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Hierarchical Singular Value

Decomposition of Tensors

Lars Grasedyck

July 8, 2009

We define the hierarchical singular value decomposition (SVD) for tensors of
order d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and
collapses to the SVD in d = 2), and we prove these. In particular, one can
find low rank (almost) best approximations in a hierarchical format (H-Tucker)
which requires only O((d− 1)k3 + dnk) data, where d is the order of the tensor,
n the size of the modes and k the rank. The H-Tucker format is a specialization
of the Tucker format and it contains as a special case all (canonical) rank k
tensors. Based on this new concept of a hierarchical SVD we present algorithms
for hierarchical tensor calculations allowing for a rigorous error analysis. The
complexity of the truncation (finding lower rank approximations to hierarchical
rank k tensors) is in O((d− 1)k4 + dnk2) and the attainable accuracy is just 2–3
digits less than machine precision.

1 Introduction

Several problems of practical interest in physical, chemical, biological or mathematical appli-
cations naturally lead to high-dimensional (multivariate) approximation problems and thus
are essentially not tractable when the dimension d grows beyond d = 10. Examples are partial
differential equations with many stochastic parameters, computational chemistry computa-
tions, the multiparticle electronic Schrödinger equation etc. This is due to the fact that
the computational complexity or error bounds must depend exponentially on the dimension
parameter d, which is coined by Bellman the curse of dimensionality. In order to make the
settig more concrete we consider a multivariate function

f : [0, 1]d → R

discretized by tensor basis functions

φ(i1,...,id)(x1, . . . , xd) :=
d∏

µ=1

φiµ(xµ), φiµ : [0, 1] → R, iµ = 1, . . . , nµ, µ = 1, . . . , d.

The total number N of basis functions scales exponentially in d as N =
∏d

µ=1 nµ. One
strategy to overcome this curse (in complexity) is to assume some sort of smoothness of the
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function or object to be approximated so that one can choose a subspace Ṽ of

V = span{φ(i1,...,id) | (i1, . . . , id) ∈ {1, . . . , n1} × · · · × {1, . . . , nd}}.

This leads to the sparse grids method [13, 6] which chooses (adaptively [7] or non-adaptively)
combinations of basis functions. An alternative way to approximate the multivariate function
f is to separate the variables, i.e. to seek for an approximation of the form

f(x1, . . . , xd) ≈
k∑

i=1

d∏

µ=1

fµ,i(xµ)

where each of the univariate functions fµ,i(x) : [0, 1] → R is discretized by the full one-
dimensional set of basis functions φj(x), j = 1, . . . , nµ. If the seperation rank k is small
compared to N , then this is an efficient data-sparse representation. However, whereas sparse
grids define a linear space, the set of functions representable with separation rank k is not
a linear space. Therefore, numerical algorithms based on such a format require a truncation
of the results of basic steps to this set, i.e. finding low separation rank approximations:

For given f ∈ V find f̃ ∈ V of rank k s.t. ‖f − f̃‖ ≈ inf
v∈V,rank(v)=k

‖f − v‖.

This approxmation problem suffers from the following difficulties:

1. A minimizer f̃ does not necessarily exist (problem is ill-posed), cf. [3]. The correspond-
ing minimizing sequence consists of factors with increasing norm (and leads to severe
cancellation effects). This can easily be overcome by Lagrange multipliers or penalty
terms involving the norm of the factors.

2. There are no known algorithms allowing for an priori estimate of the truncation er-
ror, see e.g. [9] for an overview on tensor algorithms. This is a severe bottleneck,
because even in model problems one cannot be sure to find approximations of almost
optimal rank — despite the fact that one might be able to prove that such a low rank
approximation exists.

3. The approximation problem is rather difficult to solve if one wants to obtain an accuracy
suitable for standard numerical applications, see e.g. [1, 5] for the state of the art of
efficient algorihms. Linearly converging algorithms like ALS seem to be favorable for
coarse accuracy, but for high accuracy one has to employ Newton-type iterations which
are difficult to implement efficiently.

Thus, for some cases it is known how to construct a low separation rank approximation with
high accuracy and stable representation but in order to use this low rank format as a basic
format in numerical algorithms one needs a rigorous (black box) arithmetic.

A new kind of separation scheme was introduced by Hackbusch and Kühn [12] and is
coined hierarchical low rank tensor format (cf. also the tree Tucker format [8, 10]). This new
format allows the representation of order d tensors with (d− 1)k3 + k

∑d
µ=1 nµ data, where

k is the involved — implicitly defined — representation rank.
In this article we will define the hierarchical rank of a tensor by singular value decompo-

sitions (SVD). The hierarchical format is then characterized by a nestedness of subspaces
that stem from the SVDs. We present a corresponding hierarchical SVD which has a similar
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property as the higher order SVD (HOSVD) by De Lathauwer et al. [2], namely that the best
approximation up to a factor of

√
2d− 3 is obtained via cutting off the hierarchical singular

values. We then derive a truncation procedure for (1.) dense or unstructured tensors as well
as (2.) those already given in hierarchical format. In the first case almost linear complexity
with repect to the number of input data is achieved, in the latter case the truncation is of
complexity O((d−1)k4 +k2

∑d
µ=1 nµ). At last we present numerical examples that underline

the attainable accuracy which is close to machine precision (roughly 10−13 in double precision
arithmetic) and apply the truncation for hierarchical tensors of order d = 1, 000, 000.

2 Tucker Format

Notation 1 (Index set) Let d ∈ N and n1, . . . , nd ∈ N. We consider tensors as vectors
over product index sets. For this purpose we introduce the d-fold product index set

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, (µ ∈ {1, . . . , d}).

The order of the index sets is in principle important, but since it will always be clear
which index belongs to which index set we will treat them without specifying the order. If
the ordering becomes important it will be mentioned.

Definition 2 (Mode, matricization, fibre) Let A ∈ R
I. The dimension directions µ =

1, . . . , d are called the modes. Let µ ∈ {1, . . . , d}. We define the index set

I(µ) := I1 × · · · × Iµ−1 × Iµ+1 × · · · × Id

and the corresponding µ-mode matricization by

Mµ : R
I → R

Iµ×I(µ)

, (Mµ(A))iµ,(i1,...,iµ−1,iµ+1,...,id) := A(i1,...,id).

We use the short notation
A(µ) := Mµ(A)

and call this the µ-mode matricization of A. The columns of A(µ) define the µ-mode fibres
of A.

The µ-mode matricization A(µ) is in one-to-one correspondence with the tensor A. The
vector 2-norm ‖A‖2 corresponds to the matrix Frobenius norm: ‖A(µ)‖F = ‖A‖2.

Definition 3 (Multilinear multiplication ◦) Let A ∈ R
I, µ ∈ {1, . . . , d} and Uµ ∈

R
Jµ×Iµ. Then the µ-mode multiplication Uµ ◦µ A is defined by the matricization

(Uµ ◦µ A)(µ) := UµA
(µ) ∈ R

Jµ×I(µ)

,

with entries

(Uµ ◦µ A)(i1,...,iµ−1,j,iµ+1,...,id) :=

nµ∑

iµ=1

(Uµ)j,iµA(i1,...,id).

The multilinear multiplication with matrices Uν ∈ R
Jν×Iν , ν = 1, . . . , d, is defined by

(U1, . . . , Ud) ◦ A := U1 ◦1 · · ·Ud ◦d A ∈ R
J1×···×Jd .
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The order of the mode multiplications is irrelevant for the multilinear multiplication.

Definition 4 (Tucker rank, Tucker format, mode frames) The Tucker rank of a ten-
sor A ∈ R

I is the tupel (k1, . . . , kd) with (elementwise) minimal entries kµ ∈ N0 such that
there exist (columnwise) orthonormal matrices Uµ ∈ R

nµ×kµ and a so-called core tensor
C ∈ R

k1×···×kd with
A = (U1, . . . , Ud) ◦ C. (1)

The representation of the form (1) is called the orthogonal Tucker format, or in short we say
A = (U1, . . . , Ud) ◦ C is an orthogonal Tucker tensor. We call a representation of the form

(1) with arbitrary Uµ ∈ R
nµ×k̃µ the Tucker format. The set of tensors of Tucker rank at most

(k1, . . . , kd) is denoted by Tucker(k1, . . . , kd). The matrices Uµ are called mode frames for the
Tucker tensor representation.

For fixed orthonormal mode frames Uµ ∈ R
nµ×kµ the unique core tensor C minimizing

‖A− (U1, . . . , Ud) ◦ C‖ is
C = (UT

1 , . . . , U
T
d ) ◦ A.

Definition 5 (Tucker truncation) Let A ∈ R
I. Let

A(µ) = UµΣµV
T
µ , Uµ ∈ R

nµ×nµ ,

be a singular value decomposition with diagonal matrix Σµ = diag(σµ,1, . . . , σµ,nµ
). Then the

truncation of A to Tucker rank (k1, . . . , kd) is defined by

T(k1,...,kd)(A) := (Ũ1Ũ
T
1 , . . . , ŨdŨ

T
d ) ◦ A = (Ũ1, . . . , Ũd) ◦

(
(ŨT

1 , . . . , Ũ
T
d ) ◦ A

)
,

where Ũµ is the matrix of the first kµ columns of Uµ.

The truncation T(k1,...,kd)(A) yields an orthogonal Tucker tensor (Ũµ is orthogonal). Since
the core tensor is uniquely defined by the orthonormal mode frames Uµ, the approximation
of a tensor A in Tucker(k1, . . . , kd) is a minimization problem on a (product) Grassmann
manifold. A best approximation Abest always exists. The geometry of the Grassmann man-
ifold can be exploited to develop efficient Newton and quasi-Newton methods for a local
optimization [4, 11]. As an initial guess one can use the Tucker truncation which allows for
an explicit a priori error bound given next.

Lemma 6 (Tucker approximation) Let A ∈ R
I. We denote the best approximation of A

in Tucker(k1, . . . , kd) by Abest. The error of the truncation is bounded by

‖A− T(k1,...,kd)(A)‖ ≤

√√√√
d∑

µ=1

nµ∑

i=kµ+1

σ2
µ,i ≤

√
d‖A− Abest‖,

where the σµ,i are the µ-mode singular values from Definition 5.

Proof: Property 10 in [2].
The error bound stated in Lemma 6 is an a priori upper bound for the truncation error in
terms of the best approximation error. The truncation is in general not a best approximation
(but it may serve as an initial guess for a subsequent optimization). In the following section
we will provide an elegant proof for this Lemma.
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Figure 1: Left: A dimension tree for d = 6. Right: The interior nodes I(TI) are coloured
dark brown and the leaves L(TI) are green.

3 Hierarchical Tucker Format

The hierarchical Tucker format is a multilevel variant of the Tucker format — multilevel
in terms of the order of the tensor. In order to define the format we have to introduce a
hierarchy among the modes {1, . . . , d}.
Definition 7 (Dimension tree) A dimension tree TI for dimension d ∈ N is a tree with
root Root(TI) = {1, . . . , d} and depth p = ⌈log2(d)⌉ := min{i ∈ N0 | i ≥ log2(d)} such that
each node t ∈ Td is either

1. a leaf and singleton t = {µ} on level ℓ ∈ {p− 1, p} or

2. the disjoint union of two successors S(t) = {s1, s2}:
t = s1 ∪̇ s2. (2)

The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ to the
root, cf. Figure 1. We denote the level ℓ of the tree by

T ℓ
I := {t ∈ TI | level(t) = ℓ}.

The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf) nodes is
denoted by I(TI). A node of the tree is a so-called mode cluster.

The dimension tree is almost a complete binary tree, except that on the last but one
level there may appear leaves. In principle one could base the following considerations on
arbitrary non-binary dimension trees, but for the ease of presentation we have restricted
this. The canonical dimension tree is of the form presented in Figure 1 where each node
t = {µ1, . . . , µq}, q > 1, has two successors

t1 := {µ1, . . . , µr}, r := ⌊q/2⌋ := max{i ∈ N0 | i ≤ q/2}, t2 := {µr+1, . . . , µq}.
Lemma 8 On each level ℓ of the dimension tree TI of depth p the nodes are disjoint subsets
of {1, . . . , d}. The number of nodes on level ℓ is

#T ℓ
I =

{
2ℓ for ℓ < p and
2d− 2p (≤ d) for ℓ = p.

For a complete binary tree 2d − 2p = 2p+1 − 2p = 2p holds. The total number of nodes is
2d− 1, the number of leaves is d and the number of interior nodes is d− 1.
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Proof: The disjointness follows by (2). For levels ℓ = 0, . . . , p − 1 the tree is binary and
thus the number of nodes doubles for each level. On the last but one level there are 2p−1

(disjoint) nodes, these can be either singletons (s) or 2-tuples (t), thus #s + #t = 2p−1.
The total number of modes is d, thus #s + 2#t = d. Together we have #t = d − 2p−1, i.e.
2#t = 2d− 2p nodes (singletons) on level p. The total number of nodes is

p−1∑

ℓ=0

2ℓ + 2d− 2p = 2p − 1 + 2d− 2p = 2d− 1.

Definition 9 (Matricization) For a mode cluster t in a dimension tree TI we define the
complementary cluster t′ := {1, . . . , d} \ t,

It :=
⊗

µ∈t

Iµ, It′ :=
⊗

µ∈t′

Iµ,

and the corresponding t-matricization

Mt : R
I → R

It×It′ , (Mt(A))(iµ)µ∈t,(iµ)µ∈t′
:= A(i1,...,id),

where the special case is M∅(A) := M{1,...,d}(A) := A. We use the short notation A(t) :=
Mt(A).

We provide a simple example: let the tensor A be of the form

A = a⊗ b⊗ q ⊗ r ∈ R
I1×I2×I3×I4 .

Then the matricizations with respect to {1, 2} and {2, 3} are

A({1,2}) = (a⊗ b)(q ⊗ r)T ∈ R
(I1×I2)×(I3×I4),

A({2,3}) = (b⊗ q)(a⊗ r)T ∈ R
(I2×I3)×(I1×I4).

Definition 10 (Hierarchical rank) Let (kt)t∈TI
be a rank distribution for the dimension

tree TI. The hierarchical rank (kt)t∈TI
of a tensor A ∈ R

I is defined by

∀t ∈ TI : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most (kt)t∈TI
is denoted by

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}.

According to the definition of the hierarchical rank one can define the hierarchical SVD by
the node-wise SVDs of the matrices A(t), cf. Figure 2. However, it is not obvious why and
how this should lead to an efficient representation and correspondingly efficient algorithms.
Instead, we will introduce a nested representation and reveal the connection to the node-wise
SVDs later.
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Figure 2: Depicted are the largest 24 singular values of A(t) for each node t ∈ TI (the dimen-
sion tree from Figure 1) except the root in logarithmic scale ranging from 1 downto
10−16. The first number is the number of singular values larger than 10−14 and the
number in brackets is the cardinality of It.

Definition 11 (Frame tree, t-frame, transfer tensor) Let t ∈ TI be a mode cluster and
(kt)t∈TI

a rank distribution. We call a matrix Ut ∈ R
It×kt a t-frame and a tupel (Us)s∈TI

of frames a frame tree. A frame is called orthogonal if the columns are orthonormal and a
frame tree is called orthogonal if each frame is. A frame tree is nested if for each interior
mode cluster t with successors S(t) = {t1, t2} the following relation holds:

image(Ut) ⊂ image(Ut1) ⊗ image(Ut2).

The tensor Bt ∈ R
kt×kt1×kt2 of coefficients for the representation of the columns (Ut)i of Ut

by the columns of Ut1 , Ut2,

(Ut)i =

kt1∑

j=1

kt2∑

l=1

(Bt)i,j,l (Ut1)j ⊗ (Ut2)l, (3)

is called the transfer tensor.

For a nested frame tree it is sufficient to provide the transfer tensors for all interior mode
clusters t ∈ I(TI) and the t-frames for the leaves t ∈ L(TI). Note that we have not yet
imposed an orthogonality condition on the t-frames.

Definition 12 (Hierarchical Tucker format) Let (kt)t∈TI
be a rank distribution for the

dimension tree TI and let A ∈ H-Tucker((kt)t∈TI
). Let (Ut)t∈TI

be a nested frame tree with
transfer tensors (Bt)t∈I(TI) and

∀t ∈ TI : image(A(t)) = image(Ut), A = U{1,...,d}.
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Then the representation ((Bt)t∈I(TI), (Ut)t∈L(TI)) is a hierarchical Tucker representation of
A. Note that the columns of Ut need not be linear independent and that the size of Bt is not
prescribed.

The representation of a tensor A ∈ H-Tucker((kt)t∈TI
) in the hierarchical Tucker format

with orthogonal mode frames is unique up to orthogonal transformation of the t-frames.

Lemma 13 (Storage complexity) Let TI be a dimension tree and A ∈ H-Tucker((kt)t∈TI
)

given in hierarchical Tucker representation ((Bt)t∈I(TI), (Ut)t∈L(TI)) and Bt ∈ R
kt×kt1×kt2 for

S(t) = {t1, t2}, i.e. Bt of minimal size. Then the total storage for all transfer tensors
(Bt)t∈I(TI) and frames (Ut)t∈L(TI) in terms of number of entries is bounded by

Storage((Bt)t∈I(TI), (Ut)t∈L(TI)) ≤ (d− 1)k3 + k

d∑

µ=1

nµ, k := max
t∈TI

kt, (4)

i.e. linearly in the dimension d (provided k is uniformly bounded).

Proof: For each leaf t = {µ} of the dimension tree we have to store the t-frame Ut ∈ R
nµ×kt

which yields the second term in (4). For all d− 1 interior mode clusters (Lemma 8) we have
to store the transfer tensors Bt ∈ R

kt×kt1×kt2 , each has at most k3 entries.

Lemma 14 (Successive truncation) Let A ∈ R
I and πt, πs orthogonal projections. Then

‖A− πtπsA‖2 ≤ ‖A− πtA‖2 + ‖A− πtA‖2.

Proof: We have
‖A− πtπsA‖ = ‖(I − πt)A+ πt(A− πsA)‖.

Due to the orthogonality of (I − πt), πt we conclude

‖A− πtπsA‖2 = ‖(I − πt)A‖2 + ‖πt(A− πsA)‖2 ≤ ‖(I − πt)A‖2 + ‖A− πsA‖2.

In particular Lemma 14 proves Lemma 6: let Ut, t = {µ}, denote the matrix of the kt

singular vectors of A(t) corresponding to the largest singular values and

(πtA)(t) := UtU
T
t A

(t), i.e. πtA := M−1
t (UtU

T
t Mt(A)).

Then

‖A− πtA‖2 =

nµ∑

i=kµ+1

σ2
µ,i.

Since πtA is the best approximation of A with µ-mode rank kt, we also have ‖A− πtA‖2 ≤
‖A− Abest‖2 and thus

‖A− T(k1,...,kd)(A)‖ ≤
√
d‖A− Abest‖.

Definition 15 (Orthogonal frame projection) Let TI be a dimension tree, t ∈ TI and
Ut an orthogonal t-frame. Then we define the orthogonal frame projection πt : R

I → R
I in

matricized form by

(πtA)(t) := UtU
T
t A

(t), π∅A := A, π{1,...,d}A := A.
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The order of the projections in a product of the form (
∏

t∈TI
πt) is relevant (the πt do not

necessarily commute). One has to be careful with the ordering, because the result of the
product of the projections differs structurally.

Lemma 16 Let TI be a dimension tree and A ∈ R
I. For all t ∈ TI let Ut ∈ R

It×kt be
orthogonal t-frames. Then for any order of the projections πt holds

‖A−
∏

t∈TI

πtA‖2 ≤
∑

t∈TI

‖A− πtA‖2.

Proof: Apply Lemma 14 successively for all nodes of the dimension tree.

Theorem 17 (Hierarchical truncation error) Let TI be a dimension tree and A ∈ R
I.

Let Abest denote the best approximation of A in H-Tucker((kt)t∈I) and let πt be the orthogo-
nal frame projection for the t-frame Ut that consists of the left singular vectors of A(t) corre-
sponding to the kt largest singular values σt,i of A(t). Then for any order of the projections
πt, t ∈ TI, holds

‖A−
∏

t∈TI

πtA‖ ≤
√∑

t∈TI

∑

i>kt

σ2
t,i ≤

√
2d− 2‖A− Abest‖.

Proof: For any of the projections holds ‖A− πtA‖2 =
∑

i>kt
σ2

t,i ≤ ‖A− Abest‖ and for the
root ‖A− π{1,...,d}A‖ = 0 (w.l.o.g. k{1,...,d} = 1). Applying Lemma 16 and Lemma 8 yields

‖A−
∏

t∈TI

πtA‖2 ≤
∑

t∈TI

∑

i>kt

σ2
t,i ≤ (2d− 2)‖A− Abest‖2.

Remark 18 The estimate given in the previous theorem is not optimal and it can be im-
proved as follows: for the root t of the dimension tree and its successors t1, t2 one can combine
both projections πt1 .πt2 into a single projection via the SVD. This combined projection (with
the pairs of the singular vectors) then has the same error as any of the two projections πt1

or πt2. Thereby, the error of the truncation can be estimated by

‖A−
∏

t∈TI

πtA‖ ≤
√

2d− 3‖A− Abest‖.

In dimension d = 2 this coincides with the SVD estimate and in d = 3 this coincides with
the one-level Tucker estimate.

Example 19 (Increasing the rank by projection) We consider the tensor A ∈ R
3×3×3

in matricized form
A({1,2}) :=

[
u1 ⊗ q1 u2 ⊗ q2 u1 ⊗ q2

]

with vectors

u1 =




1
0
0



 , u2 =




0
1
0



 , q1 =




1/
√

2
0

1/
√

2



 , q2 =




0
1
0



 .
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The mode cluster t = {1, 2} has the two successors t1 = {1}, t2 = {2} and we consider the
orthogonal mode frames

Ut :=
[
u1 ⊗ q1 u2 ⊗ q2 q1 ⊗ q2

]
, Ut1 :=

[
u1 u2

]
, Ut2 :=

[
q1 q2

]
.

Clearly, πt1 will project to t1-rank rank((πt1A)(1)) = 2. We will now show that the rank is at
least 3 if we apply all three projectors. The matrix Q for the projection πt1πt2 is given by

Q = Ut1U
T
t1
⊗ Ut2U

T
t2

= (u1u
T
1 + u2u

T
2 ) ⊗ (q1q

T
1 + q2q

T
2 ).

We thus obtain
QUt =

[
u1 ⊗ q1 u2 ⊗ q2

1√
2
u1 ⊗ q2

]
.

The combined projection reads

(πtπt1πt2A)({1,2}) = UtU
T
t QA

({1,2}) = Ut(QUt)
TA({1,2})

= Ut

[
u1 ⊗ q1 u2 ⊗ q2

1√
2
u1 ⊗ q2

]T
A({1,2})

= Ut




1 0 0
0 1 0
0 0 1√

2



 =
[
u1 ⊗ q1 u2 ⊗ q2

1√
2
q1 ⊗ q2

]
.

The matricization with respect to t1 = {1} is of rank three,

(πtπt1πt2A)(1) =
[
u1q

T
1 u2q

T
2 q1(

1√
2
q2)

T
]
,

because u1, u2, q1 are linearly independent. We conclude: the first projection πt1πt2 maps A
into Tucker(2, 2, 3), but after the coarser projection πt the 1-mode rank is three and thus
πtπt1πt2 6∈ Tucker(2, 2, 3). This is because πt mixes the t1-frame and the t2-frame. In the case
of a nested frame tree this is not possible.

Lemma 20 (Structure of the hierarchical truncation) Let TI be a dimension tree of
depth p, A ∈ R

I and (kt)t∈I. Let (Ut)t∈TI
, Ut ∈ R

It×kt, be an orthogonal frame tree (not
necessarily nested). Then the tensor

AH :=
∏

t∈T p
I

πt · · ·
∏

t∈T 1
I

πtA

belongs to H-Tucker((kt)t∈I).

Proof: We define the tensors

AH,ℓ :=
∏

t∈T ℓ
I

πt · · ·
∏

t∈T 1
I

πtA.

We prove rank(A
(t)
H,ℓ) ≤ kt for all t ∈ TI with level(t) ≤ ℓ by induction over the level

ℓ = 1, . . . , p. Level ℓ = 1 is the Tucker truncation and thus the statement is true for ℓ = 1.
Now let ℓ > 1 and assume that

∀t ∈ TI , level(t) ≤ ℓ− 1 : rank(A
(t)
H,ℓ−1) ≤ kt.

10



By construction

AH,ℓ =
∏

t∈T ℓ
I

πtAH,ℓ−1.

This is the Tucker truncation on level ℓ and thus for all t ∈ T ℓ
I on level ℓ the rank bound is

fulfilled. It remains to show that for all levels 0, . . . , ℓ−1 the rank bound is fulfilled, i.e., that
the rank is not increased by the projections on level ℓ. Now let t ∈ T j

I , j < ℓ. Let s ∈ T ℓ
I .

We will show that the rank of A
(t)
H,ℓ−1 is not increased by the projection πs. Due to the tree

structure s is either a subset of t or they are disjoint.
Case s ⊂ t: Let ŝ := t \ s. Then the projection πs is of the matricized form

(πsA)(t) =
(
UsU

T
s ⊗ I

)
A(t)

with I being the Iŝ × Iŝ identity. The rank is not increased by the multiplication.
Case s∩ t = ∅: Let ŝ := {1, . . . , d}\ (t∪ s). Then the projection πs is of the matricized form

(πsA)(t) = A(t)
(
UsU

T
s ⊗ I

)

with I being the Iŝ × Iŝ identity. The rank is not increased by the multiplication.

Notation 21 By
ψt,k(A)

we denote the It × k matrix that consists of the left singular vectors of A(t) corresponding to
the k largest singular values of A(t).

Definition 22 (Hierarchical root-to-leaves truncation) Let TI be a dimension tree of
depth p, (kt)t∈I a rank distribution and A ∈ R

I. We define the hierarchical root-to-leaves
truncation AH ∈ H-Tucker((kt)t∈I) as follows:

AH :=
∏

t∈T p
I

πt · · ·
∏

t∈T 1
I

πtA,

where πt are the projections based on Ut := ψt,kt
(A) ∈ R

It×kt.

The hierarchical Tucker representation of AH from the previous definition is obtained
by projection of the t-frames into the span of the sons Ut1 ⊗ Ut2 . The procedure for the
construction is given in Algorithm 1. We want to remark that the algorithm is formulated
for arbitrary tensors and the specialization to H-Tucker tensors is the topic of the next
section.

Theorem 23 (Characterization of hierarchical approximability) Let TI be a dimen-
sion tree, A ∈ R

I, (kt)t∈TI
a rank distribution and ε > 0. If there exists a tensor Abest of

hierarchical rank (kt)t∈I and ‖A− Abest‖ ≤ ε, then the singular values of A(t) for each node
t can be estimated by √∑

i>kt

σ2
i ≤ ε.

On the other hand, if the singular values fulfil the bound
√∑

i>kt
σi ≤ ε/

√
2d− 2, then the

truncation yields an H-Tucker tensor AH :=
∏

t∈TI
πtA such that

‖A− AH‖ ≤ ε.

11



Proof: The second part is proven by Theorem 17. The first part follows from the fact that
(Abest)(t) is a rank kt approximation of A(t) with ‖A(t) − (Abest)(t)‖F ≤ ε.

In Algorithm 1 we provide a method for the truncation of an arbitrary tensor to hierarchical
rank (kt)t∈TI

, of cause one can as well prescribe node-wise tolerances εt for the truncation of
singular values: according to Theorem 23 one can prescribe node-wise tolerance ε/

√
2d− 2

in order to obtain a guaranteed error bound of ‖A−AH‖ ≤ ε. The complexity of Algorithm
1 is estimated in Lemma 24.

Algorithm 1 Root-to-leaves truncation of arbitrary tensors to H-Tucker format

Require: Input tensor A ∈ R
I , dimension tree TI (depth p > 0), rank distribution (kt)t∈TI

.
for each singleton t ∈ L(TI) do

Compute an SVD of A(t) and store the dominant kt left singular vectors in the columns
of the t-frame Ut.

end for
for ℓ = p− 1, . . . , 1 do

for each mode cluster t ∈ I(TI) on level ℓ do
Compute an SVD of A(t) and store the dominant kt left singular vectors in the columns
of the t-frame Ut.
Let Ut1 and Ut2 denote the frames for the successors of t on level ℓ+ 1. Compute the
entries of the transfer tensor:

(Bt)i,j,ν := 〈(Ut)i, (Ut1)j ⊗ (Ut2)ν〉

end for
end for
return H-Tucker representation ((Ut)t∈L(TI), (Bt)t∈I(TI)) for AH ∈ H-Tucker((kt)t∈TI

)).

Lemma 24 (Complexity of Algorithm 1) The complexity of Algorithm 1 for a tensor

A ∈ R
I and dimension tree TI of depth p > 0 is in O

((∏d
µ=1 nµ

)3/2
)

.

Proof: We have to compute singular value decompositions for all A(t), and those decomposi-
tions have a complexity of O(min(#It,#It′)

2 max(#It,#It′)), where t′ is the complementary
mode cluster t′ := {1, . . .}\ t. Without loss of generality we can assume nµ ≥ 2 for all modes
µ. Then the complexity of the SVD for the root is zero, that for the two successors t, t′ of
the root is

CSV D(min(#It,#It′)
2 max(#It,#It′)) ≤ CSV D

(
d∏

µ=1

nµ

)3/2

,

where CSV D is a universal constant for the SVD. For each further level there are at most two
times more nodes, but the cardinality of It, It′ is reduced by at least a factor of two (nµ ≥ 2)
so that the complexity for the SVDs is quartered. Therefore the total complexity is bounded
by

p∑

ℓ=0

2−ℓCSV D

(
d∏

µ=1

nµ

)3/2

≤ 2CSV D

(
d∏

µ=1

nµ

)3/2

.

12



The truncation presented in Algorithm 1 requires the computation of all (full) SVDs. We
want to avoid the superlinear complexity O(

∏d
µ=1 nµ)3/2 and instead work with a core tensor

that becomes smaller as we come closer to the root of the tree. This means that we compute
the SVDs not for the original tensor but for an already truncated one. The algorithm for
this is given in Algorithm 2 and the complexity is estimated in Lemma 26.

Definition 25 (Hierarchical leaves-to-root truncation) Let TI be a dimension tree of
depth p, (kt)t∈I a rank distribution and A ∈ R

I. For all leaves t ∈ L(TI) let πt denote the
frame projection for Ut := ψt,kt

(A) ∈ R
It×kt and

A eH,p :=
∏

t∈L(TI)

πtA.

For all other levels ℓ = p − 1, . . . , 1 and t ∈ I(T ℓ
I) let πt denote the frame projection for

Ut := ψt,kt
(A eH,ℓ+1) ∈ R

It×kt and

A eH,ℓ :=
∏

t∈T ℓ
I

πtA eH,ℓ+1.

Then we define the hierarchical leaves-to-root truncation by

AH := A eH,0.

Algorithm 2 Leaves-to-root truncation of arbitrary tensors to H-Tucker format

Require: Input tensor A ∈ R
I , dimension tree TI (depth p > 0), rank distribution (kt)t∈TI

.
for each singleton t ∈ L(TI) do

Compute an SVD of A(t) and store the dominant kt left singular vectors in the columns
of the t-frame Ut.

end for
Compute the core tensor Cp := (UT

1 , . . . , U
T
d ) ◦ A.

for ℓ = p− 1, . . . , 0 do
Initialize Cℓ := Cℓ+1.
for each mode cluster t ∈ I(TI) on level ℓ do

Compute an SVD of (Cℓ+1)
(t) and store the dominant kt left singular vectors in the

columns of the t-frame Ut ∈ R
kt1kt2×kt . Let Ut1 and Ut2 denote the corresponding

frames for the successors t1, t2 of t on level ℓ+ 1. Compute the entries of the transfer
tensor

(Bt)i,j,ν := 〈(Ut)i, (Ut1)j ⊗ (Ut2)ν〉.
Update the core tensor Cℓ := UT

t ◦t Cℓ.
end for

end for
return H-Tucker representation ((Ut)t∈L(TI), (Bt)t∈I(TI)) for AH ∈ H-Tucker((kt)t∈TI

)).

Lemma 26 (Complexity of leaves-to-root truncation) The complexity of Algorithm 2
for a tensor A ∈ R

I and dimension tree TI of depth p > 0 is bounded by

O
(

d∑

µ=1

nµ

d∏

ν=1

nν + dk2

d∏

ν=1

nν

)
, k := max

t∈TI

kt.
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Proof: For all leaves t = {µ} we have to compute the singular value decompositions of A(µ)

which is of complexity (CSV D being again the generic constant for the SVD)

d∑

µ=1

CSV D n2
µ

∏

ν 6=µ

nν = CSV D

d∑

µ=1

nµ

d∏

ν=1

nν .

For all other levels ℓ = 0, . . . , p − 1 we have to compute SVDs of matrices of size at most
kt1kt2 ×

∏
ν 6∈t nν . The complexity for this is at most

CSV Dk
2
t1
k2

t2

∏

ν 6∈t

nν ≤ CSV Dkt1kt2

d∏

ν=1

nν ≤ CSV Dk
2

d∏

ν=1

nν .

Summing this up over all nodes of the tree yields the estimate.

Theorem 27 (Leaves-to-root truncation) Let TI be a complete binary dimension tree
and A ∈ R

I. Let Abest denote the best approximation of A in H-Tucker((kt)t∈I). Then the
error of the Leaves-to-Root truncation A eH (Algorithm 2) is bounded by

‖A− A eH‖ ≤ (2 +
√

2)
√
d‖A− Abest‖.

Proof: The first truncation step on level ℓ = p is the Tucker truncation which yields t-frames
Ut for all nodes t ∈ T ℓ

I and an error bound of the form

‖A− A eH,p‖ = ‖A−
∏

t∈T p
I

πtA‖ ≤
√

2p‖A− Abest‖,

where Abest is the best approximation (worse than the one-level best approximation) in
H-Tucker((kt)t∈I). On any level ℓ = p − 1, . . . , 0 we construct the t-frames Ut for all nodes
t ∈ T ℓ

I that yield a Tucker truncation of A eH,ℓ+1 the error of which is bounded in terms of the

best possible approximation Abest
ℓ of A eH,ℓ+1 using frames on level ℓ:

‖A eH,ℓ+1 − A eH,ℓ‖ ≤
√

2ℓ‖A eH,ℓ+1 − Abest
ℓ ‖.

Now let π∗
t , t ∈ T ℓ

I be projections that yield the best approximation of A in the Tucker format
defined by the nodes t and ranks kt on level ℓ of the dimension tree. Then

∏
t∈T ℓ

I

π∗
tA fulfils

the rank bound on level ℓ and due to Lemma 20 also the additional projection to the finer
nodes

∏p
i=ℓ+1

∏
t∈T i

I

πt

∏
t∈T ℓ

I

π∗
tA fulfils the rank bound. This constructed approximation is

not better than the best approximation on level ℓ:

‖A eH,ℓ+1 − Abest
ℓ ‖ ≤ ‖

p∏

i=ℓ+1

∏

t∈T i
I

πtA−
p∏

i=ℓ+1

∏

t∈T i
I

πt

∏

t∈T ℓ
I

π∗
tA‖

≤ ‖A−
∏

t∈T ℓ
I

π∗
tA‖ ≤ ‖A− Abest‖.

Thus we can estimate

‖A− A eH‖ ≤ ‖A− A eH,p‖ +

p−1∑

ℓ=1

‖A eH,ℓ+1 − A eH,ℓ‖

≤ (
√

2p +

p−1∑

ℓ=1

√
2ℓ)‖A− Abest‖ ≤ (2 +

√
2)
√
d‖A− Abest‖.
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4 Truncation of Hierarchical Tucker Tensors

In this Section we want to derive an efficient realization of the truncation procedures from
the previous section for the special case that the input tensor is already given in a data-sparse
format, namely the hierarchical Tucker format. For the canonical rank format (as input) one
can as well derive such an efficient truncation.

Definition 28 (Brother of a mode cluster) Let TI be a dimension tree and t ∈ TI a
non-root mode cluster with father f . Then we define the unique mode cluster t̄ ∈ TI such
that f = t ∪̇ t̄ as the brother of t.

Lemma 29 Let TI a dimension tree and t ∈ I(TI) an interior node with two successors
t = t1∪̇t2. Further, let

A(t) =
k∑

ν=1

uνv
T
ν

be a matricization of A. Let

uν =

k1∑

j=1

k2∑

l=1

cν,j,lxj ⊗ yl, xj ∈ R
It1 , yl ∈ R

It2 , ν = 1, . . . , k

be a representation of the uν. Then the matricization of A with respect to t1 is given by

A(t1) =

k1∑

j=1

xj

(
k∑

ν=1

k2∑

l=1

cν,j,lyl ⊗ vν

)T

.

Proof: For the first matricization holds

A(i1,...,id) = A
(t)
(iµ)µ∈t,(iµ)µ∈t′

=
k∑

ν=1

k1∑

j=1

k2∑

l=1

cν,j,l(xj)(iµ)µ∈t1
(yl)(iµ)µ∈t2

(vν)(iµ)µ∈t′

=

k1∑

j=1

(xj)(iµ)µ∈t1

(
k∑

ν=1

k2∑

l=1

cν,j,l(yl)(iµ)µ∈t2
(vν)(iµ)µ∈t′

)

=

k1∑

j=1

(xj)(iµ)µ∈t1

(
k∑

ν=1

k2∑

l=1

cν,j,lyl ⊗ vν

)

(iµ)µ∈t′1

.

Lemma 30 (Matricization of tensors in hierarchical Tucker format) Let TI be a di-
mension tree, (kt)t∈I a rank distribution, A ∈ H-Tucker((kt)t∈I) with nested orthogonal

frame tree (Ut)t∈TI
and corresponding transfer tensors (Bt)t∈TI

. Let t ∈ T
(p)
I , p ≥ 1, and

Root(TI) = t0, t1, . . . , tp−1, tp = t a path of length p. Let Ū1, . . . , Ūp denote the frames of the
corresponding brothers, B0, . . . , Bp−1 the corresponding transfer tensors and k0, . . . , kp the
corresponding ranks. For convenience of notation we assume that the brother t̄ℓ is always the
first and tℓ the second successor, i.e.

(Utℓ)ν =
∑

i

∑

j

Bℓ
ν,i,jŪ

1
i ⊗ Utℓ+1

.
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Then the t-matricization has the form

A(t) =
kt∑

ν=1

(Ut)ν(Vt)
T
ν = UtV

T
t ,

where the complementary frame Vt is defined by

(Vt)jp
=




k̄1∑

i1=1

k1∑

j1=1

· · ·
k̄p−1∑

ip−1=1

kp−1∑

jp−1=1

k̄p∑

ip=1

B0
1,i1,j1

· · ·Bp−1
jp−1,ip,jp



 Ū1
i1
⊗ · · · ⊗ Ūp

ip

Proof: We prove the statement by induction over the level p of the mode cluster t. The
start p = 1 is trivial: the tensor A has the representation (Lemma 29)

A =

kt̄∑

i1=1

kt∑

j1=1

B0
1,i1,j1

Ū1
i1
⊗ U1

j1
, A(t) =

kt∑

j1=1

U1
j1

(
kt̄∑

i1=1

B0
1,i1,j1

Ū1
i1

)T

.

For the node tp−1 holds by induction

A(tp−1) =

kp−1∑

ν=1

Up−1
ν (Vtp−1)

T
ν , Up−1

ν =

k̄p∑

ip=1

kp∑

jp=1

Bp−1
ν,ip,jp

Ūp
ip
⊗ Up

jp
.

Together we obtain by Lemma 29

A(tp−1) =

kp∑

jp=1

Up
jp




kp−1∑

ν=1

k̄p∑

ip=1

Bp−1
ν,ip,jp

Ūp
ip
⊗ Vtp−1)ν




T

=

kp∑

jp=1

Up
jp

(Vt)
T
jp
.

Definition 31 (Accumulated transfer tensors) Let TI be a dimension tree, (kt)t∈I a

rank distribution, (Bt)t∈TI
transfer tensors. Let t ∈ T

(p)
I , p ≥ 1, and Root(TI) =

t0, t1, . . . , tp−1, tp = t a path of length p. Let B0, . . . , Bp−1 denote the corresponding transfer
tensors (assuming that the brother t̄ℓ is always the first and tℓ the second successor). Let
k0, . . . , kp be the corresponding ranks and k̄0, . . . , k̄p the ranks of the brothers. Then we define

the accumulated transfer tensor B̂t by

(B̂1)j1,s1 :=

k̄1∑

i1=1

B0
1,i1,j1

B0
1,i1,s1

,

(B̂ℓ)jℓ,sℓ
:=

kℓ−1∑

sℓ−1=1

k̄ℓ∑

iℓ=1




kℓ−1∑

jℓ−1=1

(B̂ℓ−1)jℓ−1,sℓ−1
Bℓ−1

jℓ−1,iℓ,jℓ



Bℓ−1
sℓ−1,iℓ,sℓ

,

B̂t := B̂p.

Remark 32 The first accumulated tensors B̂t1 , B̂t2 for the two sons of the root t can be
computed in O(ktkt1kt2) each. For each further node the second formula in Definition 31
has to be applied and it involves inside the bracket a matrix multiplication of complexity
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O(k2
t kt1kt2) for each son and the outer multiplication of complexity O(ktkt1k

2
t2

+ ktk
2
t1
kt2).

For all nodes of the tree this sums up to

O




∑

t∈I(TI)

ktkt1k
2
t2

+ ktk
2
t1
kt2



 = O
(
dmax

t∈TI

k4
t

)
.

Lemma 33 (Gram matrices of complementary frames) Let TI be a dimension tree,
(kt)t∈I a rank distribution, A ∈ H-Tucker((kt)t∈I) with nested orthogonal frame tree (Ut)t∈TI

and corresponding transfer tensors (Bt)t∈TI
. For each t ∈ TI let Vt be the complementary

frame from Lemma 30. Then B̂t is the Gram marix for Vt:

V T
t Vt = B̂t, 〈(Vt)ν , (Vt)µ〉 = (B̂t)ν,µ.

Proof: We use the definitions and notations from Lemma 30. According to Lemma 30 and
due to the orthogonality of each of the t̄-frames Ū ℓ we obtain

〈(Vt)ν , (Vt)µ〉 =

k̄1∑

i1=1

k1∑

j1=1

k1∑

s1=1

· · ·
k̄p−1∑

ip−1=1

kp−1∑

jp−1=1

kp−1∑

sp−1=1

k̄p∑

ip=1

B0
1,i1,j1

· · ·Bp−2
jp−2,ip−1,jp−1

Bp−1
jp−1,ip,νB

0
1,i1,s1

· · ·Bp−2
sp−2,ip−1,sp−1

Bp−1
sp−1,ip,µ

=

k̄1∑

i1=1

k1∑

j1=1

k1∑

s1=1

k̄2∑

i2=1

· · ·
kp−1∑

jp−1=1

kp−1∑

sp−1=1

k̄p∑

ip=1

B0
1,i1,j1

B0
1,i1,s1

· · ·Bp−2
jp−2,ip−1,jp−1

Bp−2
sp−2,ip−1,sp−1

Bp−1
jp−1,ip,νB

p−1
sp−1,ip,µ

= (B̂t)ν,µ.

According to the previous Lemma we can easily compute the left singular vectors of V T
t

which are the eigenvectors of the kt × kt marix B̂t. The matrix Qt of singular vectors is
the transformation matrix such that UtQt is the matrix of the left singular vectors of A(t)

the singular values of which are the squareroots of the eigenvalues of B̂t. Thus, one can
truncate either to fixed rank or one can determine the rank adaptively in order to guarantee
a truncation accuracy of ε.

The nested mode frames were required to be orthogonal. If this is not yet the case, one has
to orthogonalize the frame tree. The procedure for this is explained next and the complexity
is estimated afterwards.

Lemma 34 (Frame transformation) Let t ∈ TI be a mode cluster with t-frame Ut, trans-
fer tensor Bt and two sons t1, t2 with frames Ut1, Ut2, such that the columns fulfil

(Ut)i =

k1∑

j=1

k2∑

l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l, i = 1, . . . , k.

Let X ∈ R
k×k, Y ∈ R

k1×k1 , Z ∈ R
k2×k2. Then we can rewrite the transformed frames as

(UtX)i =

k′
1∑

j=1

k′
2∑

l=1

(B′
t)i,j,l(Ut1Y )j ⊗ (Ut2Z)l, B′

t := (X,Y −1, Z−1) ◦Bt.
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Algorithm 3 Orthogonalization of hierarchical Tucker tensors

Require: Input tensor AH ∈ H-Tucker((kt)t∈TI
) represented by ((Ut)t∈L(TI), (Bt)t∈I(TI)).

for each singleton t ∈ L(TI) do
Compute a QR-decomposition of the t-frame Ut and define

Ut := Q, Bf :=

{
(I, I, R) ◦Bf if t is the second successor,
(I, R, I) ◦Bf if t is the first successor

for the father f of t.
end for
for each mode cluster t ∈ I(TI) do

Compute a QR-decomposition of (Bt)
({1,2}),

(Bt)
({1,2}) = (Qt)

({1,2})R,

and set

Bt := Qt, Bf :=

{
(I, I, R) ◦Bf if t is the second successor,
(I, R, I) ◦Bf if t is the first successor

of the father f of t.
end for
return nested orthogonal frames (Ut)t∈L(TI) and transfer tensors (Bt)t∈I(TI).

Proof: The formula follows from elementary matrix multiplications.

Lemma 35 (Complexity for the orthogonalization of nested frame trees) The
complexity of Algorithm 3 for a tensor AH ∈ H-Tucker((kt)t∈TI

) with nested frames
(Ut)t∈L(TI) and transfer tensors (Bt)t∈I(TI) is bounded by

O




d∑

µ=1

nµk
2
µ +

∑

t∈I(TI),Sons(t)={t1,t2}
k2

t kt1kt2 + ktk
2
t1
kt2 + ktkt1k

2
t2



 .

Proof: For each interior node we have to compute QR decompositions which are of com-
plexity O(k2

t kt1kt2) and perform two mode multiplications X ◦µ Bf , µ = 2, 3, which is of
complexity O(ktk

2
t1
kt2 + ktkt1k

2
t2
). For the leaves t = {µ} a QR-factorization is of complexity

O(nµk
2
µ). The sum over all nodes of the tree yields the desired bound.

Lemma 36 (Complexity for the H-Tucker truncation) The complexity for the trunca-
tion of an H-Tucker((kt)t∈TI

)-Tensor A (not necessarily with orthogonal frames) to lower
rank is

O(dmax
t∈TI

k4
t +

d∑

µ=1

nµk
2
µ).

Remark 37 (Converting elementary tensors into H-Tucker format) Let A ∈ R
I be

a tensor represented by a short sum of elementary tensors:

A =
k∑

i=1

d⊗

µ=1

ai,µ, ai,µ ∈ R
Iµ .
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Then A can immediately be represented in the hierarchical Tucker format by the t-frames

∀t = {µ} ∈ L(TI) : (Ut)i := ai,µ, i = 1, . . . , k, kµ := k,

and the transfer tensors

∀t ∈ I(TI) \ Root(TI) : (Bt)i,j,l :=
1 if i = j = l
0 othewise,

, Bt ∈ R
k×k×k, kt := k.

The root transfer tensor is

(B{1,...,d})1,j,l :=
1 if j = l
0 othewise,

, B{1,...,d} ∈ R
1×k×k, k{1,...,d} := 1.

The frames are not yet orthogonal, so a subsequent orthogonalization and truncation is ad-
visable to find a reduced representation. If we store the transfer tensors in sparse format,
then the amount of storage is k(d− 1) +

∑d
µ=1 nµkµ, i.e. almost the same as for a tensor in

canonical format (i.e. sum of elementary tensors).

The opposite conversion from H-Tucker to canonical format is highly non-trivial.

5 Numerical Examples

The numerical examples in this section are focussed on three questions:

1. How close to the measurements are the theoretical estimates of the truncation error, i.e.
the ratio between nodewise errors and the total error ? In particular we are interested
in the question whether or not the factor

√
d appears.

2. What is the maximal attainable truncation accuracy, i.e. how close can we get to the
machine precision ?

3. What are problem sizes that can realistically be tackled by the H-Tucker format in
terms of the dimension d and the maximal rank k ?

All computations are performed on a hush with 2 CPUs of which only one is used for the
numerical tests. The CPU peak frequency is 1.83 GHz and the available memory is 1 GB.

5.1 Truncation from dense to H-Tucker format

Our first numerical example is in d = 5 with mode size nµ = 25. The tensor A is a dense
tensor with entries

A(i1,...,id) :=

(
d∑

µ=1

i2µ

)−1/2

which corresponds to the discretization of the function 1/‖x‖ on [1, 25]5. The time for the
conversion (Algorithm 1) of the dense tensor to H-Tucker format AH, the amount of storage
needed for the frames Ut and transfer tensors Bt and the obtained relative approximation
accuracy ‖A−AH‖ are presented in Table 1. The nodewise SVD is shown in Figure 2. From
the truncation we lose roughly 2–3 digits of precision compared to the maximal attainable
machine precision EPS ≈ 10−16. It seems that the nodewise rank is uniformly bounded (there
is almost no variation between the ranks kt) by k ∼ log(1/ε).

19



ε ‖A− AH‖/‖A‖ Storage (KB) times (Sec)
1×10−2 6.0×10−3 3.6 105.8
1×10−4 1.2×10−4 11.2 104.1
1×10−6 1.1×10−6 29.3 103.5
1×10−8 7.8×10−9 58.1 104.8
1×10−10 1.7×10−10 92.7 108.0
1×10−12 7.2×10−13 153.2 104.8
1×10−14 3.2×10−13 298.0 104.0
1×10−16 2.7×10−14 615.1 106.9

Table 1: Converting a dense tensor to H-Tucker format.

5.2 Truncation from canonical to H-Tucker format

The second example is in higher dimension d with mode size nµ = 1000. The entries of the
tensor AH are approximations of

A(i1,...,id) :=

(
d∑

µ=1

i2µ

)−1/2

, iµ = 1, . . . , 1000,

by exponential sums,

(AE)(i1,...,id) :=
35∑

j=1

ωj

d∏

µ=1

αji
2
µ,

such that each entry is accurate up to εE = 10−10,

|A(i1,...,id) − (AE)(i1,...,id)| ≤ 7.315×10−10.

The weights ωj and exponents αj were obtained from W. Hackbusch and are available via
the webpage (k = 35,R = 1000000)

http://www.mis.mpg.de/scicomp/EXP_SUM

The tensor AE (in canonical format or elementary tensor sum) is then converted to H-Tucker
format (error zero), which we denote by AH. The hierarchical rank is kt = 35 for every mode
cluster t ∈ TI . From this input tensor we compute truncations AH,ε to lower hierarchical
rank by prescribing the (relative) truncation accuracy ε. In Tables 2 and 3 we report the
accuracy ‖AH − AH,ε‖/‖AH‖, the storage requirements for AH,ε in MB as well as the time
in seconds used for the truncation. We observe that the accuracy is

‖AH − AH,ε‖/‖AH‖ ≈ 3ε

independent of the dimension d. The maximal attainable accuracy seems do be roughly
εmin ≈ 10−13.
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ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.4×10−4 0.31 0.33
10−6 1.3×10−6 0.59 0.34
10−8 2.1×10−8 1.00 0.36
10−10 1.7×10−10 1.60 0.39
10−12 1.3×10−12 2.75 0.44
10−14 1.8×10−14 3.54 0.47
10−16 2.0×10−15 3.88 0.48

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.3×10−4 0.37 0.73
10−6 2.5×10−6 0.50 0.80
10−8 1.7×10−8 0.90 0.88
10−10 3.7×10−10 1.22 0.83
10−12 2.2×10−12 1.87 0.80
10−14 3.9×10−14 2.76 0.91
10−16 2.6×10−14 4.05 0.97

Table 2: Truncating an H-Tucker tensor of rank kt = 35 in d = 8 (left) and d = 16 (right).

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 1.9×10−4 0.49 1.65
10−6 2.2×10−6 0.74 1.54
10−8 1.4×10−8 1.00 1.55
10−10 2.4×10−10 1.27 1.57
10−12 1.3×10−12 1.83 1.65
10−14 3.3×10−14 2.24 1.61
10−16 7.3×10−15 3.49 1.74

ε
‖AH−AH,ε‖

‖A‖ Storage time

10−4 5.5×10−5 0.98 3.19
10−6 9.2×10−7 1.48 3.39
10−8 3.2×10−8 1.49 3.23
10−10 1.5×10−10 2.00 3.36
10−12 3.1×10−12 2.52 3.50
10−14 1.1×10−13 3.09 3.31
10−16 1.1×10−13 4.53 3.52

Table 3: Truncating an H-Tucker tensor of rank kt = 35 in d = 32 (left) and d = 64 (right).

5.3 Truncation of H-Tucker tensors

The third test is not any more concerned with the approximation accuracy, but purely on the
computational complexity. Here, we setup an H-Tucker tensor with nodewise ranks kt ≡ k
and mode sizes nµ ≡ 20. Then, we vary the rank k and dimension parameter d and measure
the storage complexity as well as the complexity for the truncation (which is essentially
independent of the target rank or accuracy). The results are reported in Table 4 (dashes
mean that for that problem size we have run out of memory (1GB)). We conclude that it
is indeed possible to perform reliable numerical computations in dimension d = 1, 000, 000,
and also rather large ranks of k = 50 are not a problem for dimensions d = 1000 on a simple
notebook computer, cf. Table 5. On a larger desktop machine one can use k = 100 in
dimension d = 10, 000 (uses roughly 80 GB and takes ca. 10 hours).
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