (2009), Creutzig et al. (2009), Dereich, Heidenreich
(2009), Giles, Higham, Mao (2009), and Müller-Gronbach, Ritter (2009). In contrast to
the common approach, a multi-level algorithm evaluates ϕ or f at points from a hierarchy
of finite-dimensional subspaces, and this type of sampling has turned out to be superior
to fixed subspace sampling for a number integration problems. Here superiority refers to
a comparison of specific algorithms based on numerical experiments or upper bounds for
their error and cost, or a comparison based on the analysis of minimal errors, i.e., on the
study of upper and lower bounds.

We briefly discuss the classes F of integrands that will be studied in this paper. The
basic idea is to consider infinite-dimensional integration as the limiting case of high-
dimensional integration, and thus we rely on error bounds for finite-dimensional inte-
gration with an explicit dependence on the dimension, which are provided in the study
of tractability of high-dimensional problems. We refer to the recent monograph Novak,
Woźniakowski (2009). Most frequently, tensor products of weighted reproducing kernel
Hilbert spaces are employed in the tractability analysis. In the case of product weights
this construction is based on a sequence of weights γj > 0 and a reproducing kernel k for
real-valued functions on D. In the present paper we study the limiting case, namely the
reproducing kernel

K(x,y) =
∑

u

∏
j∈u

γj k(xj, yj),

where u varies over all finite subsets of N and x and y belong to a subset of DN with
µ-measure one. The class F of integrands is the unit ball B(K) in the Hilbert space
H(K) with reproducing kernel K. A particular instance of K was already studied for
infinite-dimensional integration in Hickernell, Wang (2002), see also Kuo et al. (2009).

We derive upper and lower bounds for the worst case error of randomized algorithms
in terms of their worst case cost. To give a flavor of our results, consider first the uniform
distribution ρ on D = [0, 1] and the kernel

k(x, y) = 1/3 + (x2 + y2)/2−max(x, y), x, y ∈ [0, 1].

In this case H(K) consists of functions f : [0, 1]N → R with smooth ANOVA terms in
the tensor product spaces H(

⊗
j∈u(1 + γjk)). If γj ³ j−α with α > 4, then multi-level

algorithms that use scrambled QMC rules as building blocks almost yield errors of order
3/2 min((α−1)/10, 1). Moreover, variable subspace sampling is superior to fixed subspace
sampling (at least) if α > 8. Due to a classical result for one-dimensional integration, we
have almost optimality for the multi-level algorithm (at least) if α ≥ 11.
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The present paper is organized in the following way. In Section 2 we present the basic
assumptions on the measure ρ, the kernel k, and the weights γj, and we introduce the
corresponding reproducing kernel Hilbert spaces. The definition of the fixed subspace and
variable subspace sampling regimes together with the associated cost models and minimal
errors are provided in Section 3. Our results for fixed and variable subspace sampling are
derived in Sections 4 and 5, respectively.

2. The Function Spaces

We follow the approach from Hickernell, Wang (2002) and Kuo et al. (2009), and we
consider a probability measure ρ on a Borel subset D ⊆ R together with the corresponding
product measure µ on the space DN. The construction of spaces of functions with an
infinite number of variables x1, x2, . . . ∈ D is based on a reproducing kernel k for functions
of a single variable x ∈ D and on a family of weights γu, which indicate the importance
of the variables xj with j ∈ u for finite sets u ⊂ N.

For x = (xj)j∈N ∈ DN and ∅ 6= u ⊂ N we put xu = (xj)j∈u ∈ Du. Unless stated
otherwise we use u, v, and w to denote finite subsets of N in the sequel. We write xk ¹ yk

for sequences of positive real numbers xk and yk, if xk ≤ c yk holds for every k ∈ N with
a constant c > 0. Furthermore, xk ³ yk means xk ¹ yk and yk ¹ xk.

2.1. Assumptions. We assume that

(A1) k 6= 0 is a measurable reproducing kernel on D ×D,

which satisfies

(A2) H(k) ∩H(1) = {0}
as well as the integrability condition

(A3)
∫

D
k(x, x) ρ(dx) < ∞.

Concerning the weights we impose the conditions

(A4) γ∅ = 1 and γu =
∏

j∈u γj for u 6= ∅, where

(A5) γ1 ≥ γ2 ≥ · · · > 0 and
∑∞

j=1 γj < ∞.

2.2. The domain X. The appropriate choice of a domain of functions of infinitely many
variables is given by

X =
{
x ∈ DN :

∞∑
j=1

γj k(xj, xj) < ∞
}

.

Note that X = DN follows from (A5), if k is a bounded kernel on D ×D. In general the
complement DN \ X is negligible with respect to the product measure µ.

Lemma 1. The set X satisfies µ(X) = 1.

Proof. By Yj(x) = γj k(xj, xj) we get a sequence of non-negative random variables on DN.
Clearly, this sequence is independent with respect to µ, and we have

∞∑
j=1

E(Yj) =
∞∑

j=1

γj

∫

D

k(x, x) ρ(dx) < ∞
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due to (A3) and (A5). Furthermore, (A5) implies γj ≤ c/j with c =
∑

`=1 γ`, and therefore

∞∑
j=1

µ({Yj > 1}) =
∞∑

j=1

ρ({x ∈ D : γj k(x, x) > 1})

≤
∞∑

j=1

ρ({x ∈ D : c k(x, x) > j})

≤
∫

D

c k(x, x) ρ(dx) < ∞

by (A3). It remains to apply Kolmogorov’s Three-Series Theorem. ¤

We add that without condition (A3) we always have µ(X) ∈ {0, 1}, which follows from
Kolmogorov’s Zero-One Law. We stress that X contains every x ∈ DN that is constant
outside of some finite subset of N.

2.3. Functions of finitely many variables. In a first step we construct spaces of func-
tions f : X → R that only depend on a finite number of variables.

For u 6= ∅ we consider the reproducing kernel

ku(x,y) =
∏
j∈u

k(xj, yj), x,y ∈ X,

as well as the associated Hilbert space

Hu = H(ku).

Furthermore, we put k∅ = 1 and

H∅ = H(1).

See Hickernell, Wang (2002, Sec. 2) for the following facts in the case of a bounded kernel
k and D = [0, 1].

Lemma 2. For x,y ∈ X and f ∈ Hu we have

xu = yu ⇒ f(x) = f(y).

Lemma 3. If u 6= v then

Hu ∩Hv = {0}.
Proof. Assume that ` ∈ u \ v as well as f ∈ Hu ∩Hv. Choose aj ∈ D for j ∈ u \ {`} and
a ∈ D, and consider the function g : D → R that is given by

g(x) = f(x)

with x ∈ X defined by

xj =





x, if j = `,

aj, if j ∈ u \ {`},
a, otherwise.

We apply Lemma 14 and Lemma 15 with E = X, E1 = D{`}, E2 = {x ∈ DN\{`} :∑
j 6=` γj k(xj, xj) < ∞}, and

J(x,y) = L(x`, y`) = α k(x`, y`),
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where

α =
∏

j∈u\{`}
k(aj, aj),

to conclude that g ∈ H(k). On the other hand, f ∈ Hv together with Lemma 2 implies
that g is constant, and therefore we have g = 0 according to (A2). Since the values of xj

with j ∈ u \ {`} have been chosen arbitrarily and since f ∈ Hu, we obtain f = 0 from
Lemma 2. ¤

We consider the weighted sum

Kv(x,y) =
∑
u⊆v

γu ku(x,y), x,y ∈ X,

of reproducing kernels ku. Clearly Kv is a reproducing kernel, too, and due to Lemma 3
the corresponding Hilbert space satisfies

H(Kv) =
⊕
u⊆v

H(γu ku)

with pairwise orthogonal spaces H(γu ku). See Hickernell, Wang (2002, Lemma 3) for this
fact and also for the following conclusion in the case of a bounded kernel k and D = [0, 1].

Lemma 4. The space H(Kv) consists of all functions

f =
∑
u⊆v

fu, fu ∈ Hu.

Furthermore,

‖f‖2
Kv

=
∑
u⊆v

γ−1
u ‖fu‖2

ku
.

Remark 1. Due to Lemma 2 and Lemma 4 every function f ∈ H(Kv) may be identified
with a function on Dv, and Kv may be identified with a kernel on Dv ×Dv as well. For
consistency we prefer to work with the domain X throughout this paper.

Remark 2. Due to assumption (A4) on the weights γu the kernel

Kv(x,y) =
∏
j∈v

(1 + γj k(xj, xj))

is of tensor product form, and H(Kv) is the tensor product space

H(Kv) =
⊗
j∈v

H(1 + γj k),

considered as a space of functions on Dv.

2.4. Functions of infinitely many variables. For s ∈ N we let 1 : s denote the set
{1, . . . , s}. We will consider the limit of the sequence of kernels K1:s.

Lemma 5. For x,y ∈ X we have
∑

u

γu |ku(x,y)| < ∞.
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Proof. Note that∑
u

γu |ku(x,y)| =
∑

u

∏
j∈u

γj |k(xj, yj)|

≤
(∑

u

∏
j∈u

γj k(xj, xj)

)1/2(∑
u

∏
j∈u

γj k(yj, yj)

)1/2

due to (A4). Furthermore,

∑
u

∏
j∈u

γj k(xj, xj) =
∞∏

j=1

(1 + γj k(xj, xj)) ≤ exp

( ∞∑
j=1

γj k(xj, xj)

)
< ∞

by definition of X. ¤
Due to Lemma 5 the limit

K(x,y) =
∑

u

γu ku(x,y) =
∑

u

γu

∏
j∈u

k(xj, yj), x,y ∈ X,

of the sequence of kernels K1:s defines a measurable kernel K on X× X.
If s < s′ then H(K1:s) ⊆ H(K1:s′) ⊆ H(K), and

⋃∞
s=1 H(K1:s) is a dense linear subspace

of H(K). More precisely, the following holds true, see Hickernell, Wang (2002, Cor. 5) in
the case of a bounded kernel k and D = [0, 1].

Lemma 6. The space H(K) consists of all functions

(1) f =
∑

u

fu, fu ∈ Hu,

such that ∑
u

γ−1
u ‖fu‖2

ku
< ∞.

In case of convergence, ‖f‖2
K =

∑
u γ−1

u ‖fu‖2
ku

.

We add that the decomposition (1) is uniquely determined, since fu is the orthogonal
projection of f onto Hu.

2.5. Integration with respect to the product measure µ. For f ∈ H(K) we have∫

X

|f(x)|µ(dx) ≤ ‖f‖K

∫

X

‖K(·,x)‖K µ(dx).

Put

m =

∫

D

k(x, x) ρ(dx),

and recall that m < ∞ due to (A3). Using (A4) and (A5) we obtain
∫

X

‖K(·,x)‖2
K µ(dx) =

∑
u

γu m|u| =
∞∏

j=1

(1 + γj m) ≤ exp

( ∞∑
j=1

γj m

)
< ∞.

Hence integration I with respect to µ defines a bounded linear functional on H(K). Its
representer h ∈ H(K) is given by

(2) h(x) = 〈h,K(·,x)〉K =

∫

X

K(x,y) µ(dy), x ∈ X.

Since 1 ∈ H(K) and µ(X) = 1 according to Lemma 1, we get h 6= 0, which shows that I
is a non-trivial functional on H(K).
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2.6. Examples. We provide two examples with ρ being the uniform distribution on
D = [0, 1] and X = DN in both cases. Let W 1

2 ([0, 1]) consist of all absolutely contin-
uous functions f : [0, 1] → R with square-integrable derivatives, and let the norm on
W 1

2 ([0, 1]) be given by

‖f‖2 =

(∫ 1

0

f(y) dy

)2

+ γ−1

∫ 1

0

(f ′)2(y) dy

for some γ > 0. Then we have

W 1
2 ([0, 1]) = H(1 + γ k),

where

(3) k(x, y) = 1/3 + (x2 + y2)/2−max(x, y), x, y ∈ [0, 1].

The covariance kernel k clearly satisfies (A1), and (A2) holds, too, since

H(k) =
{

f ∈ W 1
2 ([0, 1]) :

∫ 1

0

f(y) dy = 0
}

.

For u 6= ∅ the space Hu consists of all continuous functions f such that f(x) depends

only on xu, f (u) ∈ L2([0, 1]u) for the weak derivate f (u) = ∂|u|
∂xu

f , and
∫ 1

0
f(y) dyj = 0 for

every j ∈ u. Furthermore,

(4) ‖f‖2
ku

=

∫

[0,1]u

(
f (u)(y)

)2
dy.

It follows that H(K1:s) ⊆ F , where F denotes the class of continuous functions f such
that f(x) depends only on x1:s and f has square-integrable weak derivatives f (u) for every
u ⊆ 1 : s.

Let Iv denote integration with respect to the variables yj with j ∈ v, and suppose that
f =

∑
u⊆1:s fu ∈ H(K1:s) according to Lemma 4. Since

I1:s\v(f) =
∑
u⊆v

I1:s\v(fu) =
∑
u⊆v

fu,

we can recursively determine the components fu of f . In fact,

(5) f∅ = I1:s(f)

and, for v 6= ∅,
(6) fv = I1:s\v(f)−

∑
u(v

fu.

Conversely, suppose that f ∈ F , and define fv for v ⊆ 1 : s by means of this recursion.
We get fv ∈ Hv with

f (v)
v =

(
I1:s\v(f)

)(v)
= I1:s\v(f

(v)).

We conclude that H(K1:s) = F is a weighted Sobolev-Hilbert space with the norm
given by

‖f‖K1:s =
∑
u⊆1:s

γ−1
u

∫

[0,1]u

(∫

[0,1]1:s\u

f (u)(x) dx1:s\u

)2

dxu.

See Yue, Hickernell (2005, Sec. 3). Observe that
∑

u⊆1:s fu is the ANOVA decomposition
of f ∈ H(K1:s), so that H(K1:s) is defined by imposing a smoothness assumption on the

ANOVA terms fu, namely existence and square integrability of the weak derivatives f
(u)
u .
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Moreover, ‖f‖2
K1:s

is a weighted average of the squared L2-norms of these weak derivatives.
See Novak, Woźniakowski (2008, Sec. 5.3.1).

Note that the recursion (5) and (6) is valid, too, for f ∈ H(K) if 1 : s is replaced by
N. Moreover, it extends to the case of any kernel k with properties (A1) and (A2), if we
replace integration with respect to a single variable by the functional f 7→ 〈f, 1〉1+k, which
is then applied to all variables yj with j ∈ N \ v.

As a second example consider the covariance kernel

(7) k(x, y) = min(x, y), x, y ∈ [0, 1],

of a Brownian motion, which can be treated analogously to the kernel given by (3), if
integration of a function f : [0, 1] → R is replaced by evaluation of f at the point zero.
In particular, k satisfies (A1) as well as (A2), and for u 6= ∅ the corresponding space
Hu consists of all continuous functions f : DN → R such that f(x) depends only on xu,
f (u) ∈ L2([0, 1]u), and f(x) = 0 if xj = 0 for some j ∈ u. Moreover, ‖f‖2

ku
is given by (4).

For further illustration of the space H(K) in case of (3) as well as in the case of (7) we
consider a sequence of real numbers (ηj)j∈N such that

∑∞
j=1 |ηj| < ∞, and we define

f(x) =
∞∑

j=1

ηj x2
j , x ∈ DN.

Then

f = f∅ +
∞∑

j=1

f{j} =
∞∑

j=1

g{j},

with f∅ = 1/3
∑∞

j=1 ηj and f{j}(x) = ηj (x2
j − 1/3) as well as g{j}(x) = ηj x2

j . In the case

of the kernel given by (3) we have f{j} ∈ H{j} and

‖f∅‖k∅ = 1/3
∣∣∣
∞∑

j=k

ηj

∣∣∣, ‖f{j}‖2
k{j} = 4/3 η2

j .

If k is given by (7) then g{j} ∈ H{j} and

‖g{j}‖2
k{j} = 4/3 η2

j .

Thus f ∈ H(K) iff
∞∑

j=1

η2
j

γj

< ∞

in both cases. For instance, if γj ³ j−(1+δ) with any δ > 0 then it suffices to have ηj ³ j−α

with α > 1 + δ/2.

3. Cost and Minimal Errors for Fixed and Variable Subspace Sampling

In this section we present a cost model for the analysis of infinite-dimensional quadra-
ture problems, which has been introduced in Creutzig et al. (2009), and based upon this
model we define minimal errors for randomized algorithms.

Throughout this paper we assume that algorithms for approximation of I(f) have access
to the function f via an oracle (subroutine) that provides values f(x) for points x ∈ RN
or a subset thereof. For convenience we define f(x) = 0 for x ∈ RN \ X, so that the
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integrands f are defined on the whole space RN. The cost per evaluation (oracle call) is
modelled by a function

c : RN → N ∪ {∞},
and we are interested in two particular such models.

For fixed subspace sampling evaluations are possible only at the points from a finite-
dimensional affine subspace

Xv,a = {x ∈ RN : xj = a for j ∈ N \ v}
for a given (finite) set ∅ 6= v ⊂ N and a given point a ∈ D, and the cost for each oracle
call coincides with the dimension |v| of Xv,a. Thus,

(8) cv,a(x) =

{
dim(Xv,a), if x ∈ Xv,a,

∞, otherwise.

Note that Xv,a ∩DN ⊆ X.
For variable subspace sampling we consider a sequence of finite-dimensional affine sub-

spaces

Xv1,a ⊂ Xv2,a ⊂ . . .

for a given increasing sequence v = (vi)i∈N of (finite) sets ∅ 6= vi ⊂ N and a point a ∈ D,
and the cost function is defined by

(9) cv,a(x) = inf{dim(Xvi,a) : x ∈ Xvi,a},
with inf ∅ = ∞ as usual. These sampling regimes and corresponding cost models have
been introduced in Creutzig et al. (2009) in the context of integration of functionals on
separable Banach spaces with arbitrary finite-dimensional linear subspaces. In the present
setting a generalization of the model, where c depends in any way on the underlying
dimensions of subspaces, is studied in Kuo et al. (2009).

We consider randomized algorithms for integration of functions f : X → R, and we
refer to Traub, Wasilkowski, Woźniakowski (1988) and Creutzig et al. (2009) for a formal
definition and some rather mild measurability assumptions involved.

We define the cost of a computation as the sum of the cost of all oracle calls that are
made during the computation. For a randomized algorithm Q the cost defines a random
variable, which may also depend on f , and this random variable is henceforth denoted
by costc(Q, f). Let Cfix denote the set of all cost functions given by (8) with any finite-
dimensional affine subspace Xv,a, and let Cvar denote the set of all cost functions given by
(9) with any increasing sequence of finite-dimensional affine subspaces Xvi,a. The worst
case cost of Q on a class F of integrands is defined by

costfix(Q, F ) = inf
c∈Cfix

sup
f∈F

E(costc(Q, f))

in the fixed subspace model and by

costvar(Q,F ) = inf
c∈Cvar

sup
f∈F

E(costc(Q, f))

in the variable subspace model. Clearly costvar(Q,F ) ≤ costfix(Q,F ).
Let us look at the particular case of a randomized quadrature formula

Q(f) =
n∑

`=1

b` f(X`)
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with deterministic weights b` ∈ R and random elements X` taking values in X. If Q
satisfies the sampling constraint X1, . . . , Xn ∈ Xv,a for some finite-dimensional affine
subspace Xv,a, then

costfix(Q,F ) ≤ n · |v|.
If Q satisfies the sampling constraint X` ∈ Xvi`

,a \ Xvi`−1,a for an increasing sequence of

finite-dimensional subspaces Xvi,a with Xvi0
,a = ∅, then

costvar(Q,F ) ≤
n∑

`=1

|vi` |,

while

costfix(Q,F ) ≤ n · max
`=1,...,n

|vi`|.
A randomized algorithm Q that terminates for every integrand f ∈ F induces a family

(Q(f))f∈F of random variables, which yield the random outputs of the algorithm for inputs
f . The worst case error of Q on the class F is defined by

e(Q,F ) = sup
f∈F

(
E(S(f)−Q(f))2

)1/2
.

For N ∈ N we introduce the N-th minimal errors

eN,fix(F ) = inf{e(Q, F ) : costfix(Q,F ) ≤ N}
and

eN,var(F ) = inf{e(Q,F ) : costvar(Q,F ) ≤ N}.
Clearly we have eN,var(F ) ≤ eN,fix(F ). We add that minimal errors are key quantities in
information-based complexity, see, e.g., Traub, Wasilkowski, Woźniakowski (1988), Novak
(1988), and Ritter (2000).

4. Results for Fixed Subspace Sampling

The analysis of fixed subspace sampling is motivated by a common approach to infinite-
dimensional integration as follows. Let a ∈ D. We use a to denote the constant sequence
in DN with coordinates a. Furthermore, for a (finite) set ∅ 6= v ⊂ N and y ∈ Dv, we
use (y, a) to denote the sequence x ∈ DN with xj = yj for j ∈ v and xj = a otherwise.
Moreover, µv denotes the product of the measure ρ on Dv. Commonly, the integral I(f)
is approximated by ∫

X

f(xv, a) µ(dx) =

∫

Dv

f(y, a) µv(dy),

and for computation of the latter one uses a randomized algorithm Qv for integration on
Dv with respect to µv. In this way one gets a randomized algorithm Q with

(10) Q(f) = Qv(f(·, a))

for any integrable function f : X → R. Clearly Q is based on evaluation of f at points
from the finite-dimensional affine subspace Xv,a, and therefore costcv,a(Q, f) is given as
the product of |v| and the number of evaluations of f , which is a random variable and may
depend on f . In particular, if Qv is a randomized quadrature formula with n evaluations,
then costfix(Q,F ) ≤ n · |v| for every class F of integrands.
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4.1. Preliminaries. For v and a as previously we define

(Ψv,af)(x) = f(xv, a), x ∈ X.

Obviously (10) implies

(11) Q(f) = Q(Ψv,af).

We use B(K) and B(Kv) to denote the unit balls in the spaces H(K) and H(Kv),
respectively. We show that the maximal error of Q on B(K) can essentially be decomposed
into its maximal error on B(Kv) and the quantity

bv,a = sup
f∈B(K)

|I(f)− I(Ψv,af)| .

If Q is given by (10) with an unbiased algorithm Qv for integration on Dv, then bv,a is
the worst case bias of Q for integration on X.

Lemma 7. The mapping Ψv,a maps the unit ball B(K) onto a closed centered ball in
H(Kv) with radius rv,a ≥ 1. Furthermore, supv 6=∅ rv,a < ∞ and lims→∞ r1:s,a = 1.

Proof. Use Lemma 14 with E1 = Dv, E2 = {x ∈ DN\v :
∑

j 6∈v γj k(xj,xj) < ∞}, e2 = a,
and

J(x,y) = K((xv, a), (yv, a)), x,y ∈ X.

Moreover, note that

J(x,y) =
∑

u

γu

∏
j∈u∩v

k(xj, yj)
∏

j∈u\v
k(a, a) = Kv(x,y) · r2

v,a

with

r2
v,a =

∑

w⊂N\v
γw (k(a, a))|w|.

Take w = ∅ to get rv,a ≥ 1, and supv rv,a < ∞ as well as lims→∞ r1:s,a = 1 are due to
(A5). ¤

Put

Bv,a = {f ∈ H(Kv) : ‖f‖Kv ≤ sup
w 6=∅

rw,a}.

Lemma 8. Assume that (11) is satisfied for every f ∈ B(K). Then

bv,a + e(Q,B(Kv)) ¹ e(Q,B(K)) ¹ bv,a + e(Q,Bv,a).

Proof. For f ∈ B(K) we use (11) to obtain

E (I(f)−Q(f))2 ¹ (I(f)− I(Ψv,af))2 + E (I(Ψv,af)−Q(Ψv,af))2 .

Due to Lemma 7,

sup
f∈B(K)

E (I(Ψv,af)−Q(Ψv,af))2 ≤ sup
f∈Bv,a

E (I(f)−Q(f))2 ,

which completes the proof of the upper bound.
Let f ∈ B(K) and consider the function g = (1 + rv,a)

−1 · (f −Ψv,af). Then g ∈ B(K)
by Lemma 7, and Ψv,ag = Ψv,a(−g) = 0. Hence

e2(Q,B(K)) ≥ max
(
E (I(g)−Q(Ψv,ag))2 , E (I(−g)−Q(Ψv,a(−g)))2)

≥ |I(g)|2 = (1 + rv,a)
−2 · |I(f)− I(Ψv,af)|2,
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and Lemma 7 yields e(Q,B(K)) º bv,a. Furthermore, e(Q,B(K)) ≥ e(Q,B(Kv)) since
B(K) ⊃ B(Kv), which completes the proof of the lower bound. ¤

The mapping f =
∑

u fu 7→ I(fw) defines a bounded linear functional on H(K), and
its representer gw ∈ Hw is given by

gw(x) = γw

∫

X

kw(x,y) µ(dy), x ∈ X.

Put

A(v, a) =
∑

∅6=w⊂N\v
‖gw − γw kw(·, a)‖2

K .

Lemma 9. We have

b2
v,a = A(v, a)

∑
u⊆v

‖gu‖2
K .

Proof. Use Lemma 7 to conclude that f 7→ I(Ψv,af) defines a bounded linear functional
on H(K). Its representer is

(12) hv,a(x) =

∫

Dv

K(x, (y, a)) µv(dy), x ∈ X,

while the representer h of f 7→ I(f) is given by (2). We have

(13) h =
∑

u

gu, hv,a =
∑

u

gu∩v · γu\v ku\v(·, a).

Since gu∩v · γu\v ku\v(·, a) ∈ Hu we obtain

b2
v,a = ‖h− hv,a‖2

K =
∑

u

‖gu − gu∩v · γu\v ku\v(·, a)‖2
K .

Note that

‖gu − gu∩v · γu\v ku\v(·, a)‖K = ‖gu∩v‖K · ‖gu\v − γu\v ku\v(·, a)‖K ,

which completes the proof. ¤

We provide an estimate for bv,a, if the kernel k satisfies one of the following two condi-
tions, both of which imply condition (A2), namely,

(A2a)
∫

D
k(x, y) ρ(dy) = 0 holds for every x ∈ D,

(A2b) there exists a point a∗ ∈ D such that k(a∗, a∗) = 0.

Remark 3. If k satisfies both conditions (A2a) and (A2b) and if we take a = a∗, then
I(f) = f(a) for every f ∈ H(K), and the quadrature problem is trivial. In fact, (A2a)
implies h = 1 for the representer of integration in H(K), while (A2b) implies K(·, a) = 1.

In the case (A2b) the mapping Ψv,a∗ is the orthogonal projection onto H(Kv), and
therefore rv,a∗ = 1 in Lemma 7, and (A2b) with a∗ = a is called the anchored case in the
literature.

Define g ∈ H(k) by

g(x) =

∫

D

k(x, y) ρ(dy), x ∈ D.
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Lemma 10. Let a ∈ D and assume that k satisfies (A2a) or (A2b) with a∗ = a. Then

b2
v,a ³ ‖g − k(·, a)‖2

k ·
∑

j 6∈v

γj.

Proof. We apply Lemma 9. Since (A2a) implies g{j} = 0 for every j ∈ N, and (A2b) with
a∗ = a implies k{j}(·, a) = 0 for every j ∈ N, we have

gw − γw kw(·, a) =
∏
j∈w

g{j} −
∏
j∈w

γj k{j}(·, a) =
∏
j∈w

(
g{j} − γj k{j}(·, a)

)
,

and therefore

‖gw − kw(·, a)‖K =
∏
j∈w

‖g{j} − γj k{j}(·, a)‖K =
∏
j∈w

γ
1/2
j ‖g − k(·, a)‖k(14)

= γ1/2
w ‖g − k(·, a)‖|w|k .

Put κ = ‖g − k(·, a)‖2
k. Then

A(v, a) =
∑

∅6=w⊂N\v
γw κ|w| =

∑

∅6=w⊂N\v

∏
j∈w

κ γj.

Hence

κ

∞∑

j 6∈v

γj ≤ A(v, a) ≤ exp

(
κ

∞∑

j 6∈v

γj

)
− 1

and consequently,

A(v, a) ³ κ

∞∑

j 6∈v

γj.

Finally, observe that 1 ≤ ∑
u⊆v ‖gu‖2

K ≤ ‖h‖2
K , which completes the proof. ¤

4.2. Upper and lower bounds. For the proof of upper bounds and the construction
of algorithms we consider a family of randomized algorithms Qn,1:s with n, s ∈ N for
finite-dimensional integration on D1:s as well as the corresponding randomized algorithms
Qn,s,a = Qn,1:s ◦ Ψ1:s,a for infinite-dimensional integration, see (10). Typically, Qn,1:s is a
randomized quadrature formula with n evaluations, and then we assume that an upper
bound for the maximal error of Qn,1:s on the unit ball in H(K1:s) is available that only
depends on n.

Theorem 1. Let a ∈ D. Assume that

(i) k satisfies (A2a) or (A2b) with a∗ = a,
(ii) γj ¹ j−α with α > 1,
(iii) there exist β, c > 0 such that

e(Qn,s,a, B1:s,a) ≤ c · n−β

and

costfix(Qn,s,a, B1:s,a) ≤ n · s
hold for all n, s ∈ N.
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Choose

n ³ N
α−1

2β+α−1

and

s ³ N
2β

2β+α−1

for N ∈ N. Then the sequence of randomized algorithms QN = Qn,s,a satisfies

e(QN , B(K)) ¹ N
− β (α−1)

2β+α−1 ,

and

costfix(QN , B(K)) ¹ N.

Proof. Assumption (iii) together with Lemma 8 yields

e2(Qn,s,a, B(K)) ¹ b2
1:s,a + n−2 β

for n, s ∈ N. Use assumptions (i) and (ii) together with Lemma 10 to conclude

e2(Qn,s,a, B(K)) ¹ s−(α−1) + n−2β ³ N
−2β (α−1)

2β+α−1 .

By assumption (iii) and Lemma 7

costfix(QN , B(K)) ≤ costfix(Qn,s,a, B1:s,a) ≤ n s,

and, clearly, n · s ³ N . ¤

Now we establish a lower bound, which matches the upper bound from Theorem 1 if
the minimal errors for one-dimensional integration on the unit ball in the space H(k) are
of order β, too.

Theorem 2. Assume that

(i) γj º j−α with α > 1,
(ii) there exist β, c > 0 such that

eN,fix(B(K{1})) ≥ c ·N−β

for all N ∈ N.

Then the minimal errors for integration on the unit ball B(K) using fixed subspace sam-
pling satisfy

eN,fix(B(K)) º N
− β (α−1)

2β+α−1 .

Proof. Consider any randomized algorithm Q with costfix(Q,B(K)) ≤ N . Hence there
exists a set v ⊂ N and a point a ∈ D such that E(costcv,a(Q, f)) ≤ N + 1 holds for every
f ∈ B(K). Hence, for every f ∈ B(K), the expected number of evaluations by Q is at
most (N + 1)/|v| and (with probability one) these evaluations are made at points from
Xv,a. Due to the latter fact, (11) holds for every f ∈ B(K), and Lemma 8 yields

e(Q,B(K)) º e(Q,B(Kv)) + inf
a∈D

bv,a.

Clearly,

e1,fix(B(K{1})) ≤ inf
a∈D

sup
f∈B(K{1})

|I(f)− f(a)|.
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For f ∈ H(K{1}) we have I(f)− f(a) = 〈h{1},a −K(·, a), f〉K , see (12). Moreover,

h{1},a −K(·, a) =
(
g{1} − γ1 k{1}(·, a)

) ∑
1∈u

γu\{1} ku\{1}(·, a)

due to (13), and therefore

|I(f)− f(a)|2 ≤ ‖h{1},a −K(·, a)‖2
K = ‖g − k(·, a)‖2

k

∑
1∈u

γu k(a, a)|u|−1.

Hence infa∈D ‖g − k(·, a)‖k > 0 follows from assumption (ii). Furthermore, Lemma 9
implies

inf
a∈D

b2
v,a ≥ inf

a∈D
A(v, a) ≥ inf

a∈D

∑

j 6∈v

‖g{j} − γj k{j}(·, a)‖2
K = inf

a∈D
‖g − k(·, a)‖2

k

∑

j 6∈v

γj,

and consequently we get

e(Q,B(K)) º e(Q,B(Kv)) +

(∑

j 6∈v

γj

)1/2

.

Assume 1 ∈ v. Then B(K{1}) ⊂ B(Kv), and therefore

e(Q,B(Kv)) ≥ e(Q,B(K{1})) º (N/|v|)−β

due to assumption (ii). Employ assumption (i) to obtain

e2(Q,B(K)) º (N/|v|)−2β + |v|−(α−1) º N
−2β (α−1)

2β+α−1 .

In the case 1 6∈ v we get

e2(Q,B(K)) º
∑

j 6∈v

γj ≥ γ1,

which finishes the proof. ¤

4.3. Examples. We apply Theorem 1 in the case of ρ being the uniform distribution on
D = [0, 1] and for the kernels given by (3) and (7).

First, we consider the kernel k given by (3), which satisfies assumption (A2a). For in-
tegration of functions f : [0, 1]1:s → R we employ scrambled quasi-Monte Carlo rules.
Scrambling, which is a randomization technique that preserves good discrepancy proper-
ties of point sets, was introduced by Owen (1997). Here we rely on a result from Yue,
Hickernell (2005), who have analyzed randomized quadrature formulas

Qb,m,1:s(f) =
1

bm

bm∑
i=1

f(Xi)

that use base b scrambling of a Niederreiter (t,m, s)-net in base b. In particular, Qb,m,1:s is
unbiased for every integrable function f . Henceforth we fix b and we choose any a ∈ [0, 1].
The methods

(15) Qn,s,a = Qb,blogb(n)c,1:s ◦Ψ1:s,a

with n, s ∈ N will be called scrambled QMC rules. Note that Qn,s,a satisfies the cost bound
in assumption (iii) of Theorem 1.
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Assume that

(16)
∞∑

j=1

γj (j log j)3 < ∞.

Then for every ε > 0 there exists a constant cε > 0 such that the scrambled QMC rules
Qn,s,a satisfy

(17) e(Qn,s,a, B1:s,a) ≤ cε · n−(3/2−ε)

for every n ∈ N and every dimension s, see Yue, Hickernell (2005, Thm. 4.(i)).

Corollary 1. Assume that k is given by (3). Let ε > 0, and let assumption (ii) from
Theorem 1 be satisfied with α > 4. Choose

n ³ N
α−1

α+2−ε

and

s ³ N
3−ε

α+2−ε

for N ∈ N. Then, for QN = Qn,s,a,

e(QN , B(K)) ¹ N
− (3−ε)/2 (α−1)

α+2−ε

and

costfix(QN , B(K)) ¹ N.

Proof. Apply Theorem 1 with c = cε/2 according to (17) and β = 3/2 − ε/2, and note
that QN uses

bblogb(n)c ³ n

function evaluations in X1:s,a and n · s ³ N . ¤

Next we turn to k given by (7), which satisfies assumption (A2b) with a∗ = 0. Consider
the classical Monte Carlo method Qn,1:s for integration of functions f : [0, 1]1:s → R, i.e.,

Qn,1:s(f) =
1

n

n∑
i=1

f(Xi),

where X1, . . . , Xn are independent and uniformly distributed on [0, 1]. The methods

(18) Qn,s,0 = Qn,1:s ◦Ψ1:s,0

clearly satisfy the cost bound in assumption (iii) of Theorem 1. From Sloan, Woźniakowski
(2004) or Wasilkowski (2004, Theorem 1.1) we infer that there exists a constant c0 > 0
such that

(19) e(Qn,s,0, B1:s,0) = e(Qn,s,0, B(K1:s)) ≤ c0 n−1/2

s∑
j=1

γj

holds for all n, s ∈ N.
Henceforth, we refer to the methods Qn,s,0 as classical MC rules.
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Corollary 2. Assume that k is given by (7), and let assumption (ii) from Theorem 1 be
satisfied. Choose

n ³ N
α−1

α

and

s ³ N
1
α

for N ∈ N. Then the sequence of classical MC rules QN = Qn,s,0 satisfies

e(QN , B(K)) ¹ N−α−1
2α

and

costfix(QN , B(K)) ¹ N.

Proof. Apply Theorem 1 with β = 1/2 according to (19). ¤

Corollary 3. Assume that k is given by (3) or by (7), and let the assumption (i) from
Theorem 2 be satisfied with α > 1. Then

eN,fix(B(K)) º N
−3/2 (α−1)

α+2 .

Proof. For both kernels, the Sobolev space W 1
2 ([0, 1]) is continuously embedded in the

space H(K{1}), see Section 2.6, and the minimal errors on W 1
2 ([0, 1]) are of the order

β = 3/2, see Novak (1988, Sec. 2.2.9). Hence the result follows from Theorem 2. ¤

Remark 4. Obviously Corollaries 1 and 2 provide upper bounds for the respective min-
imal errors eN,fix(B(K)), while lower bounds are provided by Corollary 3. In order to
slightly simplify the results we define

λfix = sup{χ > 0 : sup
N∈N

eN,fix(B(K)) ·Nχ < ∞}.

If k is given by (3) and γj ³ j−α with α > 4, then

λfix =
3/2 (α− 1)

α + 2
.

Clearly, limα→4+ λfix = 3/4 and limα→∞ λfix = 3/2.
In the case that k is given by (7) and γj ³ j−α with α > 1 we only get

α− 1

2α
≤ λfix ≤ 3/2 (α− 1)

α + 2

from Corollaries 2 and 3. A better lower bound

λfix ≥
{

α(α− 1)/(4α− 2), if 1 < α < 2,

(α− 1)/(α + 1), if α ≥ 2,

is due to Kuo et al. (2009), and we stress that this bound is already achieved by suitable
deterministic algorithms. It is unknown to us whether the latter bound can further be
improved if the classical MC rule is replaced by a different randomized algorithm in
Corollary 2.
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5. Results for Variable Subspace Sampling

The analysis of variable subspace sampling is motivated by the multi-level approach to
infinite-dimensional integration. The latter is based on a sequence of finite-dimensional
affine subspaces

(20) Xv1,a ⊂ · · · ⊂ XvL,a

with a point a ∈ D and an increasing sequence

v1 ⊂ · · · ⊂ vL

of (finite) non-empty subsets of N. For the finite-dimensional integral I(ΨvL,af), which
serves as an approximation to I(f) as in Section 4, we have

I(ΨvL,af) =
L∑

`=1

I(Ψv`,af −Ψv`−1,af),

where

Ψv0,af = 0.

In the multi-level approach each of the integrals I(Ψv`,af − Ψv`−1,af) is approximated
separately by means of independent randomized algorithms, and sampling of f in Xv`,a is
used at level `. Clearly, the cost per evaluation of f is increasing with `. Provided that
the error for integration of Ψv`,af − Ψv`−1,af is decreasing with ` at a certain rate, we
properly balance these effects.

Remark 5. Consider an increasing sequence of sets v` ⊂ N with
⋃

`∈N v` = N. Since

lim
`→∞

‖f −Ψv`,af‖K = 0

for every f ∈ H(K), which is easily verified, we have strong convergence of Ψv`,a−Ψv`−1,a

towards zero. However,

inf
`∈N

sup
f∈B(K)

‖Ψv`,af −Ψv`−1,af‖K > 0.

The latter obviously holds true in the case (A2b) with a∗ = a, since Ψv,a is the orthogo-
nal projection onto H(Kv) in this case. To cover the general case we take y ∈ D such that

k(y, y) > 0. Let s ∈ N. Put f(x) =
√

γs k(xs, y). Then f ∈ H{s} with ‖f‖K1:s =
√

k(y, y)
and Ψ1:s,af = f . Moreover, Ψ1:s−1,aΨ1:s,af ∈ H∅, so that

‖Ψ1:s,af −Ψ1:s−1,af‖2
K1:s

= ‖Ψ1:s,af‖2
K1:s

+ ‖Ψ1:s−1,af‖2
K1:s

= k(y, y) + γs (k(a, y))2.

We conclude that supf∈B(K) ‖Ψ1:s,af −Ψ1:s−1,af‖Ks
does not converge to zero as s →∞.

Because of Remark 5 we consider another family of weights γ′u that satisfies

(A3′) γ′∅ = 1 and γ′u =
∏

j∈u γ′j for u 6= ∅, where

(A4′) γ′1 ≥ γ′2 ≥ · · · > 0 and
∑∞

j=1 γ′j < ∞, and

γj

γ′j
≤ 1.

The associated kernels are denoted by K ′, etc., and Lemma 6 implies that H(K) ⊆ H(K ′)
with

‖f‖K′ ≤ ‖f‖K , f ∈ H(K).



19

5.1. Preliminaries. Fix a ∈ D and let v ⊂ w ⊂ N. Recall that Ψv,af ∈ H(Kv) for every
f ∈ H(K) by Lemma 7. We will establish estimates for

(21) Ψw,af −Ψv,af = (id−Ψv,a)(Ψw,af) ∈ H(Kw),

where we consider the norm ‖ · ‖K′
w
.

Lemma 11. We have

sup
f∈B(K)

‖Ψw,af −Ψv,af‖K′
w
³ sup

f∈B(Kw)

‖f −Ψv,af‖K′
w

.

Proof. Use Lemma 7 together with (21). ¤
For the impact of Ψv,a on each of the terms in an orthogonal decomposition (1) the

following holds true.

Lemma 12. For f ∈ Hu we have

Ψv,af ∈ Hu∩v

and
‖Ψv,af‖ku∩v

≤ (k(a, a))|u\v|/2 ‖f‖ku .

Moreover, if u ⊆ v then Ψv,af = f .

Proof. Let f ∈ Hu. Then Ψv,af = Ψu∩v,af due to Lemma 2, and in particular Ψv,af =
Ψu,af = f in the case u ⊆ v. Put

J(x,y) = (k(a, a))|u\v|
∏

j∈u∩v

k(xj, yj) = (k(a, a))|u\v| ku∩v(x,y).

We get Ψu∩v,af ∈ H(J) ⊆ Hu∩v and a norm estimate as claimed from Lemma 14. ¤
Lemma 13. Let f ∈ H(Kw). If k satisfies (A2b) with a∗ = a or if |w \ v| = 1, then

‖f −Ψv,af‖2
K′

w
≤ (1 + γ′1 k(a, a)) ·

∑

u⊆w,u\v 6=∅
(γ′u)

−1 ‖fu‖2
ku

.

Proof. Let f =
∑

u⊆w fu with fu ∈ Hu, see Lemma 4. Use Lemma 12 to obtain

f −Ψv,af =
∑

u⊆w,u\v 6=∅
(fu −Ψu∩v,afu)

and

‖f −Ψv,af‖2
K′

w
=

∑

u⊆w,u\v 6=∅

∑

u′⊆w,u′\v 6=∅
〈fu −Ψu∩v,afu, fu′ −Ψu′∩v,afu′〉K′

w

=
∑

u⊆w,u\v 6=∅
(γ′u)

−1 ‖fu‖2
ku

+
∑

(u,u′)∈M

(γ′u∩v)
−1 〈Ψu∩v,afu, Ψu′∩v,afu′〉ku∩v

with
M = {(u, u′) : u, u′ ⊆ w, u \ v 6= ∅, u′ \ v 6= ∅, u ∩ v = u′ ∩ v}.

Assume that k satisfies (A2b) with a∗ = a. Then Ψu∩v,a is the orthogonal projection
onto H(Ku∩v), and we have Ψu∩v,afu = 0 for every u ⊆ w with u \ v 6= ∅.

On the other hand, if |w \ v| = {`} with ` ∈ N then M = {(u, u) : ` ∈ u ⊆ w}, and it
remains to observe that

(γ′u∩v)
−1 ‖Ψu∩v,afu‖2

ku∩v
≤ γ′1 (γ′u)

−1 k(a, a) ‖fu‖2
ku

due to Lemma 12 and (A4). ¤
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Theorem 3. Assume that k satisfies (A2b) with a∗ = a or that |w \ v| = 1. We have

sup
f∈B(K)

‖Ψw,af −Ψv,af‖K′
w
¹ max

j∈w\v

√
γj/γ′j.

Proof. Use Lemma 13 to obtain

‖f −Ψv,af‖2
K′

w
¹

∑

u⊆w,u\v 6=∅

γu

γ′u
γ−1

u ‖fu‖2
ku
≤ max

j∈w\v
γj

γ′j
· ‖f‖2

Kw

for f ∈ H(Kw). It remains to apply Lemma 11. ¤
We do not know whether a result similar to the estimate from Theorem 3 is valid under

the assumption (A2a) if |w \ v| is large.

5.2. Upper bounds for multi-level algorithms. We consider an independent family
of unbiased randomized algorithms Qn,1:s for finite-dimensional integration on D1:s, and
for the construction of multi-level methods we take a ∈ D and we employ the correspond-
ing independent randomized algorithms Qn,s,a = Qn,1:s ◦ Ψ1:s,a for infinite-dimensional
integration, see (10).

For L ∈ N and two sequences n1, . . . , nL and s1, . . . , sL ∈ N of positive integers with
s` < s`+1 we define a multi-level algorithm by

(22) Q(f) =
L∑

`=1

Qn`,s`,a(f −Ψ1:s`−1,af),

where

Ψ1:s0,af = 0.

Note that

Qn`,s`,a(f −Ψ1:s`−1,af) = Qn`,1:s`
(Ψ1:s`,af −Ψ1:s`−1,af)

due to Lemma 12. Hence Q uses variable subspace sampling based on the subspaces (20)
with v` = 1 : s`.

For the error of Q we obtain

(23) E(I(f)−Q(f))2 = (I(f)− I(Ψ1:sL,af))2 + Var(Q(f))

with

(24) Var(Q(f)) =
L∑

`=1

Var
(
Qn`,s`,a(f −Ψ1:s`−1,af)

)
,

while the cost of Q satisfies

(25) costvar(Q,B(K)) ¹
L∑

`=1

costvar(Qn`,s`,a, B1:s`,a)

in the variable subspace model.
As in Section 4.2, Qn,1:s typically is a randomized quadrature formula with n evalua-

tions, and then we assume that an upper bound for the maximal error of Qn,1:s is available
that only depends on n. However, the maximal error is taken on the unit ball in H(K ′

1:s)
instead of H(K1:s).

We first study the case of a kernel that satisfies (A2a), where we assume that s`+1 =
s` + 1 because of the limitation in Theorem 3.
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Theorem 4. Let a ∈ D, and assume that

(i) k satisfies (A2a),
(ii) γj ¹ j−α with α > 1,
(iii) γ′j ³ j−α′ with 1 < α′ < α,
(iv) there exist β, c > 0 such that

Var(Qn,s,a(f)) ≤ c ‖f‖2
K′

1:s
n−2 β

and

costvar(Qn,s,a, B1:s,a)) ≤ c n s

for all n, s ∈ N and every f ∈ B1:s,a.

Put

ρ1 =
α− 1

2β
, ρ2 =

α− α′ − 1

2β
.

For N ≥ 2 we choose

(26) L =





⌈
N

1
ρ1

⌉
, if ρ2 > 2,

⌈
(N/ ln N)

1
ρ1

⌉
, if ρ2 = 2,

⌈
N

1
ρ1+2−ρ2

⌉
, if ρ2 < 2,

as well as

(27) s` = `

and

(28) n` = ds−ρ2

` Lρ1e =





d`−ρ2 Ne, if ρ2 > 2,

d`−ρ2 N/ ln Ne, if ρ2 = 2,⌈
`−ρ2 N

ρ1

ρ1+2−ρ2

⌉
, if ρ2 < 2,

for ` = 1, . . . , L. Then the corresponding multi-level algorithm QN given by (22) satisfies

e(QN , B(K)) ¹ (ln N)1/2 ·





N−β, if α− α′ > 4β + 1,

(N/ ln N)−β, if α− α′ = 4β + 1,

N
−β

α−1
α′+4β , if α− α′ < 4β + 1,

as well as

costvar(Q,B(K)) ¹ N.

Proof. Assumptions (i), (iii), and (iv) together with Theorem 3 yield

Var
(
Qn`,s`,a(f −Ψ1:s`−1,af)

) ¹ ‖Ψ1:s`
(f −Ψ1:s`−1

f)‖2
K′

1:s`

· n−2 β
` ¹ s

−(α−α′)
` · n−2 β

`

for every f ∈ B(K). Use assumptions (i) and (ii) together with Lemma 10 to get

b2
1:sL,a ¹ s

−(α−1)
L .

Hence, by (23) and (24),

e2(QN , B(K)) ¹
L∑

`=1

s
−(α−α′)
` n−2 β

` + s
−(α−1)
L ,



22 HICKERNELL, MÜLLER-GRONBACH, NIU, AND RITTER

and (25) together with assumption (iv) implies

costvar(QN , B(K)) ¹
L∑

`=1

n` · s`.

Consequently,

e2(QN , B(K)) ¹
L∑

`=1

`−(α−α′) n−2 β
` + L−(α−1)

³ L−2β ρ1

L∑

`=1

`2β ρ2−(α−α′) ³ L−2β ρ1 (ln L).

Furthermore, since ρ1 > ρ2,

costvar(QN , B(K)) ¹ L2 + Lρ1

L∑

`=1

`1−ρ2

¹ L2 +





Lρ1 , if ρ2 > 2,

Lρ1 (ln L), if ρ2 = 2,

Lρ1+2−ρ2 , if ρ2 < 2,

³





Lρ1 , if ρ2 > 2,

Lρ1 (ln L), if ρ2 = 2,

Lρ1+2−ρ2 , if ρ2 < 2,

and it remains to observe that ln L ³ ln N . ¤
Now we consider the anchored case, where a better estimate, compared to the one from

Theorem 4, is obtained, since we may analyze any progression of the dimensions s`.

Theorem 5. Let a ∈ D. Assume that k satisfies (A2b) with a∗ = a and that the assump-
tions (ii)–(iv) from Theorem 4 are satisfied. Put

ρ1 =
α− 1

2β
, ρ3 =

α− α′

2β
.

For N ≥ 2 we choose

(29) L =

{⌈
ln N/ρ1

⌉
, if ρ3 ≥ 1,⌈

ln N/(ρ1 + 1− ρ3)
⌉
, if ρ3 < 1,

as well as

(30) s` = 2`

and

(31) n` =

{
ds−ρ3

` sρ1

L e, if ρ3 6= 1,

ds−1
` sρ1

L /Le, if ρ3 = 1,

for ` = 1, . . . , L. Then the corresponding multi-level algorithm QN given by (22) satisfies

e(QN , B(K)) ¹ (ln N)1/2 ·





N−β, if α− α′ > 2β,

(N/ ln N)−β, if α− α′ = 2β,

N
−β

α−1
α′−1+2β , if α− α′ < 2β,

as well as

costvar(QN , B(K)) ¹ N.
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Proof. We proceed as in the proof of Theorem 4 to obtain

e2(QN , B(K)) ¹
L∑

`=1

s
−(α−α′)
` n−2 β

` + s
−(α−1)
L

as well as

costvar(QN , B(K)) ¹
L∑

`=1

n` · s`.

Assume ρ3 6= 1. Then s
−(α−α′)
` · n−2 β

` ≤ s
−(α−1)
L and consequently,

e2(QN , B(K)) ¹ (L + 1) · s−(α−1)
L ¹ (ln N) ·





N−2β, if ρ3 > 1,

N
−2β ρ1

ρ1+1−ρ3 , if ρ3 < 1.

Furthermore, we have s` · n` ≤ s1−ρ3

` · sρ1

L + s` and ρ1 > ρ3, which yields

costvar(QN , B(K)) ¹
L∑

`=1

(
s1−ρ3

` · sρ1

L + s`

) ¹ sρ1

L + sL ¹ sρ1

L ¹ N

in the case ρ3 > 1, and

costvar(QN , B(K)) ¹ sρ1+1−ρ3

L + sL ¹ sρ1+1−ρ3

L ¹ N

in the case ρ3 < 1.

Now consider the case ρ3 = 1. Then s
−(α−α′)
` · n−2 β

` ≤ s
−(α−1)
L · L2β and we obtain

e2(QN , B(K)) ¹ (L2β+1 + 1) · s−(α−1)
L ¹ (ln N)2β+1 ·N−2β.

Moreover, s` · n` ≤ sρ1

L /L + s` and ρ1 ≥ 1, and we conclude

costvar(QN , B(K)) ¹
L∑

`=1

(
sρ1

L /L + s`

) ¹ sρ1

L ¹ N,

which finishes the proof. ¤

5.3. Examples. As in Section 4.3 we study the case of ρ being the uniform distribution
on D = [0, 1] and k given by (3) or by (7). The building blocks of the multi-level algorithms
are the ones that we have already considered in Section 4.3, namely, scrambled QMC rules
for the kernel (3) and classical MC rules for the kernel (7).

Corollary 4. Assume that k is given by (3) and that

γj ³ j−α

for any α > 4. Let 0 < ε < min(6, α− 4) and put

ρ1 =
α− 1

3− ε/2
, ρ2 =

α− 5− ε

3− ε/2
.

Choose L, s` and n` according to (26), (27), and (28), respectively, and let a ∈ [0, 1].
Take the corresponding multi-level algorithm QN according to (22) based on the scrambled
QMC rules Qn,s,a provided by (15). Then

e(QN , B(K)) ¹
{

N−(3−ε)/2, if α ≥ 11,

N−(3−ε)/2
α−1
10 , if α < 11,
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and

costvar(QN , B(K)) ¹ N.

Proof. Consider the weights γ′j = j−(4+ε) and apply Theorem 4 with the constant c = cε/4

and β = 3/2− ε/4 according to (17) to obtain costvar(QN , B(K)) ¹ N as well as

e(QN , B(K)) ¹ (ln N)1/2 ·





N−(3/2−ε/4), if α > 11,

(N/ ln N)−(3/2−ε/4), if α = 11,

N−(3/2−ε/4)
α−1
10 , if α < 11.

Clearly, the latter bound implies the error bound in the corollary. ¤

Corollary 5. Assume that k is given by (7) and that

γj ³ j−α

for any α > 1. Let

ε ∈
{

]0, α− 1[ , if α ≤ 2,

]0, α− 2[ , if α > 2,

and put

ρ1 = α− 1, ρ3 = α− 1− ε/2.

Choose L, s` and n` according to (29), (30) and (31), respectively. Take the corresponding
multi-level algorithm QN according to (22) based on the classical MC rules Qn,s,0 given by
(18). Then

e(QN , B(K)) ¹




(ln N)1/2 ·N−1/2 if α > 2,

N
− α−1

2(1+ε) if α ≤ 2,

and

costvar(Qn, B(K)) ¹ N.

Proof. Consider the weights γ′j = j−(1+ε/2) and apply Theorem 5 with a = 0 and β = 1/2
according to (19) to obtain costvar(Qn, B(K)) ¹ N and

e(QN , B(K)) ¹ (ln N)1/2 ·




N−1/2 if α > 2,

N
− α−1

2(1+ε/2) if α ≤ 2.

The latter bound clearly implies the error bound in the corollary. ¤

Remark 6. For both kernels, (3) and (7), a comparison of fixed and variable subspace
sampling can be based on the lower bound from Corollary 3 and the respective upper
bounds from Corollaries 2 and 4. Similar to Remark 4 we take a slightly simplified view
and we define

λvar = sup{χ > 0 : sup
N∈N

eN,var(B(K)) ·Nχ < ∞}.
If k is given by (3), and γj ³ j−α with α > 4, then

λvar ≥
{

3/2, if α ≥ 11,

3/2 · (α− 1)/10, if 4 < α < 11.

We conclude that variable subspace sampling is superior to fixed subspace sampling (at
least) if α > 8. Moreover, the multi-level algorithm according to Corollary 4 is almost
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optimal (at least) if α ≥ 11, see the proof of Corollary 3. For small values of α, however,
our analysis of variable subspace sampling suffers from the limitations in Theorem 3.

In the case of k given by (7) and γj ³ j−α with α > 1, we have

λvar ≥
{

1/2, if α > 2,

1/2 · (α− 1), if 1 < α ≤ 2,

which shows that variable subspace sampling is superior to fixed subspace sampling (at
least) if 1 < α < 5/2. A better lower bound

λvar ≥ λfix ≥ α− 1

α + 1
, α > 3,

which is due to Kuo et al. (2009), was already discussed in Remark 4. It would be interest-
ing to know whether suitable multi-level Monte Carlo algorithms outperform deterministic
algorithms that use fixed subspace sampling for α > 3.

Appendix A. Auxiliary Results

Suppose that E = E1×E2 with E1, E2 6= ∅, fix e2 ∈ E2, and let K denote a reproducing
kernel on E × E. Consider the linear mapping Ψ : RE → RE given by

(Ψf)(x1, x2) = f(x1, e2), xj ∈ Ej,

and the reproducing kernel J on E × E defined by

J((x1, x2), (y1, y2)) = K((x1, e2), (y1, e2)).

Note that J 6= 0 iff there exists a point x1 ∈ E1 such that K((x1, e2), (x1, e2)) 6= 0. In
particular, J = 0 might hold for a kernel K 6= 0.

Lemma 14. We have

{Ψf : f ∈ H(K), ‖f‖K ≤ 1} = {g ∈ H(J) : ‖g‖J ≤ 1}.
Proof. Consider the closed subspaces

H0 = {f ∈ H(K) : f |E1×{e2} = 0}
and

H⊥
0 = span{K(·, x) : x ∈ E1 × {e2}}

of H(K). For f =
∑n

i=1 a(i) K(·, (y(i)
1 , e2)) with a(i) ∈ R and y

(i)
1 ∈ E1 we have

(Ψf)(x1, x2) =
n∑

i=1

a(i) K((x1, e2), (y
(i)
1 , e2)) =

n∑
i=1

a(i) J((x1, x2), (y
(i)
1 , e2)),

which implies Ψf ∈ H(J) and ‖Ψf‖J = ‖f‖K . The same conclusions hold for every
f ∈ H⊥

0 , and furthermore Ψ(H⊥
0 ) = H(J).

Let P denote the orthogonal projection onto H⊥
0 . Clearly Ψf = ΨPf for f ∈ H(K),

so that Ψf ∈ H(J) and ‖Ψf‖J = ‖Pf‖K ≤ ‖f‖K . ¤
We also consider the reproducing kernel L on E1 × E1 that is given by

L(x1, y1) = K((x1, e2), (y1, e2)).

Lemma 15. We have

H(J) = {f : E → R : ∃ g ∈ H(L) ∀x2 ∈ E2 : f(·, x2) = g}.
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Proof. Let H denote the set on the right-hand side in Lemma 15 We define an inner
product on H by

〈f, f ′〉 = 〈f(·, e2), f
′(·, e2)〉L,

which turns H into a Hilbert space. Obviously, J(·, (y1, y2)) ∈ H and

〈f, J(·, (y1, y2))〉 = 〈f(·, e2), L(·, y1)〉L = 〈f(·, y2), L(·, y1)〉L = f(y1, y2)

for all (y1, y2) ∈ E1 × E2 and f ∈ H. ¤
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submitted for publication.

T. Müller-Gronbach, K. Ritter (2009), Variable subspace sampling and multi-level algorithms,
to appear in: P. L’Ecuyer, A. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
Springer-Verlag, Berlin.

E. Novak (1988), Deterministic and Stochastic Error Bounds in Numerical Analysis, Lect. Notes
in Math. 1349, Springer-Verlag, Berlin.
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