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Nonlinear Inverse Problems with Sparsity Constraints

Gerd Teschke∗ Claudia Borries∗

June 29, 2009

Abstract

This paper is concerned with the construction of an iterative algorithm to solve non-
linear inverse problems with an `1 constraint. One extensively studied method to obtain a
solution of such an `1 penalized problem is iterative soft-thresholding. Regrettably, such
iteration schemes are computationally very intensive. A subtle alternative to iterative
soft-thresholding is the projected gradient method that was quite recently proposed by
Daubechies et.al. in [3]. The authors have shown that the proposed scheme is indeed
numerically much thriftier. However, its current applicability is limited to linear inverse
problems. In this paper we provide an extension of this approach to nonlinear problems.
Adequately adapting the conditions on the (variable) thresholding parameter to the non-
linear nature, we can prove convergence in norm for this projected gradient method, with
and without acceleration. A numerical verification is given in the context of nonlinear
and non-ideal sensing. For this particular recovery problem we can achieve an impressive
numerical performance (when comparing it to non-accelerated procedures).

Keywords: Nonlinear inverse problems, sparse recovery, steepest descent method, non-
linear and non-ideal sensing

Mathematics Subject Classification (2000): 15A29, 49M30, 65F22

1 Introduction

The main goal in this paper is the computation of an approximation to a solution of a nonlinear
operator equation

F (x) = y (1.1)

with an `1 constraint. Here we assume that F : X → Y is an possibly ill-posed operator between
Hilbert spaces X and Y . In case only noisy data yδ with ‖yδ − y‖ ≤ δ are available, problem
(1.1) has to be stabilized by regularization methods. In recent years, several iterative methods

∗Both authors are with the Institute of Computational Mathematics in Science and Technology, University of
Applied Sciences Neubrandenburg, Brodaer Str. 2, 17033 Neubrandenburg, Germany. Both authors gratefully
acknowledge partial support by Deutsche Forschungsgemeinschaft Grants TE 354/5-1, TE 354/8-1.
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to approximate/regularize the solution for linear ill-posed problems with sparsity constraints
were developed, e.g. in [1, 2, 4, 5, 7, 8, 12] and a several more, and also extended to nonlinear
problems, see, e.g., [10, 11]. The majority of these schemes are due to its simple nature very
easy to use and can be applied in various reformulations to a very broad field of applications.
However, in many practical situations one observes that Landweber/Richardson type iterations
are rather slow and therefore are not competitive at all. This is especially for nonlinear problems
the case, in which often (due to the implicitly given iterates) additional fixed point iterations
are required.

The classical Landweber iteration for linear inverse problems (F linear and no sparsity con-
straint) is given by

xn+1 = xn + γF ∗(y − Fxn)

and can be viewed as a gradient descent algorithm with a fixed step size. This method is known
to converge usually quite slowly; even the application of the nonlinear shrinkage operation,

xn+1 = Sα(xn + γF ∗(y − Fxn)), (1.2)

which comes into play by involving sparsity constraints, see [2], does not change this slow
convergence. The same observation can be made in the nonlinear situation (F nonlinear) in
which one possible variant of Landweber’s iteration is given by

xn+1 = Sα(xn + γF ′(xn+1)∗(y − F (xn))) , (1.3)

for more details see [11]. One first serious step to accelerate these kind of iterations was
suggested in [3]. In [3] the authors “borrowed a leaf” from standard linear steepest descent
methods by using an adaptive step length. In addition, a detailed analysis of the characteristic
dynamics of the classical thresholded Landweber iteration (1.2) has shown that the algorithm
converges initially relatively fast, then it overshoots the `1 penalty, and it takes very long to
re-correct back. A first intuitive way to circumvent this “external” detour is to force the iterates
to remain within a particular `1 ball BR := {x ∈ `2; ‖x‖1 ≤ R}. The authors of [3] proposed
to achieve this by substituting the thresholding operation Sα by a projection PBR , where, for
any closed convex set C and any x, the projection PC(x) is defined as the unique point in C for
which the `2 distance to x is minimal. With denoting PBR by PR, this leads to the projected
Landweber iteration,

xn+1 = PR(xn + γF ∗(y − Fxn)). (1.4)

However, the speed of convergence remained very slow. Therefore, as mentioned above, the
authors suggested to introduce an adaptive “descent parameter” γn > 0 in each iteration leading
to

xn+1 = PR(xn + γnF ∗(y − Fxn)). (1.5)

The authors referred to this modified algorithm as the projected gradient iteration or the pro-
jected steeptest descent method. They have determined how large one can choose the successive
γn and have shown weak as well as strong convergence of the method (with and without accel-
eration) and gave numerical examples that clearly show the larger steps and faster convergence
(when compared to (1.4)). Of course, there exist also other approaches for sparse recovery.
Closely related to our approach are the methods presented in [9] and [14]. However, the anal-
ysis in [14] is limited to finite dimensions and the strategy provided in [9] is only suited for
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linear inverse problems. The principle there is to reformulate the minimization problem as a
bounded constrained quadratic program, and then apply iterative project gradient iterations.

The main concern in this paper is to extend the projected steepest descent method (1.5) to
nonlinear problems. Since there are parallels in the construction process of (1.2) and (1.3),
there is still hope that under similar assumptions on the nonlinear map F (that must also hold
for the iterates in (1.3) to assure norm convergence) the projected steepest descent method
converges in norm. Following the construction principles in [11], one natural projected steepest
descent method for nonlinear operators might be given by

xn+1 = PR(xn + γnF ′(xn+1)∗(y − F (xn))) . (1.6)

As we shall see later in the paper this ansatz is indeed suitable and allows to prove many useful
properties. Restricting ourselves to operators F that are twice Fréchet differentiable and for
which all of the following three requirements (strong and Lipschitz continuity) hold true,

xn
w→ x? =⇒ F (xn)→ F (x?) (1.7)

F ′(xn)∗y → F ′(x?)∗y for all y (1.8)

‖F ′(x)− F ′(x′)‖ ≤ L‖x− x′‖ , (1.9)

we are able to prove strong convergence of the iterates in (1.6). It may happen that F already
meets these conditions (1.8)-(1.9) as an operator from X → Y . If not, this can be achieved by
assuming more regularity of x, i.e. changing the domain of F a little. To this end, we assume
that there exists a function space Xs, and a compact embedding operator is : Xs → X. Then
we may consider F̃ = F ◦ is : Xs −→ Y . Lipschitz regularity is preserved. Moreover, if now
xn

w→ x? in Xs, then xn→x? in X and, moreover, F̃ ′(xn) → F̃ ′(x?) in the operator norm.
This argument applies to arbitrary nonlinear continuous and Fréchet differentiable operators
F : X → Y with continuous Lipschitz derivative as long as a function space Xs with compact
embedding is into X is available.

At a first glance the made assumptions on F might seem to be somewhat restrictive. But com-
pared to usually made assumptions in nonlinear inverse problems they are indeed reasonable
and are fulfilled by numerous applications. At the cost of more technicalities several statements
might also hold true for continuously Fréchet differentiable operators. However, for all the elab-
orated convergence analysis in this paper we cannot abstain from assumptions (1.8)-(1.9).

Another issue that is of great importance when dealing with ill-posed and inverse problems is
to verify regularizing properties of the proposed method. Elaborations on this topic, however,
are not provided within this but are planned for one of the subsequent papers. Nevertheless,
we wish to briefly mention the theory that is still provided in the literature, which is so far
unfortunately limited to linear problems, see, e.g., [6, Section 5.4]. Therefore, the concepts
summarized in [6] not directly apply here and need to be extended. In any case, the question
arises whether the convex constraint stabilize the problem or if it is still necessary to regularize
the inverse problem. In general it seems to be meaningful to assume ill-posedness. Therefore,
we need to introduce an additional stabilization. The iteration (1.6) can be viewed as iteration
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scheme to approach the BR-best-approximate solution x†R, which we define as the minimizer of
D(x) := ‖F (x)− y‖2 on BR, i.e.

‖F (x†R)−y‖ = inf
x
{‖F (x)−y‖, x ∈ BR} and ‖x†R‖ = min{‖x‖, ‖F (x)−y‖∧x ∈ BR} . (1.10)

Since x†R ∈ BR, it is natural to require that the regularized solutions are in BR as well. If
x† denotes the generalized solution of the unconstrained problem and if x†R = x†, then all
“standard results” concerning stability, convergence, and convergence rates hold also for the
constrained case. If x†R 6= x†, one might select a different regularization method, e.g.,

min
x∈BR

‖F (x)− y‖2 + α‖x‖2 .

For linear operators F regularization results are provided in [6]. Our situation would require
an extension of the current established theory to nonlinear problems, but this is out-of-focus
in this paper.

Organization of the remaining paper: In Section 2 we introduce the some standard notation
and repeat some facts on convex analysis. In Section 3 we derive the necessary condition for
critical points and we specify the conditions on the variable threshold parameter that allow us to
prove strong convergence of iteration (1.6). Within the last section we discuss in greater detail
a nonlinear and non-ideal sensing problem. Applying the proposed descent method, we can
verify (numerically) perfect sparse recovery with an impressive numerical rate of convergence.

2 Preleminaries

We briefly introduce the some standard notation and repeat some facts that will be used in
this paper. Let Λ be a countable index. We denote by `p(Λ) the space of sequences x for which
‖x‖p < ∞ (the usual sequence space norm). Assume we are given some Hilbert space X and
some preassigned frame {φλ}λ∈Λ ⊂ X, i.e. there exist constants 0 < A ≤ B <∞ such that for
all f ∈ X,

A‖f‖2
X ≤

∑
λ∈Λ

|〈f, φλ〉|2 ≤ B‖f‖2
X . (2.1)

For this frame we may consider the so-called frame operator S : X → `2(Λ) that is defined by
Sf = {〈f, φλ〉}λ∈Λ. Its adjoint S∗ is given by S∗x =

∑
λ∈Λ xλφλ. The functions φλ are typically

linearly dependant but allow for a stable series expansion for any f ∈ X of the form f = S∗x
for some x ∈ `2(Λ). The stability follows from (2.1). Due to A ≤ S∗S ≤ B, any function f ∈ X
can be reconstructed from its moments. Since a frame is overcomplete, there may exist many
possibilities to represent f .

In what follows we focus on those problems in which the solution f has a sparse series
expansion with respect to {φλ}λ∈Λ. This means that f can be written by a series expansion
with only a very small number of non-vanishing coefficients xλ, or that f is compressible
(meaning that f can be nicely approximated by a sparse series expansion).

In (1.1) we have introduced the operator F as a map between Hilbert spaces X and Y . Typ-
ically X represents the Hilbert space of functions in which we are searching for a solution of
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our inverse problem. But when it comes to numerical schemes to solve the inverse problem, we
have to find a suitable expansion/representation of the solution. Since we aim here to apply the
concept of frames, the goal of finding the function translates then into finding a corresponding
sequence of coefficients x that is used in the associated series expansion to represent f . There-
fore, it makes sense to consider F as a map between `2(Λ) and Y .

Before analyzing the proposed projected steepest descent (1.6), we provide some analysis of
`2 projections onto `1 balls. The listed properties are proved here for completeness. They can
be retraced in [3], from where they are partially taken, or to some extent in [4, 5].

Lemma 1 ∀a ∈ `2(Λ),∀τ > 0 : ‖Sτ (a)‖1 is a piecewise linear, continuous, decreasing function
of τ ; moreover, if a ∈ `1(Λ) then ‖S0(a)‖1 = ‖a‖1 and ‖Sτ (a)‖1 = 0 for τ ≥ maxi |ai|.

Proof. ‖Sτ (a)‖1 =
∑

λ∈Λ |Sτ (aλ)| =
∑

λ∈Λ Sτ (|aλ|) =
∑
|aλ|>τ (|aλ| − τ); the sum in the right

hand side is finite for τ > 0. �

Lemma 2 If ‖a‖1 > R, then the `2 projection of a on the `1 ball with radius R is given by
PR(a) = Sµ(a), where µ (depending on a and R) is chosen such that ‖Sµ(a)‖1 = R. If ‖a‖1 ≤ R
then PR(a) = S0(a) = a.

Proof. Suppose ‖a‖1 > R. By Lemma 1: ∃µ > 0 : ‖Sµ(a)‖1 = R. Furthermore, b = Sµ(a) is the
unique minimizer of ‖x− a‖2 + 2µ‖x‖1, i.e.,

∀x 6= b : ‖b− a‖2 + 2µ‖b‖1 < ‖x− a‖2 + 2µ‖x‖1

Since ‖b‖1 = R, it follows that

∀x ∈ BR, x 6= b : ‖b− a‖2 < ‖x− a‖2

Hence b is closer to a than any other x in BR. In other words, PR(a) = b = Sµ(a). �

Finally, PR has the following additional properties:

Lemma 3 ∀x ∈ `2(Λ), PR(x) is characterized as the unique vector in BR such that

〈w − PR(x), x− PR(x)〉 ≤ 0, ∀w ∈ BR (2.2)

Moreover, the projection PR is non-expansive:

‖PR(x)− PR(x′)‖ ≤ ‖x− x′‖ ∀x, x′ ∈ `2(Λ) (2.3)

Proof. Because BR is convex, (1− t)PR(x) + tw ∈ BR, ∀w ∈ BR and t ∈ [0, 1]. It follows that
‖x− PR(x)‖2 ≤ ‖x− [(1− t)PR(x) + tw]‖2; ∀t ∈ [0, 1]. This implies

∀t ∈ [0, 1] : 0 ≤ −2t〈w − PR(x), x− PR(x)〉+ t2‖w − PR(x)‖2
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It follows that
〈w − PR(x), x− PR(x)〉 ≤ 0

which proves 2.2. Setting w = PR(x′) in 2.2, we get, for all x,x′,

〈PR(x′)− PR(x), x− PR(x)〉 ≤ 0

Switching the role of x and x′ one finds:

〈PR(x′)− PR(x), x′ − PR(x′)〉 ≥ 0

By combining these last two inequalities, one finds:

〈PR(x′)− PR(x), x′ − x− PR(x′) + PR(x)〉 ≥ 0

or
‖PR(x′)− PR(x)‖2 ≤ 〈PR(x′)− PR(x), x′ − x〉

by Cauchy-Schwarz this gives

‖PR(x′)− PR(x)‖2 ≤ 〈PR(x′)− PR(x), x′ − x〉 ≤ ‖PR(x′)− PR(x)‖‖x′ − x‖

from which inequality 2.3 follows. �

Lemma 1 and 2 provide a simple recipe for computing the projection PR(a). First, sort the
absolute values of the components of a (an O(m logm) operation if #Λ = m is finite), resulting
in the rearranged sequence (a∗l )l=1,...,m, with a∗l ≥ a∗l+1 ≥ 0;∀l. Next, perform a search to find
k such that

‖Sa∗k(a)‖1 =
k−1∑
l=1

(a∗l − a∗k) ≤ R <
k∑
l=1

(a∗l − a∗k+1) = ‖Sa∗k+1
(a)‖1 .

The complexity of this step is again O(m logm). Finally, set ν := k−1(R − ‖Sa∗k(a)‖1), and
µ := a∗k − ν. Then

‖Sµ(a)‖1 =
∑
i∈Λ

max(|ai| − µ, 0) =
k∑
l=1

(a∗l − µ)

=
k−1∑
l=1

(a∗l − a∗k) + kν = ‖Sa∗k(a)‖1 + kν = R .

3 Projected Steepest Descent and Convergence

We have now collected some facts on the projector PR and on convex analysis issues that
allow for convergence analysis of the projected steepest descent method defined in (1.5). In
what follows, we essentially proceed as in [3]. But as we shall see, several serious technical
changes (including also a weakening of a few statements) but also significant extensions of the
nice analysis provided in [3] need to be made. For instance, due to the nonlinearity of F ,
several uniqueness statements proved in [3] carry not over in its full glory. Nevertheless, the
main propositions on weak and strong convergence can be achieved (of course, at the cost of
involving much more technicalities).
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3.1 Necessary Condition

Lemma 4 If the vector x̃R ∈ `2(Λ) is a minimizer of D(x) = ‖F (x)− y‖2 on BR then for any
γ > 0,

PR(x̃R + γF ′(x̃R)∗(y − F (x̃R)) = x̃R ,

which is equivalent to

〈F ′(x̃R)∗(y − F (x̃R)), w − x̃R〉 ≤ 0, for all w ∈ BR .

Proof. Since F is twice Fréchet differentiable, we have the following Taylor expansion

F (x+ h) = F (x) + F ′(x)h+R(x, h) with ‖R(x, h)‖ ≤ L

2
‖h‖2 .

If now x̃R minimizes D on BR, then for all w ∈ BR and all t ∈ [0, 1],

D(x̃R) ≤ D((1− t)x̃R + tw) = D(x̃R + t(w − x̃R))

= ‖F (x̃R + t(w − x̃R))− y‖2 = ‖F (x̃R)− y + F ′(x̃R)t(w − x̃R) +R(x̃R, t(w − x̃R))‖2

= D(x̃R) + 2〈F ′(x̃R)∗(F (x̃R)− y), t(w − x̃R)〉+ 2〈F (x̃R)− y,R(x̃R, t(w − x̃R))〉
+‖F ′(x̃R)t(w − x̃R) +R(x̃R, t(w − x̃R))‖2

≤ D(x̃R) + 2t〈F ′(x̃R)∗(F (x̃R)− y), w − x̃R〉
+t2‖w − x̃R‖2(L‖F (x̃R)− y‖+ 2‖F ′(x̃R)‖) + t4L‖w − x̃R‖4 .

This implies
〈F ′(x̃R)∗(y − F (x̃R)), w − x̃R〉 ≤ 0 ,

and therefore, for all γ > 0,

〈x̃R + γF ′(x̃R)∗(y − F (x̃R))− x̃R, w − x̃R〉 ≤ 0 .

By Lemma 3 this implies the assertion. �

Lemma 4 provides just a necessary condition for a minimizer x̃R of D on BR. The minimizers
of D on BR need not be unique. Nevertheless, we have

Lemma 5 If x̃, ˜̃x ∈ BR, if x̃ minimizes D and if x̃ − ˜̃x ∈ kerF ′(w) for all w ∈ BR then ˜̃x
minimizes D as well.

Proof. This statement is easy to achieve,

D(x̃) = ‖F (x̃− ˜̃x+ ˜̃x)− y‖2

= ‖F (˜̃x)− y +

∫ 1

0

F ′(˜̃x+ τ(x̃− ˜̃x))(x̃− ˜̃x)dτ‖2 = D(˜̃x) .

�
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3.2 Weak Convergence

In order to achieve convergence results, we have to specify the choice of γn. To this end, we
first introduce the constant r,

r := max{2 sup
x∈BR

‖F ′(x)‖2 , 2L
√
D(x0)} , (3.1)

where x0 denotes a first initial guess for the solution to be reconstructed. One role of the
constant r can be seen in the following estimate which is possible by the first order Taylor
expansion of F ,

‖F (xn+1)− F (xn)‖2 ≤ sup
x∈BR

‖F ′(x)‖2‖xn+1 − xn‖2 ≤ r

2
‖xn+1 − xn‖2 .

With the help of (3.1) we define a sequence of real numbers which we denote by βn.

Definition 1 We say that the sequence {βn}n∈N satisfies Condition (B) with respect to the
sequence {xn}n∈N if there exists n0 such that:

(B1) β̄ := sup{βn;n ∈ N} <∞ and inf{βn;n ∈ N} ≥ 1

(B2) βn‖F (xn+1)− F (xn)‖2 ≤ r

2
‖xn+1 − xn‖2 ∀n ≥ n0

(B3) βnL
√
D(xn) ≤ r

2
.

By condition (B1) we ensure

‖F (xn+1)− F (xn)‖2 ≤ βn‖F (xn+1 − F (xn)‖2 .

The idea of adding condition (B2) is to find the largest number βn ≥ 1 such that

0 ≤ −‖F (xn+1)− F (xn)‖2 +
r

2βn
‖xn+1 − xn‖2

is as small as possible. The reason can be verified below in the definition of the gaussian
surrogate functional Φβ in Lemma 6. The goal is to ensure that Φβn is not too far off D(xn).
The additional restriction (B3) was introduced to ensure convexity of Φβn and convergence of
the fixed point map Ψ in Lemma 7 (as we will prove below).

Because the definition of xn+1 involves βn and vice versa, the inequality (B2) has an implicit
quality. In practice, it is not straightforward to pick βn adequately. This issue will be discussed
later in Subsection 3.4.

In the remaining part of this subsection we prove weak convergence of any subsequence of
{xn}n∈N towards weak limits that fulfill the necessary condition for minimizers of D on BR.

Lemma 6 Assume F to be twice Fréchet differentiable and β ≥ 1. For arbitrary fixed x ∈ BR

assume βL
√
D(x) ≤ r/2 and define the functional Φβ(·, x) by

Φβ(w, x) := ‖F (w)− y‖2 − ‖F (w)− F (x)‖2 +
r

β
‖w − x‖2 . (3.2)
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Then there exists a unique w ∈ BR that minimizes the restriction to BR of Φβ(w, x). We denote
this minimizer by ŵ which is given by

ŵ = PR

(
x+

β

r
F ′(ŵ)∗(y − F (x))

)
.

Proof. First, we prove that if F is twice Fréchet differentiable then Φβ(·, x) is strictly convex.
To simplify the notation, we define

J(w) := Φβ(w, x) = ‖F (w)− y‖2 − ‖F (w)− F (x)‖2 +
r

β
‖w − x‖2 .

For strict convexity, we have to show for all w,w′ ∈ BR and all t ∈ (0, 1) that

J((1− t)w + tw′) < (1− t)J(w) + tJ(w′) .

With the help of the second order Taylor expansion for F , we observe

J(w + h) = ‖F (w + h)− y‖2 − ‖F (w + h)− F (x)‖2 +
r

β
‖w + h− x‖2

= ‖F (w)− y + F ′(w)h+R(w, h)‖2 − ‖F (w)− F (x) + F ′(w)h+R(w, h)‖2

+
r

β
‖w + h− x‖2

= J(w) + 2{〈F (w)− y, F ′(w)h〉 − 〈F (w)− F (x), F ′(w)h〉+
r

β
〈w − x, h〉}

+2〈F (x)− y,R(w, h)〉+
r

β
‖h‖2

= J(w) + J ′(w)h+ ρ(w, h) ,

where
ρ(w, h) := 2〈F (x)− y,R(w, h)〉+

r

β
‖h‖2. (3.3)

Therefore we have

J((1− t)w + tw′) = J(w + t(w′ − w)) = J(w′ + (1− t)(w − w′))
= (1− t)J(w + t(w′ − w)) + tJ(w′ + (1− t)(w − w′))
= (1− t) (J(w) + tJ ′(w)(w′ − w) + ρ(w, t(w′ − w)))

+t (J(w′) + (1− t)J ′(w′)(w − w′) + ρ(w′, (1− t)(w − w′)))
= (1− t)J(w) + tJ(w′) +D(w,w′, t) .

The functional J is now strictly convex, if for all w,w′ ∈ BR and all t ∈ (0, 1),

D(w,w′, t) := t(1− t)(J ′(w)− J ′(w′))(w′ − w)

+(1− t)ρ(w, t(w′ − w)) + tρ(w′, (1− t)(w − w′)) < 0.

We have

(J ′(w)− J ′(w′))(w′ − w) = −2r

β
‖w − w′‖2 − 2〈y − F (x), (F ′(w)− F ′(w′))(w′ − w)〉 .
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Moreover, as F is twice differentiable,

F ′(w) = F ′(w′) +

∫ 1

0

F ′′(w′ + τ(w − w′))(w − w′, ·)dτ

and consequently,

(J ′(w)−J ′(w′))(w′−w) = −2r

β
‖w−w′‖2+2〈y−F (x),

∫ 1

0

F ′′(w′+τ(w−w′))(w−w′)2dτ〉 . (3.4)

Again, by Fréchet differentiability, R(x, h) in (3.3) is given by

R(x, h) =

1∫
0

(1− τ)F ′′(x+ τh)(h)2 dτ ,

and consequently we obtain

R(w, t(w′ − w)) = t2
1∫

0

(1− τ)F ′′(w + τt(w′ − w))(w′ − w)2 dτ

=

1∫
1−t

(τ − (1− t))F ′′(w′ + τ(w − w′))(w − w′)2 dτ

(3.5)

and by same arguments

R(w′, (1− t)(w − w′)) =

1−t∫
0

(1− t− τ)F ′′(w′ + τ(w − w′))(w − w′)2 dτ . (3.6)

Combining definition (3.3) and equations (3.4), (3.5) and (3.6) yields

D(w,w′, t) = −t(1− t) r
β
‖w − w′‖2 + 2〈y − F (x), I(w,w′, t)〉 , (3.7)

where

I(w,w′, t) := t(1− t)
1∫

0

F ′′(w′ + τ(w − w′))(w − w′)2 dτ

−(1− t)
1∫

1−t

(τ − (1− t))F ′′(w′ + τ(w − w′))(w − w′)2 dτ

−t
1−t∫
0

(1− t− τ)F ′′(w′ + τ(w − w′))(w − w′)2 dτ .
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The functional I(w,w′, t) can now be recast as follows

I(w,w′, t) = t

1−t∫
0

τF ′′(w′ + τ(w − w′))(w − w′)2 dτ

+(1− t)
1∫

1−t

(1− τ)F ′′(w′ + τ(w − w′))(w − w′)2 dτ.

In order to estimate ‖I(w,w′, t)‖ it is necessary to estimate the integrals separately. Due to
the Lipschitz–continuity of the first derivative, the second derivative can be globally estimated
by L, and it follows,

t

∥∥∥∥∥∥
1−t∫
0

τF ′′(w′ + τ(w − w′))(w − w′)2 dτ

∥∥∥∥∥∥ ≤ t
(1− t)2

2
L‖w − w′‖2 ,

(1− t)

∥∥∥∥∥∥
1∫

1−t

(1− τ)F ′′(w′ + τ(w − w′))(w − w′)2 dτ

∥∥∥∥∥∥ ≤ (1− t)t
2

2
L‖w − w′‖2

and therefore

‖I(w,w′, t)‖ ≤ t(1− t)
2

L‖w − w′‖2 . (3.8)

Combining (3.7), (3.8), and assumption βL
√
D(x) ≤ r/2, yields for λ ∈ (0, 1)

D(w,w′, t) ≤ −t(1− t) r
β
‖w − w′‖2 + 2‖y − F (x)‖‖I(w,w′, t)‖

≤ −t(1− t) r
β
‖w − w′‖2 +

t(1− t)
2

2L‖y − F (x)‖‖w − w′‖2

≤ −t(1− t) r
2β
‖w − w′‖2 < 0 ,

and thus the functional Φβ(w, x) is strictly convex in w. Therefore there exists a unique
minimizer x̂ and thus we have for all w ∈ BR and all t ∈ [0, 1]

Φβ(x̂, x) ≤ Φβ(x̂+ t(w − x̂))

and therefore

0 ≤ J(x̂+ t(w − x̂))− J(x̂) = tJ ′(x̂)(w − x̂) + ρ(x̂, t(w − x̂))

= 2t〈F (x)− y, F ′(x̂)(w − x̂)〉+ 2t
r

β
〈x̂− x,w − x̂〉

+2〈F (x)− y,R(x̂, t(w − x̂)〉+
r

β
‖t(w − x̂)‖2

≤ 2t

{
〈F (x)− y, F ′(x̂)(w − x̂)〉+

r

β
〈x̂− x,w − x̂〉

}
t2
{

2
r

2βL

L

2
‖w − x̂‖2 +

r

β
‖w − x̂‖2

}
.
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This implies for all t ∈ [0, 1]

0 ≤
{
β

r
〈F (x)− y, F ′(x̂)(w − x̂)〉+ 〈x̂− x,w − x̂〉

}
+

3t

4
‖w − x̂‖2 .

Consequently, we deduce

〈x+
β

r
F ′(x̂)∗(y − F (x))− x̂, w − x̂〉 ≤ 0

which is by Lemma 3 equivalent to

x̂ = PR

(
x+

β

r
F ′(x̂)∗(y − F (x))

)
and the proof is complete. �

The unique minimizer x̂ is only implicitly given. We propose to apply a simple fixed point
iteration to derive x̂. The next lemma verifies that the corresponding fixed point map is indeed
contractive and can therefore be used.

Lemma 7 Assume βL
√
D(x) ≤ r/2. Then the map Ψ(x̂) := PR(x+ β/rF ′(x̂)∗(y − F (x))) is

contractive and therefore the fixed point iteration

x̂l+1 = Ψ(x̂l)

converges to a unique fixed point.

Proof. Since PR is non-expansive and F ′ is Lipschitz continuous, we have for all w, w′,

‖Ψ(w)−Ψ(w′)‖ ≤ β

r
‖(F ′(w)∗ − F ′(w′)∗)(y − F (x))‖ ≤ β

r
L
√
D(x)‖w − w′‖

≤ 1

2
‖w − w′‖ < ‖w − w′‖ .

�

An immediate consequence of Lemma 6 is

Lemma 8 Assume xn+1 is given by

xn+1 = PR

(
xn +

βn

r
F ′(xn+1)∗(y − F (xn))

)
,

where r is as in (3.1) and the βn satisfy Condition (B) with respect to {xn}n∈N, then the sequence
D(xn) is monotonically decreasing and limn→∞ ‖xn+1 − xn‖ = 0.

Proof. Comparing the definition of xn+1 and the statement in Lemma 6, we have that

xn+1 = arg min
x

Φβn(x, xn) .
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We have

D(xn+1) ≤ D(xn+1) + ‖F (xn+1)− F (xn)‖2

= ‖F (xn+1)− y‖2 + 2‖F (xn+1)− F (xn)‖2 − ‖F (xn+1)− F (xn)‖2

≤ ‖F (xn+1)− y‖2 +
r

βn
‖xn+1 − xn‖2 − ‖F (xn+1)− F (xn)‖2

= Φβn(xn+1, xn) ≤ Φβn(xn, xn) = D(xn) .

The second assertion can be shown with the help of (B2)

−Φβn+1(xn+1, xn+1) + Φβn(xn+1, xn) =
r

βn
‖xn+1 − xn‖2 − ‖F (xn+1)− F (xn)‖2

≥ r

2βn
‖xn+1 − xn‖2 ≥ r

2β̄
‖xn+1 − xn‖2 .

Consequently,

N∑
n=0

‖xn+1 − xn‖2 ≤ 2β̄

r

N∑
n=0

{
Φβn(xn+1, xn)− Φβn+1(xn+1, xn+1)

}
≤ 2β̄

r

N∑
n=0

{
Φβn(xn, xn)− Φβn+1(xn+1, xn+1)

}
≤ 2β̄

r

{
Φβ0(x0, x0)− ΦβN+1(xN+1, xN+1)

}
≤ 2β̄

r
Φβ0(x0, x0) .

Since the bound does not depend on N , the infinite series
∑∞

n=0 ‖xn+1 − xn‖2 is bounded and
thus limn→∞ ‖xn+1 − xn‖2 = 0. �

Since for all the iterates we have by definition xn ∈ BR, we automatically have ‖xn‖2 ≤ R for
all n ∈ N. Therefore, the sequence {xn}n∈N must have weak accumulation points.

Proposition 9 If x? is a weak accumulation point of {xn}n∈N, then it fulfills the necessary
condition for a minimum of D(x) on BR, i.e. for all w ∈ BR,

〈F ′(x?)∗(y − F (x?)), w − x?〉 ≤ 0 .

Proof. Since xnj
w−→ x?, we have for fixed x and a

〈F ′(x)xnj , a〉 = 〈xnj , F ′(x)∗a〉 −→ 〈x?, F ′(x)∗a〉 = 〈F ′(x)x?, a〉

and therefore
F ′(x)xnj

w−→ F ′(x)x?. (3.9)

Due to Lemma 8, we also have xnj+1 w−→ x?. Now we are prepared to show the necessary
condition for the weak accumulation point x?. As the iteration is given by

xn+1 = PR(xn + βn/rF ′(xn+1)∗(y − F (xn))) ,
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we have

〈xn + βn/rF ′(xn+1)∗(y − F (xn))− xn+1, w − xn+1〉 ≤ 0 for all w ∈ BR .

Specializing this inequality to the subsequence {xnj}j∈N yields

〈xnj + βnj/rF ′(xnj+1)∗(y − F (xnj))− xnj+1, w − xnj+1〉 ≤ 0 for all w ∈ BR .

Therefore we obtain (due to Lemma 8)

lim sup
j→∞

βnj/r〈F ′(xnj+1)∗(y − F (xnj)), w − xnj+1〉 ≤ 0 for all w ∈ BR .

To the latter inequality we may add

βnj/r〈(−F ′(xnj+1)∗ + F ′(xnj)∗)(y − F (xnj)), w − xnj+1〉

and
βnj/r〈F ′(xnj)∗(y − F (xnj)),−xnj + xnj+1〉

resulting in

lim sup
j→∞

βnj/r〈F ′(xnj)∗(y − F (xnj)), w − xnj〉 ≤ 0 for all w ∈ BR , (3.10)

which is possible due to

|〈(−F ′(xnj+1)∗+F ′(xnj)∗)(y−F (xnj)), w−xnj+1〉| ≤ L‖xnj+1−xnj‖‖y−F (xnj)‖‖w−xnj+1‖ j→∞−→ 0

and

|〈F ′(xnj)∗(y − F (xnj)),−xnj + xnj+1〉| ≤ sup
x∈BR

‖F ′(x)∗‖‖y − F (xnj)‖‖xnj − xnj+1‖ j→∞−→ 0 .

Let us now consider the inner product in (3.10) which we write as

〈F ′(xnj)∗y, w − xnj〉 − 〈F ′(xnj)∗F (xnj), w − xnj〉 .

For the left summand we have by the weak convergence of {xnj}j∈N or likewise {F ′(x?)xnj}j∈N

and the assumption of F , F ′(xnj)∗y
j→∞−→ F ′(x?)∗y,

〈F ′(xnj)∗y, w − xnj〉 = 〈(F ′(xnj)∗ − F ′(x?)∗ + F ′(x?)∗)y, w − xnj〉
= 〈F ′(xnj)∗y − F ′(x?)∗y, w − xnj〉+ 〈F ′(x?)∗y, w − xnj〉

j→∞−→ 〈F ′(x?)∗y, w − x?〉
= 〈F ′(x?)∗(y − F (x?)), w − x?〉+ 〈F ′(x?)∗F (x?), w − x?〉 .
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Therefore (and since 1 ≤ βnj ≤ β̄ and again by the weak convergence of {xnj}j∈N), inequality
(3.10) transforms to

lim sup
j→∞

[〈F ′(x?)∗(y − F (x?)), w − x?〉

+〈F ′(x?)∗F (x?), w − x? + xnj − xnj〉 − 〈F ′(xnj)∗F (xnj), w − xnj〉] ≤ 0

⇐⇒

lim sup
j→∞

[〈F ′(x?)∗(y − F (x?)), w − x?〉

+〈F ′(x?)∗F (x?)− F ′(xnj)∗F (xnj), w − xnj〉] ≤ 0

⇐⇒

〈F ′(x?)∗(y − F (x?)), w − x?〉+ lim sup
j→∞
〈F ′(x?)∗F (x?)− F ′(xnj)∗F (xnj), w − xnj〉 ≤ 0

. (3.11)

It remains to show that the right summand in (3.11) is for all w ∈ BR zero. We have by the
assumptions made on F ,

|〈F ′(x?)∗F (x?)− F ′(xnj)∗F (xnj), w − xnj〉|
= |〈F ′(x?)∗F (x?)− F ′(x?)∗F (xnj) + F ′(x?)∗F (xnj)− F ′(xnj)∗F (xnj), w − xnj〉|
≤ |〈F ′(x?)∗F (x?)− F ′(x?)∗F (xnj), w − xnj〉|+ |〈F ′(x?)∗F (xnj)− F ′(xnj)∗F (xnj), w − xnj〉|
≤ sup

x∈BR
‖F ′(x)‖‖F (x?)− F (xnj)‖‖w − xnj‖+

|〈(F ′(x?)∗ − F ′(xnj)∗)(F (x?)− F (x?) + F (xnj)), w − xnj〉|
≤ sup

x∈BR
‖F ′(x)‖‖F (x?)− F (xnj)‖‖w − xnj‖+

‖(F ′(x?)∗ − F ′(xnj)∗)F (x?)‖‖w − xnj‖+ L‖x? − xnj‖‖F (x?)− F (xnj)‖‖w − xnj‖
j→∞−→ 0 .

Consequently, for all w ∈ BR,

〈F ′(x?)∗(y − F (x?)), w − x?〉 ≤ 0

and the proof is complete. �

3.3 Strong Convergence

Within this subsection we show that the weak convergence of subsequences towards accumula-
tion points x? can be strengthened into convergence in norm topology. Convergence in norm is
a very useful property that ensures numerical stability with respect infinite series expansions
(i.e. for expansions where Λ is infinite).
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Lemma 10 With the same assumptions as in Proposition 9 and the assumptions (1.8)-(1.9)
on the nonlinear operator F , there exists a subsequence {xn′l}l∈N ⊂ {xn}n∈N such that {xn′l}l∈N
converges in norm towards the weak accumulation point x?, i.e.

lim
l→∞
‖xn′l − x?‖ = 0 .

Proof. Denote by {xnj}j∈N the subsequence that was introduced in the proof of Proposition
9. Define now uj := xnj − x?, vj := xnj+1 − x?, and βj := βnj . Due to Lemma 8, we have
limj→∞ ‖uj − vj‖ = 0. But we also have,

uj − vj = uj + x? − PR(uj + x? + βjF ′(vj + x?)∗(y − F (uj + x?)))

= uj + PR(x? + βjF ′(x?)∗(y − F (x?)))

−PR(uj + x? + βjF ′(vj + x?)∗(y − F (uj + x?)))

= uj + PR(x? + βjF ′(x?)∗(y − F (x?)))

−PR(x? + βjF ′(vj + x?)∗(y − F (uj + x?)) + uj) (3.12)

+PR(x? + βjF ′(x?)∗(y − F (x?)) + uj) (3.13)

−PR(x? + βjF ′(x?)∗(y − F (x?)) + uj)

+PR(x? + βjF ′(x?)∗(y − F (uj + x?)) + uj) (3.14)

−PR(x? + βjF ′(x?)∗(y − F (uj + x?)) + uj) , (3.15)

where we have applied Proposition 9 (x? fulfills the necessary condition) and Lemma 4, i.e.
x? = PR(x? + βjF ′(x?)∗(y − F (x?))). We consider now the sum (3.13)+(3.15), and obtain by
the assumptions on F and since the βj are uniformly bounded,

‖PR(x? + βjF ′(x?)∗(y − F (x?)) + uj)− PR(x? + βjF ′(x?)∗(y − F (uj + x?)) + uj)‖

≤ ‖βjF ′(x?)∗(F (uj + x?)− F (x?))‖ ≤ β̄ sup
x∈BR

‖F ′(x)‖‖F (uj + x?)− F (x?)‖ j→∞−→ 0 .

The second sum (3.12)+(3.14) yields

‖PR(x? + βjF ′(x?)∗(y − F (uj + x?)) + uj)− PR(x? + βjF ′(vj + x?)∗(y − F (uj + x?)) + uj)‖
≤ β̄

{
‖(F ′(x?)∗ − F ′(vj + x?)∗)(y − F (x?))‖

+‖(F ′(x?)∗ − F ′(vj + x?)∗)(F (x?)− F (uj + x?))‖
}

≤ β̄
{
‖(F ′(x?)∗ − F ′(vj + x?)∗)(y − F (x?))‖+ L‖vj‖‖F (x?)− F (uj + x?)‖

} j→∞−→ 0 .

Consequently, combining ‖uj − vj‖ j→∞−→ 0 and the two last statements, we observe that

lim
j→∞
‖PR(x? + βjF ′(x?)∗(y − F (x?)) + uj)− PR(x? + βjF ′(x?)∗(y − F (x?)))− uj‖ = 0 .

The remaining arguments that verify the strong convergence towards zero of a subsequence of
uj are now the same as in [3, Lemma 12]. For the readers convenience, we give all the details.
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The sequence βj is uniformly bounded, therefore there must be at least one accumulation
point, which we denote by β∞. We choose a subsequence {jl}l∈N such that liml→∞ β

jl = β∞.
Defining n′l := njl , u

′l := ujl , and v′l := vnl , we have until now

lim
l→∞

βjl = β∞ ,

lim
j→∞
‖PR(x? + βjlF ′(x?)∗(y − F (x?)) + u′l)− PR(x? + βjlF ′(x?)∗(y − F (x?)))− u′l‖ = 0 .

Denote h? := x? + β∞F ∗(y − F (x?)) and h′l := x? + βjlF ∗(y − F (x?)). We have now

‖PR(h? + u′l) −PR(h?)− u′l‖
≤ ‖PR(h′l + u′l)− PR(h′l)− u′l‖

+‖PR(h′l + u′l)− PR(h? + u′l)‖+ ‖PR(h′l)− PR(h?)‖
≤ ‖PR(h′l + u′l)− PR(h′l)− u′l‖+ 2‖h′l − h?‖

Since both terms on the right hand sinde converge to zero for l→∞, we have

lim
l→∞
‖PR(h? − u′l)− PR(h?)− u′l‖ = 0 (3.16)

Without loss of generality we can assume ‖h?‖1 > R. By Lemma 2 there exists µ > 0 such
that PR(h?) = Sµ(h?). Because |h?λ| → 0 as |λ| → ∞, this implies that, for some finite
K1 > 0,(PR(h?))λ = 0 for |λ| > K1. Pick now any ε > 0 that satisfies ε < µ/5. There exist a
finite K2 > 0 so that

∑
|λ|>K2

|h?λ|2 < ε2. Set K0 := max(K1, K2), and define the vector h̃? by

h̃?λ = h?λ if |λ| ≤ K0, h̃?λ = 0 if |λ| > K0.
By the weak convergence of the u′l, we can, for this same K0, determine C1 > 0 such that,
for all k ≥ C1,

∑
|λ|≤K0

|u′lλ|2 ≤ ε2. Define new vectors ũ′l by ũ′lλ = 0 if |λ| ≤ K0, ũ′lλ = u′lλ if

|λ| > K0.
Because of 3.16, there exists C2 > 0 such that ‖PR(h? + u′l) − PR(h?) − u′l‖ ≤ ε for l ≥ C2.
Consider now l ≥ C := max(C1, C2). We have

‖PR(h̃? + ũ′l)− PR(h̃?)− ũ′l‖
≤ ‖PR(h̃? + ũ′l)− PR(h? + ũ′l)‖+ ‖PR(h? + ũ′l)− PR(h? + u′l)‖

+‖PR(h? + u′l)− PR(h?)− u′l‖+ ‖PR(h?)− PR(h̃?)‖+ ‖u′l − ũ′l‖
≤ 5ε

On the other hand, Lemma 2 tells us that there exists σl > 0 such that PR(h̃? + ũ′l) =
Sσl(h̃

? + ũ′l) = Sσl(h̃
?) + Sσl(ũ

′l), where we used in the last equality that h̃?λ = 0 for |λ| > K0

and ũ′lλ = 0 for |λ| ≤ K0. From ‖Sµ(h̃?)‖1 = R = ‖Sσl(h̃?)‖1 + ‖Sσl(ũ′C)‖1 we conclude that
σl ≥ µ for all l ≥ C. We then deduce

(5ε)2 ≥ ‖PR(h̃? + ũ′l)− PR(h̃?)− ũ′l‖2

=
∑
|λ|≤K0

|Sσl(h̃?λ)− Sµ(h̃?λ)|2 +
∑
|λ|>K0

|Sσl(ũ′lλ)− ũ′lλ|2

≥
∑
|λ|>K0

[
max

(
|ũ′lλ − σl, 0

)
− |ũ′lλ|

]2
=

∑
|λ|>K0

min
(
|ũ′lλ|, σl

)2 ≥
∑
|λ|>K0

min
(
|ũ′lλ|, µ

)2
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Because we picked ε < µ/5, this is possible only if |ũ′lλ| ≤ µ for all |λ| > K0, l ≥ C, and if , in
addition,  ∑

|λ|>K0

|ũ′lλ|2
1/2

≤ 5ε, i.e., ‖ũ′l‖ ≤ 5ε (3.17)

It follows that ‖u′l‖ ≤ ‖ũ′l‖+ [
∑
|λ|≤K0

|u′lλ|2]1/2 ≤ 6ε.

We have thus obtained what we set out to prove: the subsequence (xnjl )l∈N of (xn)n∈N satisfies
that, given arbitrary ε > 0, there exists C so that, for l > C, ‖xnjl − x?‖ ≤ 6ε. �

As mentioned in [3], one can prove at the cost of more technicalities that the whole subsequence
{xnj}j∈N converges in norm towards x?. We summarize subsections 3.2 and 3.3 in the following
proposition.

Proposition 11 Every weak accumulation point x? of the sequence {xn}n∈N defined by (1.6)
fulfills the necessary condition for a minimizer of D in BR. Moreover, there exists a subsequence
{xnj}j∈N ⊂ {xn}n∈N that converges in norm to x?.

3.4 Some Algorithmic Aspects

In the previous subsection we have shown norm convergence for all βn satisfying Condition (B).
This, of course, implies also norm convergence for βn = 1 for all n ∈ N, which corresponds to
convergence of the projected classical Landweber iteration. But as we have mentioned above,
we intend to accelerate the speed of convergence. Therefore we are interested in choosing,
adaptively, larger values for βn. In particular, by the reasoning made after Definition 1, we
like to choose βn as large as possible. The problem (even for linear operators F ) is that the
definition of xn+1 involves βn and the inequality (B2) to restrict the choice of βn uses xn+1.
This “implicit” quality does not allow for a straightforward determination of βn.

Conditions (B1) and (B2) are inspired by classical length-step in the steepest descent algo-
rithm for the unconstrained functional ‖Fx− y‖2 (where F is linear) leading to an accelerated
Landweber iteration xn+1 = xn + γnF ∗(y − Fxn), for which γn is picked so that it gives a
maximal decrease of ‖Fx− y‖2, i.e.

γn = ‖F ∗(y − Fxn)‖2‖FF ∗(y − Fxn)‖−2 .

For nonlinear operators this condition translates into a rather non-practical suggestion for γn. In
our situation, in which we have to fulfill Condition (B), we may derive a much simpler procedure
to find a suitable γn (which is in our case βn/r). Due to Lemma 8 we have monotonicity of D
with respect to the iterates, i.e.

L
√
D(xn) ≤ L

√
D(xn−1) ≤ . . . ≤ r

2
= max{ sup

x∈BR
‖F ′(x)‖2, L

√
D(x0)} .

Therefore (B3), which was given by

L
√
D(xn) ≤ βnL

√
D(xn) ≤ r

2
,
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is indeed a nontrivial condition for βn ≥ 1. Namely, the larger the decrease of D, the larger
we may choose βn (when only considering (B3)). Condition (B3) can be recast as 1 ≤ βn ≤
r/(2L

√
D(xn)) and consequently, by Definition (3.1), an explicit (but somewhat “greedy”)

guess for βn is given by

βn = max

{
sup
x∈BR

‖F ′(x)‖2

L
√
D(xn)

,

√
D(x0)

D(xn)

}
≥ 1 . (3.18)

If this choice fulfills (B2) as well, it is retained; if it does not, it can be gradually decreased (by
multiplying it with a factor slightly smaller than 1 until (B2) is satisfied.

As a summary of the above reasoning we suggest the following implementation of the pro-
posed projected steepest descent algorithm.

Projected Steepest Descent Method

for nonlinear inverse problems

Given operator F , its derivative F ′(x), data y, some initial guess x0, and
R (sparsity constraint `1-ball BR)

Initialization r = max{2 supx∈BR ‖F
′(x)‖2, 2L

√
D(x0)},

set q = 0.9 (as an example)

Iteration for n = 0, 1, 2, . . . until a preassigned precision / maximum number
of iterations

1. βn = max

{
supx∈BR

‖F ′(x)‖2

L
√
D(xn)

,
√
D(x0)
D(xn)

}
2. xn+1 = PR

(
xn + βn

r
F ′(xn+1)∗(y − F (xn))

)
; by fixed point

iteration

3. verify (B2): βn‖F (xn+1)− F (xn)‖2 ≤ r
2
‖xn+1 − xn‖2

if (B2) is satisfied increase n and go to 1.
otherwise set βn = q · βn and go to 2.

end

4 Numerical Experiment: A Nonlinear Sensing Problem

Our numerical experiment centers around a nonlinear sampling problem that is very closely
related to the sensing problem considered in [13]. The authors of [13] have studied a sensing
setup in which a continuous-time signal is mapped by a memoryless, invertible and nonlinear
transformation, and then sampled in a non-ideal manner. Such scenarios may appear in ac-
quisition systems where the sensor introduces static nonlinearities, before the signal is sampled
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by a usual analog-to-digital converter. In [13] a theory and an algorithm is developed that
allow a perfect recovery of a signal within a subspace from its nonlinear and non-ideal samples.
In our setup we drop the invertibility requirement of the nonlinear transformation, which is
indeed quite restrictive. Moreover, we focus on a subclass of problems in which the signal to
be recovered is supposed to have sparse expansion.

Let us specify the sensing model. Assume we are given a reconstruction space A ⊂ X (e.g.
L2(R)) which is spanned by Ψ = {aλ : λ ∈ Λ} and where the family Ψ forms a frame for A
with frame bounds 0 < A1 ≤ A2 < ∞. With Ψ we associate two mappings, the analysis and
synthesis operator,

A : A 3 f 7→ {〈f, aλ〉}λ∈Λ ∈ `2(Λ) and A∗ : `2(Λ) 3 x 7→
∑
λ∈Λ

xλaλ .

We assume that the function/signal f we wish to recover has a sparse expansion in A. The
sensing model is now determined by the nonlinear transformation M : A → Y of the continuous-
time function f that is point-wise given by the regularized modulus function (to have some
concrete example for the nonlinear transformation)

M : f 7→M(f) = |f |ε :=
√
f 2 + ε2 .

This nonlinearly transformed f is then sampled in a possibly non-ideal fashion by some sampling
function s yielding the following sequence of samples,

SM(f) = {〈s(· − nT ),M(f)〉Y }n∈Z.

As for Ψ, we assume that the family Σ = {s(· − nTs), n ∈ Z} forms a frame with bounds
0 < S1 ≤ S2 < ∞. The goal is to reconstruct f from its samples y = (S ◦ M)(f). Since
f belongs to A, the reconstruction of f is equivalent with finding a sequence x such that
y = (S ◦M ◦A∗)(x). If Ψ forms a basis the searched for sequence x ∈ `2(Λ) is unique; otherwise
there might be several different sequences leading to the same function f . Among all possible
solutions, we aim (as mentioned above) to find those sequences that have small `1 norm. As
y might be not directly accessible (due to the presence of measurement noise) and due to the
nonlinearity of the operator M , it seems more practical not to solve y = (S◦M ◦A∗)(x) directly,
but to find an approximation x̂ such that

x̂ = arg min
x
‖F (x)− y‖2 and x̂ ∈ BR ,

where we have used the shorthand notation F := S ◦M ◦A∗ and where the `1 ball BR restricts
x to have a certain preassigned sparsity.

In order to apply our proposed accelerated steepest descent iteration,

xn+1 = PR

(
xn +

βn

r
F ′(xn+1)∗(y − F (xn))

)
,

to derive an approximation to x̂, we have to determine the constants r, see(3.1), and the
Lipschitz constant L. This requires a specification of Ψ and Σ. One technically motivated
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choice in signal sampling is the cardinal sine function (here used to generate Ψ as well as Σ).
This function can be defined as the inverse Fourier transform of the characteristic function of
the frequency interval [−π, π], i.e.

√
2πsinc(πt) =

1√
2π

∫
R
χ[−π,π](ω)eitωdω .

Therefore, the resulting function spaces are spaces of band limited functions. The inverse
Fourier transform of the L2 normalized characteristic function 1√

2Ω
χ[−Ω,Ω] yields

1√
2π

∫
R

1√
2Ω

χ[−Ω,Ω](ω)eitωdω =

√
Ω

π
sinc(Ωt)

leading to the following definition of L2 normalized and translated cardinal sine functions,

an(t) =
1√
Da

sinc

(
π

Da

(t− nTa)
)
, i.e. Ω =

π

Da

and (4.1)

sn(t) =
1√
Ds

sinc

(
π

Ds

(t− nTs)
)
, i.e. Ω =

π

Ds

(4.2)

that determine Ψ and Σ. The parameters Da and Ds are fixed and specify here the frequency
cut off, whereas Ta and Ts fix the time step sizes. For all n ∈ Z we have ‖an‖2 = ‖sn‖2 = 1.
Moreover, it can be easily retrieved that

〈an, am〉 = sinc

(
π

Da

(n−m)Ta

)
and 〈sn, sm〉 = sinc

(
π

Ds

(n−m)Ts

)
. (4.3)

As long as Ta/Da, Ts/Ds ∈ Z, the families Ψ and Σ form orthonormal systems. The inner
products (4.3) are the entries of the Gramian matrices AA∗ and SS∗, respectively, for which
we have ‖AA∗‖ = ‖A‖2 = ‖A∗‖2 ≤ A2 and ‖SS∗‖ = ‖S‖2 = ‖S∗‖2 ≤ S2.

Let us now determine r and L. To this end we have to estimate supx∈BR ‖F
′(x)‖2. For given

x ∈ BR, it follows that

‖F ′(x)‖ = sup
h∈`2,‖h‖=1

‖F ′(x)h‖ = ‖SM ′(A∗x)A∗h‖ ≤ ‖S‖ ‖M ′(A∗x)‖ ‖A∗‖ . (4.4)

Moreover, due to (4.1),

‖M ′(A∗x)‖2 = sup
h∈Λ2,‖h‖=1

‖M ′(A∗x)h‖2 =

∫
R
|(A∗x)(t)|2|((A∗x)(t))2 + ε2|−1|h(t)|2dt

≤ 1

ε2

∫
R
(
∑
n

|xn||an(t)|)2|h(t)|2dt ≤ ‖x‖
2
1

ε2Da

.

Therefore, we finally obtain

sup
x∈BR

‖F ′(x)‖2 ≤ ‖S‖2 ‖A∗‖2 R2

ε2Da

≤ S2A2
R2

ε2Da

. (4.5)
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Figure 1: The left image shows the sparsity to residual plot. The black diamonds correspond to
the accelerated iteration. For the non-accelerated iteration we have plotted every 20th iteration
(gray dots). The right image visualizes the sequence of βn (black) for the accelerated iteration.
The gray line corresponds to β = 1.

The Lipschitz continuity of F ′ is characterized by ‖F ′(x̃)−F ′(x)‖ ≤ L‖x̃−x‖, for all x, x̃ ∈ BR.
In order to find the Lipschitz constant L, we directly derive

‖F ′(x̃)− F ′(x)‖ = sup
h∈`2,‖h‖=1

‖F ′(x̃)h− F ′(x)h‖

= sup
h∈`2,‖h‖=1

‖SM ′(A∗x̃)A∗h− SM ′(A∗x)A∗h‖

≤ ‖S‖ ‖M ′(A∗x̃)−M ′(A∗x)‖ ‖A∗‖ , (4.6)

and with M ′′(f) = ε2(f 2 + ε2)−3/2 it follows

‖M ′(A∗x̃)−M ′(A∗x)‖2 = sup
h∈L2,‖h‖=1

∫
R
|M ′(A∗x̃(t))−M ′(A∗x(t))|2|h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

1

ε2
|A∗x̃n(t)− A∗x(t)|2 |h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

1

ε2

(∑
n∈Z

|(x̃n − xn)| |an(t)|

)2

|h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

∑
n∈Z

|an(t)|2 |h(t)|2dt 1

ε2
‖x̃− x‖2 .

To finally bound the last quantity, we have to estimate
∑

n∈Z |an(t)|2 independently on t ∈ R.
With definition (4.1), we observe that∑

n∈Z

|an(t)|2 =
1

Da

∑
n∈Z

sinc2

(
π

Da

t− nπ Ta
Da

)
(4.7)
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Figure 2: These images represent the residual evolution with respect to the number of iterations
(left) and the computational time (right). The black dotted curves represent the residual
evolution for the accelerated and the gray dotted curves for the non-accelerated scheme.

is a periodic function with period Ta. Therefore it is sufficient to analyze (4.7) for t ∈ [0, Ta].
The sum in (4.7) is maximal for t = 0 and t = Ta. Consequently, with∑

n∈Z

sinc2

(
n
π Ta
Da

)
= 1 +

∑
n∈Z\{0}

sinc2

(
n
π Ta
Da

)
≤ 1 +

2D2
a

π2 T 2
a

∑
n∈N\{0}

1

n2
= 1 +

4D2
a

π2 T 2
a

we obtain by combining (4.6) and (4.7),

‖F ′(x̃)− F ′(x)‖ ≤ L ‖x̃− x‖ , with L :=
1

ε

√
1

Da

+
4Da

π2 T 2
a

√
S2

√
A2 . (4.8)

In our concrete example (visualized in Figure 3) the ansatz space A ⊂ L2(R) is spanned by
functions an with Da = 0.4 and time step size Ta = 0.1. The sampling map S is determined by
Ts = 0.2 and Ds = 0.1. The synthetic signal which we aim to reconstruct is given by

f(t) = a−2(t)− 0.5a2.5(t) .

For the numerical implementation we have restricted the computations to the finite interval
[−10, 10] which was discretized by the grid tk = −10 + 0.05 k with k = 0, 1, 2, . . . . The bounds
A2 and S2 are estimated by the eigenvalues of adequately corresponding finite dimensional
approximations of the Gramian matrices 〈an, am〉 and 〈sn, sm〉. For the radius of the `1 ball
(determined the sparsity constraint) we have picked R = 2. Of course, this seems to be an
arbitrary guess but it just includes some a-priori knowledge of f . In Figure 1 (left diagram) one
can observe that the iterates live (from a certain number of iterations on) on the boundary of
the `1 ball. As also discussed in [3], partly better results can be obtained when slowly increasing
the radius, i.e.

Rn = (n+ 1)R/N ,
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where n is the iteration index and N stands for a prescribed number of iterations. In Figure 1
(right image) one finds that βn varies significantly from one to another iteration. This verifies
the usefulness of Condition (B). From the first iteration on, the values for βn are obviously
larger than one and grow in the first phase of the iteration process (for the accelerated method
only the first 60 iterations are shown). But the main impact manifests itself more in the sec-
ond half of the iteration (n > 20) where the non-accelerated variant has a much less decay
of
√
D(xn), see Figure 2. There the values of βn vary around 103 and allow that impressive

fast and rapid decay of
√
D(xn) of the accelerated descent method. For the non-accelerated

method we had to compute 104 iterations to achieve reasonable small residuals
√
D(xn) (but

even then being far off the nice results achieved by the accelerated scheme). The right plot
in Figure 2 sketches the residual decay with respect to the overall computational time that
was practically necessary. Both curves (the black and the gray) were of course obtained on
the same machine under same conditions. The achieved time reduction is remarkable as the
accelerated iteration method has required many additional loops of the individual fixed point
iterations in order to find the optimal βn. In particular, the final residual value after n = 10.000
iterations for the non-accelerated method was

√
D(x10000) = 0.0172. This value was reached

by the accelerated method after n = 28 iteration steps (the final value after n = 60 iterations
was

√
D(x60) = 0.0065). The overall computational time consumption of the non-accelerated

method to arrive at
√
D(x10000) = 0.0172 was 45min and 2s, whereas the time consumption for

the accelerated method for the same residual discrepancy was only 11.8s, i.e. 229 times faster.
The finally resulting reconstruction including a diagram showing the nonlinearly sampled data
is given in Figure 3.

Summarizing this numerical experiment, we can conclude that all the theoretical statements
of the previous sections can be verified. For this particular nonlinear sensing problem we can
achieve an impressive factor of acceleration. But this, however, holds for this concrete setting.
There is no proved guaranty that the same can be achieved for other applications. Nevertheless,
experiments in the field of medical imaging show a very similar behavior.
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